Comparison between parameter-efficient techniques and full fine-tuning: A case study on multilingual news article classification

Razuvayevskaya, Olesya and Wu, Ben and Leite, João A. and Heppell, Freddy and Srba, Ivan and Scarton, Carolina and Bontcheva, Kalina and Song, Xingyi and Graff-Guerrero, Mario (2024) Comparison between parameter-efficient techniques and full fine-tuning: A case study on multilingual news article classification. PLOS ONE, 19 (5). e0301738. ISSN 1932-6203

[thumbnail of journal.pone.0301738.pdf] Text
journal.pone.0301738.pdf - Published Version

Download (720kB)

Abstract

Adapters and Low-Rank Adaptation (LoRA) are parameter-efficient fine-tuning techniques designed to make the training of language models more efficient. Previous results demonstrated that these methods can even improve performance on some classification tasks. This paper complements existing research by investigating how these techniques influence classification performance and computation costs compared to full fine-tuning. We focus specifically on multilingual text classification tasks (genre, framing, and persuasion techniques detection; with different input lengths, number of predicted classes and classification difficulty), some of which have limited training data. In addition, we conduct in-depth analyses of their efficacy across different training scenarios (training on the original multilingual data; on the translations into English; and on a subset of English-only data) and different languages. Our findings provide valuable insights into the applicability of parameter-efficient fine-tuning techniques, particularly for multilabel classification and non-parallel multilingual tasks which are aimed at analysing input texts of varying length.

Item Type: Article
Subjects: STM Library > Multidisciplinary
Depositing User: Managing Editor
Date Deposited: 06 May 2024 08:48
Last Modified: 06 May 2024 08:48
URI: http://open.journal4submit.com/id/eprint/3865

Actions (login required)

View Item
View Item