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In this manuscript, a semianalytical solution of the time-fractional Navier-Stokes equation under Caputo fractional derivatives
using Optimal Homotopy Asymptotic Method (OHAM) is proposed. The above-mentioned technique produces an accurate
approximation of the desired solutions and hence is known as the semianalytical approach. The main advantage of OHAM is
that it does not require any small perturbations, linearization, or discretization and many reductions of the computations. Here,
the proposed approach’s reliability and efficiency are demonstrated by two applications of one-dimensional motion of a viscous
fluid in a tube governed by the flow field by converting them to time-fractional Navier-Stokes equations in cylindrical
coordinates using fractional derivatives in the sense of Caputo. For the first problem, OHAM provides the exact solution, and
for the second problem, it performs a highly accurate numerical approximation of the solution compare with the exact solution.
The presented simulation results of OHAM comparison with analytical and numerical approaches reveal that the method is an
efficient technique to simulate the solution of time-fractional types of Navier-Stokes equation.

1. Introduction

Partial differential equations (PDEs) are utilized to mathe-
matically formulate and thus help solve physical and other
problems involving functions of several variables, such as
the propagation of sound or heat, electrostatics, fluid flow,
elasticity, and electrodynamics. In fluid mechanics, the
Navier-Stokes equation is a PDE that illustrates incompress-
ible fluids’ flow. This equation is a generalization of the
equation developed to illustrate the flow of frictionless and
incompressible fluids by Euler in the eighteenth century. In
1821, Navier added the viscosity (friction) element to make
viscous fluids more realistic and complex. The British physi-
cist and mathematician Stokes improved it during the middle
of the nineteenth century, though complete solutions were
achieved only for simple two-dimensional flows [1]. That is
why the equation is called the Navier-Stokes equation. The

mathematical model of the above-mentioned equation is
given by:

∂U s, tð Þ
∂t

+ U s, tð Þ ⋅ ∇ð ÞU s, tð Þ = −
1
ρ
∇p + ϑ∇2U s, tð Þ, ð1Þ

where U is the velocity, t is the time, ρ is the density, s is the
spatial variable, ϑ is the kinematics viscosity, p is the pressure,
and ∇ denotes the gradient differential operator.

Fractional differential equations have proven to be a
powerful tool for modeling real-world problems in the
literature. It was noticed that time-fractional derivatives
usually appear as infinitesimal generators of the time evolu-
tion when choosing a long-time scaling limit. Several essen-
tial phenomena in physics and polymer technology [2],
electrical circuits [3], electrochemistry [4], electrodynamics
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of complex medium [5], control theory [6], thermodynamics
[7], viscoelasticity [8], aerodynamics [9], capacitor theory
[10], biology [11], blood flow [12], and fitting of experimen-
tal data [13], are well described by the aforesaid equations.
Equation (1) can be converted to time-fractional derivative
of order α ∈ ð0, 1�, as given by:

∂αU s, tð Þ
∂tα

+ U s, tð Þ ⋅ ∇ð ÞU s, tð Þ = −
1
ρ
∇p + ϑ∇2U s, tð Þ: ð2Þ

Here, ∂α/∂tα is the Caputo fractional derivative. As the
equation mentioned above is nonlinear, there is no known
general method for resolving it. There are very few cases
where it is possible to achieve the exact solution of Equation
(2), making some predictions about the fluid’s state and a
simple arrangement considered for the flow pattern; for
detail, see [14].

Analytical and numerical techniques are extensively uti-
lized to solve nonlinear differential equations modeling phys-
ical phenomena. This is because the exact solutions of the
above-mentioned equations are challenging to achieve. In
recent decades, a new variety of perturbation methods have
developed, which is loosely based on Poincare’s homotopy
applied in topology. Liao [15] introduced the Homotopy
Analysis Method (HAM) in 1992. In 1998, He [16] followed
Liao’s work and developed the Homotopy Perturbation
Method (HPM). Both methods have been successfully imple-
mented to the problems, which exist in engineering and
science fields. For example, Ganji and Rafei [17] solved non-
linear Hirota-Satsuma coupled Korteweg-De Vries equation
by HPM. Lu and Liu [18] solved the Korteweg-De Vries-
Burgers equation via the help of HAM. Siddiqui et al. [19]
utilized HPM and examined the irregular 2D flow of a vis-
cous magnetohydrodynamics fluid within two parallel plates.

In [20], Marinca and Herisanu proposed a technique
called OHAM. The benefit of the above-mentioned tech-
nique is in the built-in convergence criteria alike to HAM
but extraflexible. The researchers have successfully imple-
mented this approach to solving essential science problems
and have also explained its reliability and effectiveness, for
example, the dynamics of an electrical machine exhibiting
nonlinear vibration [21], the oscillations of a particle that
moves on a rotating parabola [22], the explicit solutions for
some oscillators with discontinuities and a fractional power
restoring force [23], and nonlinear equations arising in heat
transfer [20], in an application to the steady flow of a
fourth-grade fluid [24]. The above-mentioned technique is
the HAM’s modification, which is based on minimizing the
residual error. In OHAM, the adjustment and control of
the convergence region are provided conveniently.

In [14], Momani and Odibat considered unsteady one-
dimensional motion of a viscous fluid in a tube. The equa-
tions of motion which govern the flow field in the tube are
the Navier-Stokes equations in cylindrical coordinates. They
converted Equation (2) to the operator form as:

∂αU s, tð Þ
∂tα

= P + ϑ
∂2U s, tð Þ

∂s2
+ 1

s
∂U s, tð Þ

∂s

 !
, ð3Þ

where 0 < α ≤ 1 is the fractional order derivative and
P = −∂p/ρ∂z. For α = 1, we can get the standard Navier-
Stokes equation. For the analytical solution, they have
utilized the Adomian decomposition method. Lately, several
powerful analytical techniques have been utilized to achieve
the solution of Equation (3), such as the modified Laplace
decomposition method [25], the q-homotopy analysis trans-
form scheme [26], the new homotopy perturbation trans-
form method [27], the iterative Elzaki transform method
[28], the natural homotopy perturbation method [29], Elzaki
transform with homotopy perturbation technique [30], and
He’s homotopy perturbation and variational iteration
methods [31]. The aforementioned methods are called ana-
lytical, and no one has used the semianalytical technique
for the solution of Equation (3) in the previous studies.
Therefore, the objective of this manuscript is to present the
semianalytical solution of Equation (3) by a semianalytical
approach called OHAM.

The rest of the manuscript is structured as follows: in
Section 2, we recall some definitions and properties of nonin-
teger order operators. Section 3 is devoted to the basic formu-
lation of OHAM. In Section 4, we apply the above-mentioned
technique to time-fractional Navier-Stokes type of equations
and discuss the method reliability through tables and plots.
Section 5 is devoted to the conclusion.

2. Definitions and Properties

This section deals with some definitions and properties that
are used in the manuscript.

Definition 1. A real function ψðtÞ, t > 0 is supposed to be in
the space Cκ ðκ > 0Þ if it can express as ψðtÞ = tpψ1ðtÞ for cer-
tain p > κ where ψ1ðtÞ ∈ C½0,∞Þ, and it is supposed to be in
the space Cm

κ ⇔ ψm ∈ Cκ,m ∈ℕ.

Definition 2 (see [32]). The α ≥ 0 order integral operator for a
function ψ ∈ Cκ, κ ≥ −1 in the Riemann-Liouville sense is
defined as:

Iαψ tð Þ = 1
Γ αð Þ

ðt
0

ψ θð Þ
t − θð Þ1−α dθ: ð4Þ

Let ψ ∈ Cκ, κ ≥ −1, α,γ ≥ 0, and μ > −1, then we have the
properties [32] given by:

IαIγψ tð Þ = Iα+γψ tð Þ,
IαIγψ tð Þ = IγIαψ tð Þ,

Iαtμ = Γ μ + 1ð Þ
Γ μ + α + 1ð Þ t

μ+α:

ð5Þ

Definition 3 (see [32]). The α > 0 order Caputo derivative
operator for a function ψ ∈ Cm

−1,m ∈ℕ is defined as:

cDαψ tð Þ = 1
Γ n − αð Þ

ðt
0

ψ nð Þ θð Þ
t − θð Þα−n+1

dθ, t > 0, ð6Þ
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where ½α� is the integer part of α and n = ½α� + 1. For ψ,
ϕ ∈ Cm

κ , κ ≥ −1, we have the properties [32] given by:

cDα aψ tð Þ + bϕ tð Þð Þ = acDαψ tð Þ + bcDαϕ tð Þ, a, b ∈ IR,
cDαIαψ tð Þ = ψ tð Þ,

Iα cDα½ �ψ tð Þ = ψ tð Þ − 〠
k−1

j=0
ψ jð Þ 0ð Þ xj

j!
:

ð7Þ

3. Basic Formulation of the OHAM

We formulate OHAM for PDEs with boundary condition, in
the steps given by [33]:

L U s, tð Þð Þ +N U s, tð Þð Þ + ℏ s, tð Þ = 0,B U, ∂U
∂t

� �
= 0, s ∈ϒ ,

ð8Þ

where L and N are the linear and nonlinear operators,
respectively. Uðs, tÞ is an unknown function, the boundary
operator denoted by B, s and t denote spatial and time
variables, respectively, ℏðs, tÞ is known function, and ϒ is
the domain of the problem.

By OHAM, we construct the homotopy ωðs, t;℘Þ:
ϒ × J ⟶ R, where J = ½0, 1�, which satisfies:

1−℘ð Þ L ω s, t;℘ð Þð Þ + ℏ s, tð Þf g =H ℘ð Þ L ω s, t;℘ð Þð Þf
+N ω s, t;℘ð Þð Þ + ℏ s, tð Þg,

ð9Þ

where ℘∈J is an embedding parameter andHð℘Þ is a nonzero

auxiliary function for ℘≠ 0 andHð0Þ = 0. Equation (9) is to be
the optimal homotopy equation. Obviously,

℘ = 0⇒L ω s, t;℘ð Þð Þ + ℏ s, tð Þ = 0,
℘ = 1⇒L ω s, t;℘ð Þð Þ +N ω s, t;℘ð Þð Þ + ℏ s, tð Þ:

ð10Þ

For ℘ = 0, we can obtain ωðs, t ; 0Þ =U0ðs, tÞ, and for
℘ = 1, we can get ωðs, t ; 1Þ =Uðs, tÞ. Therefore, as ℘ extend
from 0 to 1, then ωðs, t;℘Þ moves from U0ðs, tÞ to Uðs, tÞ,
where U0ðs, tÞ is got from Equation (9) for ℘ = 0:

L U0 s, t;℘ð Þð Þ + ℏ s, tð Þ = 0,B U0,
∂U0
∂t

� �
= 0: ð11Þ

Now, we take Hð℘Þ, which is called auxiliary function,
in the following form:

H ℘ð Þ = ℘C1 + ℘2C2 + ℘3C3+⋯+℘mCm: ð12Þ

For the numerical solution, we utilize Taylor’s series
about ℘ and expand ωðs, t;℘,CpÞ in the following way:

ω s, t;℘,Cp

� �
=U0 s, tð Þ + 〠

∞

q−1
Uq s, t ; Cp

� �
℘q, p = 1, 2, 3,⋯:

ð13Þ

Plugging Equation (13) in Equation (9) and equating the
coefficient of like powers of ℘, we get the problem of zerothor-
der; given in (11), the problems of the first and second order
are given by the Equations (14) and (15), respectively, and
the general governing equations for Uqðs, tÞ are given in
Equation (16):

L U1 s, tð Þð Þ = C1N 0 U1 s, tð Þð Þ,B U1,
∂U1
∂t

� �
= 0, ð14Þ

L U2 s, tð Þð Þ −L U1 s, tð Þð Þ = C2N 0 U0 s, tð Þð Þ + C1 L U1 s, tð Þð Þ +N 1 U0 s, tð Þ,U1 s, tð Þð Þ½ �,B U2,
∂U2
∂t

� �
= 0,

⋮
ð15Þ

L Uq s, tð Þ� �
−L Uq−1 s, tð Þ� �

= CqN 0 U0 s, tð Þð Þ + 〠
q−1

p=1
Cp L Uq−p s, tð Þ� ��

+N q−p U0 s, tð Þ,U1 s, tð Þ,U2 s, tð Þ,⋯,Uq−p s, tð Þ� ��,B Uq,
∂Uq

∂t

� �
, q = 2, 3,⋯,

ð16Þ

3Advances in Mathematical Physics



where N q−pðU0ðs, tÞ,U1ðs, tÞ,⋯,Uq−pðs, tÞÞ is the coeffi-
cient of ℘q−p in the expansion of N ðωðs, t;℘ÞÞ about the
embedding parameter ℘.

N ω s, t;℘,Cp

� �� �
=N 0 U0 s, tð Þð Þ +〠

q≥1
N q U0,U1,⋯,Uq

� �
℘q:

ð17Þ

Here,Uq for q ≥ 0 is the set of linear equations with linear
boundary conditions, which can be solved very easily.

The series in Equation (13) depends on C1, C2,⋯. If it is
convergent at ℘ = 1, then:

~U s, t ; Cp

� �
=U0 s, tð Þ + 〠

m

q=1
Uq s, t, Cp

� �
: ð18Þ

Putting Equation (18) in Equation (8), one can obtain the
residual expression in the form:

R s, t ; Cp

� �
=L ~U s, t ; Cp

� �� �
+N ~U s, t ; Cp

� �� �
+ ℏ s, tð Þ:

ð19Þ

If Rðs, t ; CpÞ = 0, then ~Uðs, t ; CpÞ will be the exact solu-
tion. But generally, it is not possible in nonlinear problems.

For calculating the Cp, p = 1, 2,⋯,m, one can utilize the
least square technique as given by:

Φ Cp

� �
=
ðt
0

ð
ϒ

R2 s, t ; Cp

� �
dsdt, ð20Þ

where R is the residual given by Equation (19) and

∂Φ
∂C1

= ∂Φ
∂C2

= ∂Φ
∂C3

=⋯ = ∂Φ
∂Cm

= 0: ð21Þ

The convergence based on C1, C2, C3,⋯ can be identified
and minimized optimally by Equation (21).

4. Numerical Examples

In this section, the fractional OHAM is utilized to get the
solution of time-fractional Navier-Stokes equations.

Example 1. Suppose a time-fractional Navier-Stokes equation:

∂αU s, tð Þ
∂tα

= P + ∂2U s, tð Þ
∂s2

+ 1
s
∂U s, tð Þ

∂s
, ð22Þ

with the initial condition:

U s, 0ð Þ = 1 − s2, ð23Þ

where ∂α/∂tα is Caputo fractional derivative and 0 < α ≤ 1.
The exact solution of Equation (22) is given by [14]:

U s, tð Þ = 1 − s2 + P − 4ð Þt: ð24Þ

According to Section 3, we can set up the homotopy in the
following way:

1−℘ð Þ ∂
αω s, t;℘ð Þ
∂tα

=H ℘,Cp

� �
∂αω s, t;℘ð Þ

∂tα
− P −

∂2ω s, t;℘ð Þ
∂s2

−
1
s
∂ω s, t;℘ð Þ

∂s

" #
,

ð25Þ

where

ω s, t;℘ð Þ =U0 s, tð Þ + 〠
∞

q=1
Uq s, t ; Cp

� �
℘q, p = 1, 2, 3⋯ ,

ð26Þ

H ℘,Cp

� �
= ℘C1 + ℘2C2 + ℘3C3 + ℘4C4+⋯: ð27Þ

Plugging Equations (26) and (27) in (25) and equating the
coefficient of the same powers of ℘, one can get the simpler
problems, given as:

Zero-order problem:

∂αU0 s, tð Þ
∂tα

= 0, U0 s, 0ð Þ = 1 − s2: ð28Þ

First-order problem:

∂αU1 s, t ; C1ð Þ
∂tα

= 1 + C1ð Þ ∂
αU0 s, tð Þ
∂tα

− C1P − C1
∂2U0 s, tð Þ

∂s2

−
C1
s
∂U0 s, tð Þ

∂s
, U1 s, 0ð Þ = 0:

ð29Þ

Respective solutions of Equations (28) and (29) after
apply fractional integral and initial condition are given:

U0 s, tð Þ = 1 − s2,

U1 s, t ; C1ð Þ = −
C1 P − 4ð Þtα
Γ 1 + αð Þ :

ð30Þ

One can get the following expression:

~U s, tð Þ =U0 s, tð Þ +U1 s, t ; C1ð Þ +U2 s, t ; C1, C2ð Þ+⋯
= 1 − s2 −

C1 P − 4ð Þtα
Γ 1 + αð Þ :

ð31Þ

We used the least square method after finding the resid-
ual and then got the auxiliary constant value for α = 1; we
have C1 = −1. Putting the value of C1 in Equation (31), we get

~U s, tð Þ = 1 − s2 + P − 4ð Þtα
Γ 1 + αð Þ : ð32Þ
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Figure 1: Continued.
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The result (32) is in complete agreement with [14, 25–31].
Figure 1 shows the evaluation results of the semianalytical
solution for Example 1 when P = 1 and show the dynamics
of the obtained solution by OHAM for various noninteger
order Brownian motions and for standard motions, i.e.,
for α = 1. It can be seen that the solution acquired via the

above-mentioned technique is decreasing very swiftly with
the increase in t in Example 1, which is illustrated in
Figure 1(b). Figure 1(a) shows the efficiency of the above-
mentioned method. Figures 1(e) and 1(f) show the solution
behavior for α = 0:2 and α = 0:5. Besides, we have obtained
the exact solution by OHAM.
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Example 2. Suppose a time-fractional Navier-Stokes equation:

∂αU s, tð Þ
∂tα

= ∂2U s, tð Þ
∂s2

+ 1
s
∂U s, tð Þ

∂s
, ð33Þ

with the initial condition

U s, 0ð Þ = s, ð34Þ

where ∂α/∂tα is Caputo fractional derivative and 0 < α ≤ 1. We
consider the first four terms of the exact solution of (33) from
[14] is given by:

U s, tð Þ = s + t
s
+ t2

2s3 + 9t3
6s5 : ð35Þ

According to Section 3, we can set up the homotopy in the
following way:

1−℘ð Þ ∂
αω s, t;℘ð Þ
∂tα

=H ℘,Cp

� � ∂αω s, t;℘ð Þ
∂tα

−
∂2ω s, t;℘ð Þ

∂s2
−
1
s
∂ω s, t;℘ð Þ

∂s

" #
,

ð36Þ

where

ω s, t;℘ð Þ =U0 s, tð Þ + 〠
∞

q=1
Uq s, t ; Cp

� �
℘q, p = 1, 2,3⋯

ð37Þ

H ℘,Cp

� �
= ℘C1 + ℘2C2 + ℘3C3 + ℘4C4+⋯: ð38Þ

Plugging Equations (37) and (38) in (36) and equating the
coefficient of the same powers of ℘, one can get the simpler
problems, given as:

Zero-order problem:

∂αU0 s, tð Þ
∂tα

= 0, U0 s, 0ð Þ = s: ð39Þ

First-order problem:

∂αU1 s, t ; C1ð Þ
∂tα

= 1 + C1ð Þ ∂
αU0 s, tð Þ
∂tα

− C1
∂2U0 s, tð Þ

∂s2

−
C1
s
∂U0 s, tð Þ

∂s
,  U1 s, 0ð Þ = 0:

ð40Þ

Second-order problem:

∂αU2 s, t ; C1, C2ð Þ
∂tα

= 1 + C1ð Þ ∂
αU1 s, t ; C1ð Þ

∂tα
− C1

∂2U1 s, t ; C1ð Þ
∂s2

−
C1
s
∂U1 s, t ; C1ð Þ

∂s
+ C2

∂αU0 s, tð Þ
∂tα

− C2
∂2U0 s, tð Þ

∂s2
−
C2
s
∂U0 s, tð Þ

∂s
, U2 s, 0ð Þ = 0:

ð41Þ

Third-order problem:

∂αU3 s, t ; C1, C2, C3ð Þ
∂tα

= 1 + C1ð Þ ∂
αU2 s, t ; C1, C2ð Þ

∂tα
− C1

∂2U2 s, t ; C1, C2ð Þ
∂s2

−
C1
s
∂U2 s, t ; C1, C2ð Þ

∂s
+ C2

∂αU1 s, t ; C1ð Þ
∂tα

− C2
∂2U1 s, t ; C1ð Þ

∂s2
−
C2
s
∂U1 s, t ; C1ð Þ

∂s

+ C3
∂αU0 s, tð Þ

∂tα
− C3

∂2U0 s, tð Þ
∂s2

−
C3
s
∂U0 s, tð Þ

∂s
,U3 s, 0ð Þ = 0:

ð42Þ

Respective solutions of Equations (39)–(42) after apply
fractional integral and initial condition are given:

U0 s, tð Þ = s,

U1 s, t ; C1ð Þ = −
C1t

α

sΓ 1 + αð Þ ,

U2 s, t ; C1, C2ð Þ = −
C1 + C2

1 + C2
� �

tα

sΓ 1 + αð Þ + C2
1t

2α

s3Γ 1 + 2αð Þ ,

U3 s, t ; C1, C2, C3ð Þ = −
C1 + 2C2

1 + C3
1 + 2C1C2 + C2 + C3

� �
tð Þα

sΓ 1 + αð Þ

+ 2C1 C1 + C2
1 + C2

� �
t2α

s3Γ 1 + 2αð Þ −
9C3

1t
3α

s5Γ 1 + 3αð Þ :

⋮

ð43Þ

One can calculate the next order problem solutions by
above similar process. In the end, we can get the expression:

Table 2: Comparison of exact and OHAM solution.

s Exact OHAM Abs error

1.0 2.94735999 2.94736040 4:04145499 × 10−7

1.2 3.05262208 3.05262204 3:73698401 × 10−8

1.4 3.16486784 3.16486694 8:94947017 × 10−7

1.6 3.28483456 3.28483228 2:27227761 × 10−6

1.8 3.41325952 3.41325524 4:27305321 × 10−6

2.0 3.55088000 3.55087299 7:00096540 × 10−6

Table 1: C1, C2, C3 for various values of α.

α C1 C2 C3

0.7 -1.036692817879 -0.001240278601 −4:24687 × 10−5

0.8 -1.020447062606 -0.000376864638 −7:02931 × 10−6

0.9 -1.010550021386 -0.000101578844 −9:88500 × 10−7

0.10 -0.999953117565 -0.000040256679 3:30467 × 10−8
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Figure 2: Continued.
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Figure 2: Exact solution and OHAM solution behavior of Example 2.
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~U s, tð Þ =U0 s, tð Þ +U1 s, t ; C1ð Þ +U2 s, t ; C1, C2ð Þ
+U3 s, t ; C1, C2, C3ð Þ+⋯

= s −
3C1 + 3C2

1 + C3
1 + 2C2 + 2C1C2 + C3

� �
tα

sΓ 1 + αð Þ

+ C1 3C1 + 2C2
1 + 2C2

� �
t2α

s3Γ 1 + 2αð Þ −
9C3

1t
3α

s5Γ 1 + 3αð Þ⋯:

ð44Þ

We used the least square method after finding the resid-
ual and then got the auxiliary constant value for α (see
Table 1). The absolute error of both solutions can be seen
in Table 2.

Putting the values of C1, C2, and C3 for α = 1 in Equation
(44), we get

~U s, tð Þ = s + tα

sΓ 1 + αð Þ + 1:00008t2α
s3Γ 1 + 2αð Þ + 8:99873t3α

s5Γ 1 + 3αð Þ : ð45Þ

Figure 2 shows the solution behavior of the time-fractional
order Navier-Stokes equation by OHAM. In Figure 2(a), the
solution curves are decreasing rapidly for higher fractional
orders until we get the standard motion of fluid for α = 1,
and Figure 2(b) shows the proposed method’s effectiveness
and reliability. Figures 2(e) and 2(f) show the OHAM solution
behavior for α = 0:2 and α = 0:5, respectively. The obtained
results reveal that the method mentioned above is an efficient
tool to study such types of fractional order fluid mechanics
problems, which can be seen in Table 2.

5. Conclusion

In this study, fractional-order OHAM is successfully
implemented to obtain the optimal solutions of time-
fractional Navier-Stokes equation. From the acquired results,
it can be seen that OHAM is an efficient and reliable semia-
nalytical technique to approximate the solution of different
fractional-order linear and nonlinear problems appearing in
engineering and science. The above-mentioned technique
provides a simple approach to control and adjust the conver-
gence of the series solution utilizing the constants Cp

’s which
are determined optimally. Two examples have been studied
to illustrate the efficiency and versatility of this approach.
The OHAM solution of the first example is the same as the
exact solution, and for the OHAM solution of the second
example, the obtained numerical approximation of the solu-
tion has a strong agreement with the exact solution. Besides,
when the order of approximation increases, the error accu-
racy of the numerical solution decreases and becomes closer
to the exact solutions. The proposed technique’s fast accuracy
and convergence are valid reasons for the researcher to use it
for various problems in science and technology. It has been
noted that the semianalytical solutions by extended formula-
tion are in remarkable agreement with the exact solutions.
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