Kanadi, M. A. and Alhassan, A. J. and Yaradua, A. I. and Nasir, A. and Wudil, A. M. (2021) Sub-fractions from Carica Papaya Seed Extracts Can Prevent Potassium Bromate- induced Changes in Activities of Renal Brush Border Membrane Enzymes and Some Enzymes of Carbohydrate Metabolism in the Kidney of Rats. Asian Journal of Biochemistry, Genetics and Molecular Biology, 8 (4). pp. 1-9. ISSN 2582-3698
242-Article Text-409-1-10-20220923.pdf - Published Version
Download (222kB)
Abstract
Sub-fractions from Carica Papaya Seed Extracts Can Prevent Potassium Bromate- induced Changes in Activities of Renal Brush Border Membrane Enzymes and Some Enzymes of Carbohydrate Metabolism in the Kidney of Rats M. A. Kanadi A. J. Alhassan A. I. Yaradua A. Nasir A. M. Wudil
Aim: To investigate the effect of the chromatographic fractions of Carica papaya seed on KBrO3 –induced reduction in the activities of renal brush border membrane (BBM) marker enzymes and the changes in activities of some enzymes of carbohydrate metabolism in the kidney of rats. Study Design: twenty male Wistar rats were divided into four groups, five rats per group; normal control, KBrO3 control, papaya fraction control and KBrO3 group administered with 126mg/kg body weight of the most active fraction of partially purified methanol extract of C. papaya for 48 hours. Place and Duration of Study: Department of Biochemistry Laboratory, Faculty of Basic Medical Sciences, Bayero University Kano, Nigeria. Methodology: The activities of renal BBM marker enzymes: γ-glutamyl transferase, alkaline phosphatase, maltase and leucine aminopeptidase were assayed in homogenates of renal cortex and medulla, and in brush border membrane vesicle (BBMV) isolated from cortex using standard methods. Furthermore, activities of the following enzymes representing different pathways of carbohydrate metabolism were determined in renal homogenates: hexokinase (HK), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), glucose 6-phosphatase (G6P), fructose 1,6-bisphosphatase (FBP), glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME). Results: KBrO3 administration significantly (P<0.05) decreases the activities of all the BBM marker enzymes in renal homogenates and BBMV. It also decreases the activities of MDH, G6P, FBP and G6PD, and significantly increases (P<0.05) that of HK, LDH and ME in renal homogenates however co-administration of most active fraction of C. papaya seed prevented all the KBrO3 -induced changes in these biochemical parameters. Conclusion: Chromatographic fractions of C. papaya seed extract possesses potent phytochemicals that could prevent KBrO3 –induced reduction in activities of renal BBM marker enzymes and the changes in enzymes of carbohydrate metabolism studied and therefore could be analyzed further to isolate the bioactive compounds.
07 30 2021 1 9 10.9734/ajbgmb/2021/v8i430198 https://journalajbgmb.com/index.php/AJBGMB/article/view/242 https://www.journalajbgmb.com/index.php/AJBGMB/article/download/30198/56669 https://www.journalajbgmb.com/index.php/AJBGMB/article/download/30198/56669 https://www.journalajbgmb.com/index.php/AJBGMB/article/download/30198/56670
Item Type: | Article |
---|---|
Subjects: | STM Library > Biological Science |
Depositing User: | Managing Editor |
Date Deposited: | 15 Mar 2023 09:58 |
Last Modified: | 01 Feb 2024 04:07 |
URI: | http://open.journal4submit.com/id/eprint/1620 |