Manipulation of light spectrum can improve the performance of photosynthetic apparatus of strawberry plants growing under salt and alkalinity stress

Rahimi, Mehdi and Esmaeilizadeh, Majid and Malekzadeh Shamsabad, Mohammad Reza and Roosta, Hamid Reza and Dąbrowski, Piotr and Rapacz, Marcin and Zieliński, Andrzej and Wróbel, Jacek and Kalaji, Hazem M. (2021) Manipulation of light spectrum can improve the performance of photosynthetic apparatus of strawberry plants growing under salt and alkalinity stress. PLOS ONE, 16 (12). e0261585. ISSN 1932-6203

[thumbnail of journal.pone.0261585.pdf] Text
journal.pone.0261585.pdf - Published Version

Download (3MB)

Abstract

Strawberry is one of the plants sensitive to salt and alkalinity stress. Light quality affects plant growth and metabolic activities. However, there is no clear answer in the literature on how light can improve the performance of the photosynthetic apparatus of this species under salt and alkalinity stress. The aim of this work was to investigate the effects of different spectra of supplemental light on strawberry (cv. Camarosa) under salt and alkalinity stress conditions. Light spectra of blue (with peak 460 nm), red (with peak 660 nm), blue/red (1:3), white/yellow (1:1) (400–700 nm) and ambient light were used as control. There were three stress treatments: control (no stress), alkalinity (40 mM NaHCO3), and salinity (80 mM NaCl). Under stress conditions, red and red/blue light had a positive effect on CO2 assimilation. In addition, blue/red light increased intrinsic water use efficiency (WUEi) under both stress conditions. Salinity and alkalinity stress decreased OJIP curves compared to the control treatment. Blue light caused an increase in its in plants under salinity stress, and red and blue/red light caused an increase in its in plants under alkalinity. Both salt and alkalinity stress caused a significant reduction in photosystem II (PSII) performance indices and quantum yield parameters. Adjustment of light spectra, especially red light, increased these parameters. It can be concluded that the adverse effects of salt and alkalinity stress on photosynthesis can be partially alleviated by changing the light spectra.

Item Type: Article
Subjects: STM Library > Geological Science
Depositing User: Managing Editor
Date Deposited: 10 Dec 2022 12:36
Last Modified: 24 Feb 2024 04:09
URI: http://open.journal4submit.com/id/eprint/253

Actions (login required)

View Item
View Item