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With high hardness, high thermal stability, chemical inertness and excellent

optoelectronic properties, transparent hard and brittle materials have drawn

significant attentions in frontier domains such as aerospace, photoelectric

detection, and high-intensity lasers. Femtosecond laser processing

technology demonstrates great potential for transparent hard and brittle

materials processing due to its outstanding advantages such as non-contact,

true 3D processing and programmable design. However, high-energy laser

ablation usually causes severe damage to the surface of the materials, resulting

in low processing accuracy, low processing efficiency and poor surface quality.

Femtosecond laser hybrid processing strategies have been proven to be an

effective solution to solve the above problems. This mini-review summarizes

the fundamentals and research progress of femtosecond laser hybrid

processing strategies of transparent hard and brittle materials in recent

years. Moreover, the challenges and application prospects of these

techniques are discussed.
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Introduction

The rapid development of optoelectronics, nanophotonics, biomanufacturing and bionics

has placed higher demands on the fabrication of micro/nanodevices. Transparent hard and

brittle materials, such as diamond and sapphire, have become ideal choices for micro/nano

devices operating under harsh environmental conditions such as strong radiation and easy

corrosion, due to their high hardness, high thermal stability, chemical inertness, and

broadband transparency (Khattak et al., 2016). However, its high hardness, high stability

and other characteristics make it difficult to achieve precision processing by traditional

processing techniques. For example, nano-embossing and thermal transfer technologies are
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not suitable for high hardness and high temperature-resistant

materials, since the transfer process is easy to lead to the

formation of chipping, cracking, and other stress damage.

Femtosecond laser processing technology, as a new micro-

nanofabrication tool, has shown great potential for micro-nano

processing of transparent hard and brittle materials with the

advantages of high processing accuracy, flexibility, contactless

processing with no material selectivity (Chen et al., 2018; Sima

et al., 2018; Lin and Hong, 2021). It enables flexible and efficient

three-dimensional (3D) fabrication of submicron feature sizes and

has a wide range of applications in the fabrication of 3D micro/

nanostructures in the fields of micro-optics, micro-fluidics, super-

impregnated functional surfaces, and bionic micro-robotics, which

drives the development of functionalization, miniaturization, and

integration of complex devices (Chen et al., 2012).

Tightly focused femtosecond laser has a high-power density.

The sharp increase in temperature through electron collisions

generated by inverse bremsstrahlung absorption and subsequent

electron-lattice interactions leads to ablation and removal ofmaterial

in and around the focused center of the spot. As a result, laser

ablation has also become one of the most promising general laser

processing technologies (Li et al., 2022; Liu S.-F et al., 2022).

Femtosecond laser ablation techniques usually use a high power

density above the material damage threshold to achieve material

removal. Actually, material ablation removal is a non-equilibrium

process. In the case of high-energy laser ablation, the ablated surface

morphology changes. A large number of debris and particles are

produced, which causes light scattering and hinders in subsequent

process. The degree of damage to the material can be reduced by

regulating the processing parameters. However, the inherent

hardness, brittleness, and low light absorption of transparent

hard and brittle materials make the processed surface quality and

the processing efficiency still cannot meet the high requirements in

micro-optics and microfluidics. Various femtosecond laser hybrid

processing strategies have been proposed to address these challenges,

providing many practical solutions for high-quality and high-

precision processing of transparent hard and brittle materials.

In this mini-review, we summary the recent research advances

in femtosecond laser hybrid processing strategies of transparent

hard and brittle materials, focusing on three processing strategies:

femtosecond laser-assisted etching strategy, liquid-assisted

femtosecond laser ablation strategy, and femtosecond laser

combined with annealing strategy. Moreover, this mini-review

briefly discusses the challenges of femtosecond laser hybrid

processing strategies and provides an outlook for the future.

Femtosecond laser-assisted etching
strategy

Femtosecond laser-assisted etching strategy effectively

improves the surface quality of transparent hard and brittle

materials after femtosecond laser processing (Liu et al.,

2019a). The basic principle is that the material is modified by

femtosecond laser to induce a phase change or compositional

change, which results in a different etching rate in the modified

region and unmodified region. The modified areas can be

removed during the subsequent etching process by controlling

the etching parameters (Wang et al., 2022a). Ultimately, micro/

nanostructures can be created on the surface or inside

transparent hard and brittle materials. The etching process

used is mainly divided into wet etching and dry etching.

Marcinkevičius et al. (2001) were the first to propose

femtosecond laser-assisted wet etching and demonstrated

direct 3D micromachining inside silica. It is worth noting that

this technology allows the fabrication of 3D channels with

diameters down to 10 mm in volume and with arbitrary

interconnection angles and high aspect ratios. This pioneering

work has demonstrated the feasibility of the strategy. However,

the mechanism leading to the different etching rates is unclear.

Researchers conducted extensive studies on the femtosecond

laser-modified region and etching rate. For example, Bellouard

et al. (2004) observed that the central portion of the laser

processing path etched faster and explained the change in

etching rate due to femtosecond laser modification. They

suggest that the increase in etch rate is caused by two

mechanisms: one by the presence of internal stresses and the

other by a decrease in the average ring size of the structure due to

changes in the crystalline state. This provides new insights into

the laser-matter interaction. By ultra-high spatial resolution

measurements, Hnatovsky et al. (2006) demonstrated that the

difference in etching rates was dependent on the presence of

polarization-dependent self-ordered periodic nanopores or

nanopore structures. In addition, they investigated the optimal

processing conditions for preparing high-quality microchannels,

which had led to the development of 3D monolithic integration

of microchannels and microphotonic assemblies. Mazilu et al.

(2007) performed structural characterization of laser-modified

regions inside sapphire. The results revealed the presence of

dislocations near the sapphire crystal-amorphous boundary after

femtosecond laser processing; while the high density of

dislocations did not affect the etching ability of sapphire in

aqueous hydrofluoric acid solutions. The luminescence and

Raman characterization of the femtosecond laser-modified

region were analyzed (Choudhury et al., 2013). It was

demonstrated that femtosecond laser pulses transformed the

neodymium-doped yttrium aluminum garnet (Nd:YAG)

crystal state into a pre-damaged, which in turn showed a

greater etching rate than that of the unmodified region.

The above-mentioned mechanistic studies lay a solid

foundation for femtosecond laser-assisted wet etching to

prepare micro/nanostructures. Self-organized nanostructures,

elliptical microchannels and concave microstructures with

smooth surfaces have been successfully prepared and applied

in photonic crystals, biochemical analysis and super

hydrophobicity (Wortmann et al., 2008; Hao et al., 2012; Bian
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FIGURE 1
(A) Femtosecond laser-assisted wet etching; reproduced with permission from Chen et al. (2010). (B) Femtosecond laser-assisted dry etching;
reproduced with permission from Liu et al. (2017). (C) Liquid-assisted femtosecond laser ablation; reproducedwith permission fromHua et al. (2022).
(D) Femtosecond laser combined with annealing; reproduced with permission from Schwarz et al. (2020).
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et al., 2013). Shan et al. (2015) reported highly integrated on-chip

3D microcoil arrays inside fused silica, demonstrating the

flexibility and versatility of femtosecond laser-assisted wet

etching strategy. Wang et al. used temporally shaped

femtosecond laser Bessel-beam-assisted chemical etching to

achieve high throughput and high depth-to-diameter ratio

microchannel preparation in fused silica (Wang et al., 2018).

The etching depth was increased by 13 times with the temporally

shaped Bessel beam modification compared with the

conventional single pulse. In addition, Ródenas et al. (2019)

demonstrated large-area 3D dense nanopore lattices prepared in

yttrium aluminum garnet and sapphire crystals by wet etching-

assisted laser direct writing techniques, respectively. They show

that the wet etching rate can be increased by 5 orders of

magnitude, making it possible to prepare arbitrary 3D

structures with feature sizes of 100 nm.

In addition to processing micropore and microchannel

structures (Juodkazis et al., 2008), microlens arrays (MLAs) of

various shapes with good optical properties can be prepared by

femtosecond laser-assisted wet etching strategy. As shown in

Figure 1A, Chen et al. (2010) rapidly prepared large-area concave

MLAs on quartz glass by this technique. Tightly stacked

rectangular and hexagonal MLAs with diameters less than

100 μm were successfully fabricated in less than 3 h. Not only

in planar transparent hard and brittle materials, femtosecond

laser-assisted wet etching strategy also demonstrates flexibility in

adjusting the shape and depth of structures. Du et al. (2012)

prepared a honeycomb concave MLAs on a 3 mm diameter glass

column. Hu et al. (2018) have successfully fabricated built-in

microlenses in three-dimensional glass microfluidic channels. A

wide range of continuous tuning by filling the channel with

media with different refractive indices, which opens up new

avenues for applications including biomedical imaging and

sensing. Inspired by insect compound eyes, Wang et al. also

successfully prepared glass infrared artificial compound eyes by

this strategy. It has excellent infrared thermal imaging

performance and a 60%–70% transmission rate (Wang et al.,

2022b).

Wet etching of crystalline materials is usually based on

crystal orientation etching, which leads to distortion and

pattern distortion of the structure (Deng et al., 2016).

Therefore, it is not suitable for the preparation of high-

quality bending devices. Dry etching technique is using the

gas plasma to physically bombard and chemically react

simultaneously with the etched material under the action of

electric field in a low vacuum environment, which can avoid

this problem to a large extent.

Liu et al. (2017) first proposed a dry etching-assisted

femtosecond laser modification technique for processing hard

materials, as shown in Figure 1B. They successfully prepared

uniform, square and hexagonal MLAs with high-quality focusing

and imaging capabilities on fused silica, gallium arsenide, silicon

carbide, and diamond. This technology significantly improves

processing efficiency (Liu et al., 2019b). More importantly, the

technology is compatible with integrated circuit manufacturing

processes and has significant application potential in the field of

device integration. In addition, the technique enables the

preparation of compound eye structures on curved sapphire.

Compared with direct laser ablation, the processing efficiency of

this technique can be improved by more than two orders of

magnitude. Due to its high hardness and thermal stability, the

sapphire concave compound eyes can be used as high-

temperature and hard-cast templates.

To further solve the problem of difficulty in preparing

deep structures, Zheng et al. (2021) achieved grating

structures with adjustable period, duty cycle, and height on

the sapphire surface by successively combining wet etching

and dry etching processes assisted by femtosecond laser

processing. The roughness of the sapphire grating structure

was reduced from 78 nm (after laser direct writing) to 7 nm

(after dry etching). Liu et al. realized the preparation of

sapphire infrared windows with double-sided

subwavelength pyramidal structure arrays using

femtosecond laser-assisted etching strategy (Liu X.-Q et al.,

2022). Notably, by introducing a sacrificial layer protection

strategy, the competing problems of surface damage and

internal damage during deep processing by inside-out

femtosecond laser were solved. This provides a new idea

for preparing transparent hard and brittle materials for

micro/nanostructure preparation.

Liquid-assisted femtosecond laser
ablation strategy

Liquid-assisted femtosecond laser ablation is another

operative method to achieve high-precision true 3D

processing of transparent hard and brittle materials. The

femtosecond laser pulse is tightly focused at the intersection

of material and liquid. The extremely high peak power of the laser

focus causes the ablation of materials and pierces the liquid to

produce laser cavitation. The shock wave generated by the

expanding plasma plume and bubble collapse carries the

ablated debris away from the surface, enabling real-time

cleanup of debris during the ablation process. High-precision

3D processing of transparent hard and brittle materials is

achieved through continuous controlled layer-by-layer

material removal.

By comparing femtosecond laser processing in air and liquid,

researchers found that liquid-assisted femtosecond laser ablation

has better structural surface quality and higher processing

resolution, with 1/3 to 1/2 reduction in ablation features (Cao

et al., 2018). Sun et al. (2019) reported that liquid-assisted

femtosecond laser processing reduced the ablation threshold

of fused silica from 2.22 to 1.02 J/cm2. Since the femtosecond

laser induces bubbles in the liquid after forming the plasma,
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different bubbles cause different impact pressures. Therefore,

the ablation threshold reduction is closely related to the liquid

with different properties. In addition, Wang et al. also prepared

high-quality silicon carbide through-hole arrays without cracks

and heat-affected zones by water-assisted femtosecond laser

ablation technique, which is essential for the high-quality

processing of silicon carbide electronic devices (Wang et al.,

2021).

Liquid-assisted laser ablation can also reduce the thermal effects

generated during laser processing. However, suspended debris and

liquid flow can reduce the transmission stability of the femtosecond

laser beam, resulting in less efficient energy transfer. For this reason,

researchers proposed to process the back surface ofmaterials to solve

the above problem, i.e., laser-induced backside wet etching

(LIBWE). This is the primary method for processing

microstructures of transparent hard and brittle materials.

Actually, LIBWE is mainly carried out through nanosecond laser

pulses. Femtosecond laser pulses can easily lead to a liquid

breakdown. However, considering the low heat affected zone,

high resolution, and high surface quality, some studies still use

femtosecond laser pulses. In this way, microstructures can be

prepared in transparent hard and brittle materials with higher

precision. For example, Ehrhardt et al. discovered two different

laser-induced periodic surface structures (LIPSS) on SiO2 surfaces

for the first time by LIBWE. This also provides additional data to

discuss the origin of high spatial frequency LIPSS formation

(Ehrhardt et al., 2018). Tan et al. (2019) successfully prepared 3D

microchannels on glass by LIBWE. They used simultaneous spatial-

temporal focusing to avoid the nonlinear self-focusing in the

conventional focusing process. Seo et al. (2020) prepared glass

microchannels using LIBWE. Based on this, combined with the

laser-induced chemical liquid phase deposition method for rapid

deposition of copper.

In addition, Hua et al. (2022) prepared different types of

sapphire microlenses by cavitation-assisted femtosecond laser

ablation technique. As shown in Figure 1C, the external profile of

the prepared spherical microlenses is consistent with the

theoretical design. Moreover, the further prepared square and

hexagonal sapphire convex MLAs that can reach a fill factor of

100%, which is difficult to achieve by other techniques. This

technique has also achieved the high-precision preparation of

sapphire micro-optical components such as holographic

diffraction elements, vortex light generators, and 3D artificial

compound eyes.

Liquid-assisted laser ablation technology is based on an

ablation processing mode and is suitable for any materials.

The flow of the liquid eliminates the effect of debris during

processing and reduces the thermal effects generated during

processing. At the same time, the auxiliary cavitation kinetic

process makes the machining more flexible and stable. However,

achieving control of the process is complex, and the bubbles’

persistence, damage resistance, and mobility can simultaneously

determine the final structural properties.

Femtosecond laser combined with
annealing strategy

The annealing process is a traditional heat treatment

technique. It can effectively eliminate the residual stress inside

the material after laser processing and reduce the surface

roughness of the material (Maia et al., 2021).

For glass materials, annealing of the laser-ablated structure

allows the glass surface to start softening first. The softened

surface produces a slight localized reflux under gravity and

surface tension, resulting in a smoothness similar to a liquid

surface. After cooling, the surface is again transformed into a

glassy substance, while the surface quality is substantially

improved. Seuthe et al. (2017) analyzed the structural

relaxation of multi-component lithium silicate glass after

femtosecond laser ablation combined with annealing using

Raman spectroscopy. The results indicated that femtosecond

laser-induced structural modifications were closely related to

local changes in the refractive index of the materials.

Subsequently, Sala et al. (2021) characterized the improvement

in surface quality after thermal annealing, achieving a reduction

in roughness from 49 nm to 19 nm. The reduction in roughness

was demonstrated by the mirror imaging properties before and

after thermal annealing. High-quality glass micro-optical

elements were successfully prepared using the smoothing

properties of this strategy (Lin et al., 2009; Wang et al., 2022).

Compared with direct laser ablation, the annealing-assisted

femtosecond laser processing technique can significantly

improve processing efficiency and surface quality.

In addition, CO2 laser annealing also can be combined with

femtosecond laser processing. The surface layer of the material is

heated under the irradiation of a CO2 laser. Due to the surface

tension of the material, the viscosity is reduced, thus improving

the surface quality. Schwarz et al. (2018) prepared high-quality

axicon for generating quasi-Bessel beams in fused silica by

combining femtosecond laser ablation and CO2 laser polishing

processes. This strategy provides the possibility for rapid

prototyping of glass elements, even 3D optical elements with

complex free-form surfaces. Microlens arrays with high profile

accuracy and low roughness have also been successfully

fabricated by this strategy (Figure 1D). It is also confirmed

that femtosecond laser ablation combined with CO2 laser

annealing is suitable for preparing complex optical geometry

(Schwarz et al., 2020; Schwarz et al., 2021).

For crystal materials, laser ablation produces a rough

amorphous layer. However, the main body of the structure

remains in the single crystal state. By using a temperature

higher than the softening point of the amorphous state and

lower than the melting point of the crystal, it is possible to give

the amorphous layer enough internal energy to soften and

volatilize without changing the structure of the crystal body

(He et al., 2013). Xu et al. (2013) prepared optical waveguides

with low cladding and bilinear structure in LiTaO3 crystals using
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femtosecond laser ablation combined with annealing. After the

thermal annealing process, the propagation loss of the cladding

waveguide was reduced and its transmission loss was minimized

to 0.38 dB/cm. He et al. (2016) observed grating regeneration

during annealing and prepared a negative refractive index fiber

Bragg grating with excellent performance. In addition, the

stresses accumulated during laser processing can be eliminated

by annealing treatment. Based on this, the crack-free 3D

microstructure is also realized.

The thermal annealing process has become a common

material treatment process. However, annealing temperature

and time need to be strictly controlled for different materials.

For example, too long an annealing time can lead to the

deformation of glass body material. Structural deformation

and surface quality need to be measured. For crystalline

materials, the smoothing effect of annealing treatment on the

material surface is relatively weak, requiring better surface

preparation during laser processing.

Conclusion and outlook

We analyze the problems of low processing accuracy and

poor structural surface quality as well as the severe damage to the

material surface caused by femtosecond laser ablation

technology. The research progresses of femtosecond laser

hybrid processing strategies of transparent hard and brittle

materials in recent years are reviewed. Hybrid processing

strategies has become a new direction for micro-nano

processing. For instance, femtosecond laser-assisted etching

strategy can improve processing quality. However, as a point-

by-point direct writing technology, the processing efficiency of

femtosecond laser ablation can not meet the high requirements,

and new auxiliary strategies need to be explored to improve the

processing efficiency, such as parallel laser micro-nano

processing technology. In addition, the combination of

multiple technologies in order to achieve the integration of

micro/nanodevices needs to be further investigated. In

conclusion, femtosecond laser hybrid processing strategies

play an increasingly significant role in the preparation and

application of micro/nano devices for transparent hard and

brittle materials. With the further exploration of femtosecond

laser micro-nano processing technology, the preparation of

micro/nano devices with arbitrary shape, low roughness and

high resolution can be realized, which promote the development

and accelerate the industrialization process of femtosecond laser

micro-nano processing in aerospace, biomedical, information

technology, new energy, new materials and other industries.
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