An AIS Data-Driven Approach to Analyze the Pattern of Ship Trajectories in Ports Using the DBSCAN Algorithm

Lee, Hyeong-Tak and Lee, Jeong-Seok and Yang, Hyun and Cho, Ik-Soon (2021) An AIS Data-Driven Approach to Analyze the Pattern of Ship Trajectories in Ports Using the DBSCAN Algorithm. Applied Sciences, 11 (2). p. 799. ISSN 2076-3417

[thumbnail of applsci-11-00799-v3.pdf] Text
applsci-11-00799-v3.pdf - Published Version

Download (25MB)

Abstract

As the maritime industry enters the era of maritime autonomous surface ships, research into artificial intelligence based on maritime data is being actively conducted, and the advantages of profitability and the prevention of human error are being emphasized. However, although many studies have been conducted relating to oceanic operations by ships, few have addressed maneuvering in ports. Therefore, in an effort to resolve this issue, this study explores ship trajectories derived from automatic identification systems’ data collected from ships arriving in and departing from the Busan New Port in South Korea. The collected data were analyzed by dividing them into port arrival and departure categories. To analyze ship trajectory patterns, the density-based spatial clustering of applications with noise (DBSCAN) algorithm, a machine learning clustering method, was employed. As a result, in the case of arrival, seven clusters, including the leg and turning section, were derived, and departure was classified into six clusters. The clusters were then divided into four phases and a pattern analysis was conducted for speed over ground, course over ground, and ship position. The results of this study could be used to develop new port maneuvering guidelines for ships and represent a significant contribution to the maneuvering practices of autonomous ships in port.

Item Type: Article
Subjects: STM Library > Engineering
Depositing User: Managing Editor
Date Deposited: 04 Jan 2023 06:11
Last Modified: 12 Mar 2024 04:08
URI: http://open.journal4submit.com/id/eprint/1276

Actions (login required)

View Item
View Item