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The coupled Chaffee-Infante reaction diffusion (CCIRD) hierarchy associated with a 3 x 3 matrix spectral problem is derived by
using two sets of the Lenard recursion gradients. Based on the characteristic polynomial of the Lax matrix for the CCIRD
hierarchy, we introduce a trigonal curve % ,_, of arithmetic genus m —2, from which the corresponding Baker-Akhiezer
function and meromorphic functions on %#,,_, are constructed. Then, the CCIRD equations are decomposed into Dubrovin-
type ordinary differential equations. Furthermore, the theory of the trigonal curve and the properties of the three kinds of Abel
differentials are applied to obtain the explicit theta function representations of the Baker-Akhiezer function and the

meromorphic functions. In particular, algebro-geometric solutions for the entire CCIRD hierarchy are obtained.

1. Introduction

It is significantly important to search for solutions of nonlin-
ear partial differential equations of mathematical physics.
There are many methods to find the exact solutions [1, 2]
and approximate solutions [1-3] of various nonlinear partial
differential equations. Reaction diffusion equations are effec-
tive and important mathematical models, which contribute
to explaining processes of the transition, diffusion, and fluid-
ity of matter. Constructing exact solutions of such equations
has been widely used in mathematics, physics, chemistry,
biology, and other fields. Therefore, it is necessary for us to
study algebro-geometric constructions of the coupled
Chaffee-Infante reaction diffusion (CCIRD) hierarchy asso-
ciated with a 3 x 3 matrix spectral problem. The third mem-
ber in the hierarchy is

_ 2
Uy, = 120 o+ 24 (uy — uiu,),

_ 2
Uy, =120y, — 24 (u2 - uzul),

which is called the CCIRD equation compared with Equation
(0.4) in Ref. [4].

Algebro-geometric solution is closely associated with the
inverse spectral theory [5, 6], and the solution of the KdV
equation with an initial value problem was solved by the
use of the method in Ref. [7]. Over the recent decades, inte-
grable equations related to 2 x 2 matrix spectral problems
have been extensively researched. Several systematic methods
have been developed to construct algebro-geometric solu-
tions for integrable equations such as KdV, Kadomtsev-
Petviashvili equation, modified KdV, sine-Gordon, Ablo-
witz-Kaup-Newell-Segur, the Camassa-Holm equations,
and Ablowitz-Ladik lattice [8-27]. But the study of algebro-
geometric solutions of the whole hierarchy of 3 x 3 is still a
challenging problem. Fortunately, in Ref. [28], a unified
framework was proposed to yield algebro-geometric solu-
tions of the whole Boussinesq hierarchy. Based on the work
of that, a systematic method was proposed to define the trigo-
nal curve and develop the framework to analyse soliton equa-
tions associated with the 3 x 3 matrix spectral problems,
from which the algebro-geometric solutions of some entire
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hierarchies are obtained [29-34]. In Ref. [29], algebro-
geometric quasi-periodic solutions to the three-wave reso-
nant interaction hierarchy related to the trigonal curve with
three infinite points were obtained. Wang and Geng con-
structed algebro-geometric solutions of a new hierarchy of
soliton equations associated with a 3 x 3 matrix spectral
problem [30] based on the methods used in [28, 29]. Later,
Ma analysed the four-component AKNS soliton hierarchy,
particularly asymptotics of the Baker-Akhiezer functions, in
such a way that it proposes a general theory applicable to sol-
iton hierarchies associated with 3 x 3 matrix spectral prob-
lems [31]. As a continuous study of [31], Ma constructed
algebro-geometric solutions of the four-component AKNS
soliton hierarchy in terms of a general theory of trigonal
curves [32]. However, as far as we know, algebro-geometric
solutions to the CCIRD hierarchy have not been investigated.
The most important result of this paper is to give the explicit
algebro-geometric solutions to the CCIRD hierarchy related
to 3 x 3 matrix spectral problems by using the approaches
used in [28-30], which complements the existing works in
this area.

The outline of this paper is as follows. In Section 2, we
obtain the CCIRD hierarchy related to a 3 x 3 matrix spectral
problem based on the Lenard recursion equations. In Section
3, atrigonal curve % ,,_, of arithmetic genus m — 2 with three
infinite points is introduced by the use of the characteristic
polynomial of the Lax matrix for the stationary CCIRD equa-
tions, from which the stationary Baker-Akhiezer function
and associated meromorphic functions are given on %,,_,
Then, the stationary CCIRD equations are decomposed into
the system of Dubrovin-type ordinary differential equations.
In Section 4, we present the explicit theta function represen-
tations of the stationary Baker- Akhiezer function, of the mer-
omorphic functions, and, in particular, of the potentials for
the entire stationary CCIRD hierarchy. In Section 5, we
extend all the Baker-Akhiezer functions, the meromorphic
functions, the Dubrovin-type equations, and the theta func-
tion representations dealt with in Sections 3 and 4 to the
time-dependent case.

2. The CCIRD Hierarchy

In the section, we shall derive the CCIRD hierarchy associ-
ated with a 3 x 3 spectral problem:

v, =Uy,
iAo 1
U=lwu -iA 1 |,
11 -2i) (2)
¥
v=1v |
Vs

where the potential u = (u,,1,)" and A is a spectral parame-
ter. Next, we introduce the Lenard gradient sequences
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with two initial points

g.,=(0,0,0,0,0,0,1,0)",
g.,=(0,0,0,0,0,0,0,1),

and two operators are defined as

0 1 0 0 0 -1 -2u -u
1 9 0 -u, 0 0 -1 -2
0 0 o0 1 -1 0 2u u
P L A R |
0 0 -1 0 0 u 1 2
-1 0 0 0 w o -1 1
-4, 0 wuw 1 0 -1 0 0
0 -1 0 -1 1 1 0 0
2i 0 0 0O 0 0 0 O
0 -i 0 0O 0 0 0 O
0 0 -2¢ 0 0 O 0 O
0 0 0 -3 0 0 0 O
1o 0o 0 0 i 0 0o
0 0 0 0 0 3 0 O
-u, 0 wuw 1 0 -1 0 O
o -1 O -1 1 1 0 0

(5)

Then, the sequences {g,} and {3}, j > 0, can be uniquely
determined and the first several members read as

I D !
9o = | tu—i, iy, g1,—1, gz, 0,0 ,

B T T P P
= —Wy,—2l, — Uy~ = 1,—24L,— =1, U, >
9o= 5t PR 3
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In order to obtain the CCIRD hierarchy, we solve the sta-
tionary zero-curvature equation

Ve (U V=0 V= (Vi) ()

which is equivalent to
Vie tthVip + Vi =1y Vy = V3 =0, (8)
Vo =g Vip + 1y Vi + Vi3 = V3, =0, ©

Vigx = Vi3 = Va3 + V3 + V5, =0,

Vige =2iAVi +uy (V= V) + Vi3 = V3, =0,

Vige tiAVi3+ V= Vi + Vi =1y V3 =0,

Vorx +20AVy + 1y (Vo = Vi) + Vs =
Vs +3IAV 3+ Vo = Vs 1, Vi3 + V=0,

Vi —iAVy + Vs = Vi = Vy + 14,V =0,

(
(
(
Vy,=0, (13
(
(
Vi = 3iAV, + Vs = V) (

-Vi+tu Vs =0,

where each entry V; is a Laurent expansion in A:

Vij = Z Vij,k—lxk’

k=0

1<i<3,1<j<3, (17)

and V,,, V,,, V3 satisfy V,; + V,, + V5, =0. A direct calcu-
lation shows that (8)-(16) implies the Lenard equation

KG=MG, G= (VIZ’ Viss Vo Vazs Vi Vg Vi, V33)T'

(18)

Substituting Equation (17) into Equation (18) and col-

lecting the same powers of A, we get the following recursion
relations:

KGk—l =]Gk) ]G_l :07 (19)

T
where Gy = (Vi Visio Ve Vase Vane Vae Voo Vasg) -
Since equation /G =0 has the general solution

G =g, +od 1 (20)

then G; can be expressed as

Gy = oogy + PGt +agy + Brdo + %19, (21)
+ Brnd> k=20,

where a; and S, are arbitrary constants.
Consider the auxiliary problem:

wtr — f/('f)l//’ ‘7(7) — (\75}’))3)(3) (22)

where each entry V ! has the form V =Y,V U, A

<i<3,1<j<3, and satisfies Virl) + \7(22) Vg; =0. Then,

<V12 57 V13 2 V21 2 V23 S? V3ls’ V32 52 V22 52
V33S) , which is determined by G, =a,g, +[30g$ o
g0+[3 Go+ %19, +ﬁs+1g_1, -1<s<r-1la, and ﬁ are
arbitrary constants. It is easy to find that GS satisfies the
Lenard equation KG, = JG,,,, JG_, =0.

we introduce G, =

(r)

Then, from the compatibility condition U, - v +[U,
\7<r)] =0 of Equations (2) and (22), we have
u, =X,, r=0, (23)

r

where the vector fields X;=X,(u;a E ))=P(KG,_
P(JG,), the constant vectors () = (&0 ), B =By, -
v v

2) is

B,), and the projective map y = (y', 3%,y % 1%, 15,
— (y1,9%). The third member in the hierarchy (2

Bi=0)

)

4 )
(for

convenience, we take &, =

26 )
3“1 — U,
1

L,
"’ﬁo( Upxx ~ §”1‘z“1”2>)

At
U, =% <§ Upxx ~

/1 26
Uor, = %o 75 Yo + 9 Uy + Uyl
-1 11,
+ B, <_Zu2’x" + §u2 + 5“2”1)

Taking &, = —11, &, = 70 in system (23), we have

(24)

Uy, = 120, o + 244y — uju,), 5)
Uy, = =120y = 24(1,12 - u%ul),

which is called the CCIRD equation compared with Equation
(0.4) in Ref. [4].

3. The Stationary Baker-Akhiezer Function

In the section, we are devoted to detailed study of the sta-
tionary Baker-Akhiezer function and the associated mero-
morphic functions. Then, the system of Dubrovin-type
differential equations is derived. Let us consider the station-
ary CCIRD hierarchy: X, =0, n >0, which is equivalent to

the stationary Zero—curvature equation, V" =[U, V"),
" = (Af’lv)_'_ = (Vz(;)):,,x:,, 11 Zk 0" ijk- 1/\ » and Vij,k—l

determined by (21). It is easy to verify that the matrix yI —
V" also satisfies the stationary zero-curvature equation.
Then, the characteristic polynomial of Lax matrix V"), &

(A, y)=det (yI - V(”)), is independent of variable x with
the expansion

det (yI - V(”)> =y’ +S,,(A)y - T, (1), (26)



where S, (1) and T,,(A) are polynomials with constant coef-
ficients of A:

v v

S, (A) =
n() ey )
SRV OV

2 —
= (2090, + 2By, + ap By + oy By )A™ Bals

- —(océ + By + 2By ) A" 27)

viy vy v
T,,(A)= Vg';) Vé’;) Vgg) =—ayBy (e + ﬁo))‘M
vy vl v

= [(etg + Bo) (o By + 1 By) + g By (o) +‘BI)],\3”‘1+....
(28)

It is easy to find that T, (A) is a polynomial of degree 3n
with respect to A as ayf3,(a, + f3,) #0. Then, F,,(A,y)=0
naturally leads to a trigonal curve

Kzt Bu(by) =y +8,A)y =T, (4) =0, (29)

with m = 3n. For convenience, we denote the compactifica-
tion of the curve % ,,_, by the same symbol % ,,_,. Hence,
H ., becomes a three-sheeted Riemann surface of arith-
metic genus m —2 if it is nonsingular or smooth. Here,
the meaning of nonsingular is that at each point
P, = (/\,’y,) € %m—Z’ (agm(A’y)/aA’ a‘G/Tm(A’y)/ayN(/\,y):(/\’

»") # 0 holds. For m > 4, these curves are typically nonhyper-
elliptic. Point P on % ,,_, is represented as pairs P = (A, y(P))
satisfying (29) along with Pooj = (oo,ooj), j=1,2,3, the three
different points at infinity, which can be computed from the
curve > +8,,(A)y—T, (A)=0 by choosing A={"". The
complex structure on % ,,_, is defined in the usual way
by introducing local coordinate ¢, = A — A, near point Q =
(AQ, y(Q)) € #,,_, which is neither branch nor singular
point of % ,,_, except the three points Py s Poy > Po,» at
infinity with local coordinate A=¢" and local coordinate
o, =(A- AQo)fm near branch or singular point Q, = (4,
Q) € F s

Next, we shall define the meromorphic functions ¢, (P, x)
and ¢;(P, x) on % ,,_, as follows:

P) bl
o,(px)= 2% b eg,
vy (P X, Xp) (30)
P’ >
o, (Px)= BBEX) g ec
¥ (P, X, %)

with the stationary Baker-Akhiezer function (P, x,x,)
defined by

V(P xg) = Uu() s AP)W(P o x),  (31)

VO (u(x); MP))W (P, x, %)) = y(P)y (P, %, %), (32)
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pP= (A’y) e‘%m—z\{Pool’Pooz>Poo3}>xEC-
(33)

V(P xp, %) =1,

By using (31)-(33), a direct calculation gives that

¢ — Fm—Z :sz%)—yAm+Bm :yvg)-‘—cm
20 oy _ E__ (n) ’
Y2 Vi =yC, + D, m=2 yVis + A,

(34)

¢ _ 9m—2 :yzvgg)_y‘dm+‘%m :yV§;)+(€m
3 Zv(”)_ € D -E,__ V(”) o >
JARAY) V6t Dy m-2 VASY) + 4,
(35)

where

A= ViV VIV,

B =V (VVE - VYY) eV (VY - VDY),

Cu= VIV ViV,

D, =V (VI - vEVY)
V(v Vi),
o= VIV - VIV,

B, =V (VEVE - vivY)
VR (Vv vV,
5= VIV VOV,

9= Vi (Vi V- Vi V)

VD (VY - ViV,

et
Il

n 2 n n n n n n 2 n
(Vi) v« vidvis (v - vig) - (Vi) v,
n 2 n n n n n n 2 n
Em—Z = (Vgii)) Vgl) + Vgl) Vg?)) (V(H) - Vg?&)) - (Vgl)) V§3)’

n 2 n n n n n n 2 n
T (V) VA VIV (Vi - ) - (V) Ve

Through straightforward calculations, we obtain some
main interrelationships among polynomials A4,,, -+, D,,, /,,,,
3D B gy Fryos F o Syup T SOme of which are summa-

m-2> m-2>
rized below:
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2
V(lg) Fm—Z = V(Zg)Dm - Sm (Vg)) - C2

m’
. (39)
AmFm—Z = Tm (V23 ) + CmDm’
2
Vg)Em—Z = V(lg)Bm - Sm (V(1§)> - Aizn’
e (40
CmEm—Z = Tm (V13 ) +AmBm’
Vg’;)Bm + V(l};)Dm - Vg;l) Vg;)Sm + Amcm =0,
Vgg) Vgg) Tm + Vgg)AmSm + V(I’;)Cmsm - Bmcm - AmDm =
Vgg)Ame + Vig)Cme + Em—ZFm—2 - BmDm =0,
(41)
2
V(lg)gm—Z = ng)gm - Sm (Vgrzl)) - %fn’
. @)
‘Qymgm—z = Tm <V32 ) + %mgm’
n n n)\ 2
_V(az)Em—z = V(IZ)‘%M — S <V§2)> - nyw
(43)

2
_(ngm—Z = Tm (V(lg)) + 'Q{m‘%m’

Vgg)‘%jm + Vg;)gm - Vg? ngysm + ‘Qim%m =0,

viovir cvia s +vie s - ®B 6, -d,D, =0,
Vg?'sym Tm + V(lg)%me + Em—ng—Z - ‘%mgm =0, (44)

E, o =iAE, ,—u, (2V§§)sm - 3Bm) +2vis —3%. |

Vg) Fpox= (VZI —U Vgg)) (ZVg)Sm - 3Dm)

- (SMV(Z';) + 3V§’;>) F,

Vgg) ‘G/Tm—Z,x = (V31 - Vg;)) (ZVg3)S gm) (45)

+ (41'/\V§§> - 3V§§)) F.

By observing Equations (21) and (38), one infers that E,,_,,
F, 5, and &, _, are polynomials with respect to A of degree
m — 2. Therefore, we may write them in the following forms:

ay = Bo)(ag +2f3y) (204 + By e
(A x) = ( X +2 2+ )ulg(/\_ﬂj(x))’
(46)
L(hx) = (@ = By) (% +62ﬁ0 (20 + ﬁo 1} /\ v](x)

(47)

5
F s x) = (By — @) (% +32,30 (20 + fBy) §5 2
]=1
(48)
where (o) — f3,) (&g +28,) (205 + f3,) #0

Define

0= (5@ (5)) = (;(x),_ %) € Hpa
32 \6j\r)

1<j<m-2,x€C. (49)

In order to more distinctly put forward the properties of
&,(P, x), ¢5(P,x), and v, (P, x,x,), we introduce the holo-
morphic map #, changing sheets, which is defined by

H o1 = K 1

m—

P:()L’yi()L))_)P*: (A’yi-v-l(mod 3)(A))’ i=0,1,2,

P = (P*)", etc,,
(50)

where y;(1),j=0,1,2, satisfy #,,(A, y) =0, that is,

0 =2 =71 W) =72(0) =y + S, M)y = T, (A) =
(51)
Furthermore, the positive divisors on % ,,_, of degree
m —2 are defined as
‘%m—z

ERE S S [0, PE{P P,
PPy =
pe k, if Poccurs ktimes € {P,,---,

— N,

with N, = Nu {0}.
Further properties of ¢, (P, x), ¢;(P, x), and v, (P, x, x,)
are summarized as follows:

¢y (P x) + 1, §5 (P, x) + ¢, (P, x) 5 (P, x) + 2iA, (P, x)
—¢5(P,x) -

u, =0,
(53)



BB ) + (P, x) + 11,6, (P, 2)5 (P ) — Ay (P, )
~$,(Px) - 1=0,

(54)

G (P, x)p, (P %), (P*", x) = —

$3(Px)§5(P*x) s (P, x) =

$2(P, x) + ¢, (P*, x)+¢, (P, x)
2V (4 %)S,,(A) =3B, (A, x)
m—2 (A X)

N N S ) (57)
S EL) ’“3ﬁ]

X

u; (x) V(13)

¢5(P>x) + ¢5(P", x)+¢5 (P, x)
2V (4 %)S,(A) - 3B, (A x)
B m-2(As %)
Eyp(h 9 Vitho)] o (58)

= IE — A+ 3u;(x)

VDA, x)
Vi, x) - VD4, x)

X
uy (x)

up[§5 (P> x) + ¢, (P", x)+¢, (P, x)]

F5(P) + (P 2y (P ) = ety

ez (A X)
(59)

1 N 1 N 1
G, (Px)  §,(P7.x)  ¢,(P7,x)
[—SiAV%) (Lx)-3V2 (A, x)} F, (L) -

VY (0 ) P ()
[V ) =V ()| Fy s (A %)

(60)

S S
$3(Prx)  $5(PTx)  ¢5(PTx)
[4mv§;> (Ax) -3V (A, x)] Frpa (A x) —

Vi ) = V) ()] 7,01 )

(61)

Ve (L 2)F (M%)
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¢, (P, x)

6,(P*,x)
6,(Prx) "

¢5(P%, x)

¢, (P )
¢5 (P x)
1

V) [V3 () =V (A,2)| 0 5(h %)

VAV A 0)F (12 + V) ()

[V A -4V ], 000 ) - X”) 3 x;
(62)
¢5 (P x) + ¢5 (P, )+ ¢; (P x)
¢ (P x)  $(P7,x)  ¢,(P™,x)
1
VR VR0 -6V 0] F ()

x { V3 () Vi (4 %) Fp (A 0) + VA ()

(n) A
3V x) -4V ()| By ()} - 3220
|: 22 23 :| 2 } Vg,;) (A, x)
(63)
v, (P, x, x,) = exp (J [i/\ +u (x’) ®, <P, x') + ¢, (P, x’)} dx’) ,
(64)
W1 (P %, %0 )y (P, 2,0 )y, (P77, %, %)
Em—2 (A’ x) (65)

= E, (b o) exp (2iM(x —x,)).

The dynamics of the zeros {u j(x)}j':z, {vi(x) };Z_z, and

{E( )}’,':'12 of E, ,(A,x), F,, ,(Ax), and &, (A x) are

described according to Dubrovin-type equations as follows.

Lemma 1. Assume the zeros {[/tj(x)}j'zz, {vj(x)}j"lf, and

{§0}") of By s(Mx), Fy5(A %), and F,
distinct, respectively, and let x€C. Then, {p;(x )}m 2
{vi(x) "l ’ and {&;(x )}',';2 satisfy the system of dtﬁerentzal

equations

2[v 53)(#,-(90 %) = Vi3 (). %) {3f(u](x) (,(x))]’
X

w(A, X) remain

/"j,x(x) =

66)

ey V8090 =8 00, 9] (375,09 #5309

. (e = Bo) (@0 + 289) (200 + Bo) o[ T e (vi(¥) = vil)) ’
I<j<m-2,

(67)
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3[VE) (€0, %) -V (60, %) | [ (§,) + S ()]

) B+ 2B 20 BT gy 6 509

I<j<m-2.
(68)

Proof. Substituting A = ;(x) into (40) and (43), we have

(VI (100 %) ) 0 (100 ) = VI (100 ) B ()

B (”J'(x)’ x) =S (Vj(x)) vy (Mj(x), x) + “n (Hj(x)’ x)
= [Su(w®) +* (1) | V13 (). 0).
(71)

Then, inserting A = ptj(x) into the first equation of (45)
and in view of (70) and (71), we arrive at

Eyoas (1)) = [ V1Y () %) = Vi3 (w00, |

(372 (8@) S () |-

(72)

On the other hand, differentiating (46) with respect to x,
we find

E, ), (yj(x), x) - (By — o) (0xg + 22ﬁ0)(2060 + By
m—2 (73)
(%) H (,Mj(x) - //lk(x)),
k=1 k;&j

Comparing (72) and (73), we derive (66). Similarly, we
can prove that Equations (67) and (68) hold.

Vi (). %)

4. Algebro-Geometric Solutions of the
Stationary CCIRD Hierarchy

In the section, we continue our study of the stationary
CCIRD hierarchy and will obtain explicit Riemann theta
function representations for the two meromorphic functions
¢,(P, x), ¢5(P, x), the Baker-Akhiezer function v, (P, x, x;),
and the algebro-geometric solutions u, and u, for the CCIRD
hierarchy. By introducing the local coordinate { =A™ near
Pe > Poo,> Poo, € K s> we have the following lemma.
Lemma 2. Suppose that u satisfies the nth stationary CCIRD
system X, =0. Moreover, let P€ K, ,\{Py ,Ps > Pco,}>
(x,x,) € C2. Then,

- x 2
~2iu}! (x)¢7 + u;%((;)) - guﬁ(x) +0((), asP—P,
¢, (P, x) =13 +0(0), asP— P, ,
—lu(x){+ + =ty (%) C2+O(C3) asP—P
2 2 2 4 2,x 003
(74)
2
3% (x) +O(0), asP— P, ,
1
¢3(P’ x>(=0 ic_l - §u1 (.X) + O(()s as — Pooz’ (75)
. 1
il + 5 uz(x)CZ + O((3), asP— P, ,
(%) exp (—i(x — %)+ O(C)), asP—- P,
uy(%) '
v, (P, x)cio exp (Zi(x—xo)(_l +O(()), asP— P, ,
exp (i(x—xo)C_I + O(()), asP— P, .
(76)
Proof. Substituting the three sets of ansatz
¢, (P x)[io’cl,—lcil +x19 +0(0), ¢5(P, X>[i0X1,n +0(0), nearPool,

$,(P, x)(vio"z,o +0(0), $5(P, X)(io"z,—lg_l +Xo0t O({), near Py,

b,(P, x)(io"a,1( + "3,2(2 + O((3>> é3(P, x)(iUch * X},zCz + 0(63)’ near Py, ,

(77)

into Riccati-type Equations (53) and (54), and compar-
ing the coefficients of the same powers of {, we derive
(74) and (75). Equation (76) then follows from inserting
(74) and (75) into (64).

One infers from Equations (34), (35), (74), and (75) that
the divisors (¢, (P, x)) and (¢, (P, x)) of ¢, (P, x) and ¢, (P, x)
are as follows:
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($,(P,x)) = Q)Pm V1 ()Y o (%) (P)
s (78)
= Dp, st (D)
($:(Px)=D, = = (P)
Py 1 (0)+Epa (3) (79)
= Dp mwendinatn (D)
which means that Py, Vy(x), -+ V5 (x) are m — 1 zeros of

¢,(P,x) and P, , ¢, (x), -+, i, ,(x) its m 1 poles, P
El(x), ---,/E\m_z(x) are m — 1 zeros of ¢5(P,x) and P, , i (
X), -+ P (x) its m — 1 poles.

A tedious calculation reveals that the asymptotic behav-
iors of y(P) and S,, near P, , P, , P, are given as

003

" {oco +a(+ 0(52)},
B+ B+ 0(2)]
0" [ag + Byt (@ + B+ O(8)] asP Py,

asP— P ,

y(P) =

o asP—Pg ,

Sy~ [+ B + oy + 2 + B ey + B) — ooy Bl + O(¢7) |},

{—0
asP— Py, ,j=1,2,3. (80)

Equip the Riemann surface %,,_, with an appropriate

. m-2 . .
fixed homology basis {a;, b »}jzl ,in such a way that the inter-
section matrix of cycles satisfies a; o by =98, a;°a,=0,b;°
b,=0,j,k=1,---,m—2. For the present, we introduce the

holomorphic differentials @;(P) on % ,,_, defined by

1 AFld),
wl(P) - l+n-m
y(P)A dA, 2n<l<m-2.

(81)

1<l<2n-1,

By using the basis a; and b;, the matrices A and B can be
constructed from

Aje= J )
3

by

and it is possible to show that matrices A and B are invertible.
Now, we define the matrices C and 7 by C=A"',7=A"'B.

One can see that matrix 7= (7;) (meU)x(m1) is symmetric,

and it has a positive definite imaginary part. If we normalize

@; into the new basis w;,
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m-2

(0] = Z le(Dl’ (83)
=1

then we have fakwj =0 jbk“"j =Ty jrk=1-m=2.

Then, the Laurent expansion of (83) near {P,, P, ,
P, } yields the following results:

w= (wl,..., j,...)wm72), (84)

(_ Cion1 T %Cj 0

(o9 = By) (209 + o)

( Cian-1+ BoCim

(9 = Bo) (% +2P8,)

<_ Cian1~ (% + By)Cim—2
(a9 +2) (200 + By)

+ 0(c)> &,  P-P,,

+O(C))d(:, P—»POOZ,

w;: =
Jt20

-0 ), PP,
(55)

Let wﬁfoi 2(P),s=1,2,3, denote the normalized Abelian

differential of the second kind satisfying

2
J wéozs,z (P)=0,
" (86)

@) _ (2
wp o(P) =, (c + O(l))d( asP — P, ,
and introduce

QP (p) = —iwﬁ’o S(P) + 2% ,(P) + ia)l(,ii S(P),  (87)

Peo,ys
then we have

i+ el (Q) + 0(0),
~2i" + ¢ (Qy) + O((), asP—P,,,

i7"+ &7 (Qg) + 0(0),

asP— P, ,

asP— P,

(88)

where e§2>(QO), egz)(Qo), egz)(Qo) are integral constants and
Q, is an appropriately chosen base point on %, , \ {P,

Py, , Py, }. The b-periods of the differential QP (P) are
denoted by

y 1
Ul = _L o (p), (89)
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Then, from (85) and (87), we have

@_ 1 |_. J (2)
U/ =—|-i| w
; Cron-1+ % Cr3u 42 Cion-1 + BoCrana
(a9 = By) (2 + By) (a9 = By) (g +28,)
. Crana = (% + By) Crana
(a9 +2pB) (209 + )
1
(4 +2y) (20 + By) (a9 = By)
- [(4ietg + 5iB ) gy + (Zi“g + 6ict 3, + iﬁé)ckﬁn—ﬂ ,
(90)

(P)+2ij o) 2(P)+ij w@yz(P)]

in which we used I/ZﬂifbkngJ (P) = pro» if w = XiZPeilq,
dCq, -

Furthermore, the normalized Abelian differential of the
third kind wl(,iiz »p.. (P),j=1,2, is holomorphic on %, , \ {
POOS,POOj} with sir]nple poles at P, and Py, with residues
1 and -1, respectively, that is,

<-c-1 + 0(1)) dc,

asP— P,

wgi))}Pm](P)(:O o(1)d¢, asP—P,, (91)
(1 +om)d,  asP—Py,
Oo(1)dg, asP— P, ,

op 5, (P2, (<67 0L, asP—Pe. (92)

<C71+O(1))d(, asP— P,

In ¢+ €%, (Qy) +O(L),

asP—»Pool,

elooz( ( ) aSP_)Pooz’

o) +
In g +ep’), (Qy) +O(L),

asP—»PO%,

(93)

00, (Q0) + O(0), asP— Py,

JQ wl(r’l P, (P)= —lnC+eg (Q) +0(0), asP— P, ,
1n(+e2,003(Q0) +0((), asP— P,

(94)

where ek (Qo)

Let T, be the period lattice {Z € C"?|Z=N +7L;N,L
€Z"?}. The complex torus 7, ,=C"?*/F,_, is called
the Jacobian variety of % ,,_,. An Abel map & : #,,_

F m is defined by

=1,2,j=1,2,3, are integration constants.

with the natural linear extension to the factor group Div(#,,_,)

&i(anPk) = an.szi(Pk). (96)

= ka:lzﬁk(x)7
=y Ek( ) wedeﬁne

Considering the nonspecial divisor @,\

=2 Vk( ), and @g(

where P, (x) = i (x), P (x) = 9, (x), By () = £ (), B ()
B a8 €2 D6) = (34 )
Vina(x)) €02 5, E(x) = (§1(x), 5 & o (%)) €0™7
K p_p» and

Gm_z‘%m—Z = {{Ql’ ) Qn} | Q] € ‘%m—Z’j =1 I’l}
denotes the nth symmetric power of % ,,_,

Theorem 3. Assume that the curve X,,_, is nonsingular, and
let x, x, € C. Then,

P (x) = pV () + US (x = xp),
PP (x) = p? (x) + US (x = x,), (98)
pI(x) = p) () + US (x = x,).

Proof. We prove only the first linearity of the Abel map with
respect to x in (98). Assume that yj(x) #yj’(x) for j#j';
then, one computes

) 1 -2 m-2

m-. m-2 m-2
= dle: [ w = Z P‘,,xwz(ﬁj) = Z Bix k; Citoye

J Jj=1

o3[ o) -8 1)) (5) ()]

71 (a0 = By) (o0 + 2680) ot + By TT1 4 (1)~ 1, ()

e w(ai"k:sm o Lo
e |5 5 L e
2 me ) =V fetrn-m

L o (”Jf)n ;n_lfj;({;f)}jf”f)"’ }

J

=1 kem-n

o 2 ml 2 (~2ioty — 5/2ify)u} kin-2

" (a0 Bo)(e + 26,) (23 + ) { ) C’k,zl T (v u,)
5 gl o)

+k:; zl ) i (M, #r) ’
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which yields by the use of the standard Lagrange interpola-
tion argument that

d 1 2
a/’g >(x) = Ug,z)’ (100)

which implies the first representation of (98). The second and

third equalities in (98) follow from the same calculation.
Denote by 6(z) the Riemann theta function associated

with % ,,_, equipped with a fixed homology basis. For conve-

nience, the function z : #,,_, x 0™ *%#,,_, — C s defined as
z(P,Q) = P+ Y D(Q)(Q), PeH,n
IeQ
Q:(Ql’“"Qm—Z)Eam_z‘%m—Z’ j:1’2’3’
(101)

where M is the vector of Riemann constants. Then, we get

(PA)=M-d(P)+pV(x), P,

(PI()=M-d(P)+pP(x), Pe,,  (102)
2(PEW) =M-a(P)+p(x), P,
In view of (98), we could rewrite them as
- j 2
g(Pooj,ﬁ(x)) :ng) + Ug )x,
~ i 2
2(Peop () = MY + Ux, (103)

1N
—~
g
8
[re)

(1)) = MY+ UP

where MY) =M - d/(P
1,2,3.

Combined with the above results, the theta function rep-
resentations of ¢, (P, x), ¢,(P,x), y,(P,x,x,) and the
algebro-geometric solutions of the stationary CCIRD hierar-
chy are presented in the next theorem.

s 2) .
ooj) +P()(x0) - U; )x0>]= 1,2,3,s=

Theorem 4. Assume that the curve X,,_, is nonsingular. Let
P=(Ay)€H 2 \{Pe,>Pe,» Poo,} and let (x,x,) € C2.
Suppose that QA ) or QA or SA zs nonspecial. Then,

( (Qo)‘es (Qo))x>»

(104)
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(105)
0(z(P5(%))0(2(Puos Bix0))
v, (P, x, xy) e(g(Pooj,E(x))>9(g P,E(xo))) P
((e?(oo) - jQ Q<2>> (x _x0)>,
(106)
-2 6(§(P001’E(x0)))
N e oo (i) ) (107)
((ef) (Q) - ‘352) (Qo))xo - 653201 (Q0)> >
0(2(Pan i) )
Nof) =i ECWTD) exp 08)

(7)) - &7(Q0) )20 = 52,(Q) )

Finally, the theta representations of u;(x) and u,(x) are of

the form
=u;(x) 6( ( OOI’# ))6(§<Pm3’z(x0))) exp
0(2(Per 1)) )0 (2 (P B 30))
((e§2>(Q0) - 652)((20)) (x— x0)>,
(109)
1y(x) = 4 0 Z(Pm3,£(x )G(g(POOI)!’;(xO)))

(110)

Proof. Let 'V, be defined by the right-hand side of (106). We
intend to prove that y, =¥, with y, given by (64). For that
purpose, we first inspect the zeros and poles of y/,. Since they
can only come from zeros of ¢, and ¢,, one can compute by
using (34) and (35) that
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iA+ 1y (x)$, (P, x) + ¢5(P, x)

=i+ ulyzvig) _yAm +Bm _ ),ZV(IZ) _y‘dm +‘%m
Em72 Emfz
1
= (Vi - VY)Y - A, - o)y
m-2

1 , .
+ §(Em,zlx—z)ua )+2 (u Vi - V(")>S ] +i)

( - >3y+S

_lErrka 2
“3%E,, 3 E,,
13}’ y+A, /V13> 52)}"<}’+'Q¢m/v(1§)>
Emfz
+ il = - +0O(1) = 0o, In(A-pu(x))+0O(1).
R ey R ORI (A-ux)) +o()
(111)
Then,

(P 7e) = 5 (‘ [ () (') 6, (p,xf)]dx'>
(A-w))o),

_A e o= o),

A- Hj(xo)

-1

(A —yj(xo)) O(1), for Pnear i (x,) # i (x),

(112)

where O(1) # 0. Consequently, all zeros and poles of ¥, and
¥, on K, 5\ {Ps > Poo,» Poo, } are simple and coincident.
It remains to identify the essential singularities of vy, and
¥y at Py, s Py, Po - Considering (64), (76), (87), and the
expression for ¥, in (106), we deduce that y, and ¥, share
the same singularities and zeros. The Riemann-Roch unique-
ness results in the holomorphic function ¥, /y, =y, where y

is a constant. By (76), (87), and the right-hand side of (106),
we have

exp (i(l (x—x) + O(c)) 1+0())

exp (i(l(x - xp) + O(())

=1+0(), P—P
2100, PPy,

¥ (P, x, Xg) _
¥ (P X, x0) 50

(113)

Then, we conclude y = 1, with which the proof of (106) is
completed. By using the asymptotic properties of ¥, near
P, ,we get (109). Equations (78), (79), and (93) immediately
yield that ¢, and ¢, have the following forms:

for Pnear fi;(x) # f;(xo)

for Pnear fi;(x) = {1 (xo)s

11

Taking into account the asymptotic expansions of ¢, and
¢; near P, , P, , we have

7 o (@)

653(203(%))’

Z o (b, (@)
(115)

which together with (109) show the expressions (107), (108),
and (110).

5. Algebro-Geometric Solutions of the
CCIRD Hierarchy

In this section, we extend the results of Sections 3 and 4 to the
time-dependent CCIRD hierarchy. In particular, we obtain
Riemann theta function representations for the time-
dependent Baker-Akhiezer function, the meromorphic func-
tion, and algebro-geometric solutions of the CCIRD
hierarchy.

Similar to (31)-(33), we consider the following time-
dependent Baker-Akhiezer function:

Vo (P, X, Lo by ) = U(u(xs 1) s A(P)) W (Ps X, X0 15 B )

Y, (P Xgr 1 ty,) = VU () s A(PY)W(P, %, X £, Lg,)s

V(n)(u(x’ tr) ; /\(P))V/(P’ X xO’ tr’ tO,r) :)/(P)II/(P, X, xO’ tr’ tO,r)’

¥ (P, X, Xo, to o tor) = 1,
P=(AY) € H s\ {Po> Pos,» Poo, }» X 1, Xgs 1y, € C.
(116)

The compatibility conditions of the first three equations
in (116) show that

U, - vy [U, V(’)] =0, (117)
—VO 4 {U, V<n>} -0, (118)
v+ [P, v =0, (119)

It is easy to find that yI — V(" satisfies (118) and (119)
Then, the characteristic polynomial of Lax matrix V") for
the CCIRD hierarchy is a constant independent of variables
x and ¢, with the expansion
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det (yI - V(")) =y’ +S,(A)y-T,A), (120)

where S,,(1) and T, (A) are defined as in (27) and (28). Then,
the CCIRD curve #,,_, is determined by

Ko GuAy) =y +8, Ay -T,A) = (121)

Closely related to y/(P, x, X, t,, t, ) are the following two
meromorphic functions ¢, (P, x, t,) and ¢, (P, x,t,) on #,,_,
defined by

¥y (P, %, X, 5 )

P,x,t)= S PeFH % t.,xyt,, €C,
¢2( * r) ‘/’1 (P’ X, xO’tr’ tO,r) i o
(122)
V(P s b ty,)
¢3(P’ X, t‘r) = l//j(P’ X, xz, tr’ tz,r) P € '%m 2> X, r’ xO’ tO,r € (C’
(123)
which imply from (116) that
F,_,(Axt,
¢2(P’x’ tr): 21/(1) 2( )
y V23 (A’ X5 tr) _ycm(/\’ X, tr) + Dm(A’ X, tr)
PV A t) - AL xt) + B (A xt,)
Em—Z(/\’ X, tr)
VB Axt)+Cu(hxt,)
IV A x )+ AL xt,)
(124)
F (A x,t
¢3(P, X, tr) — G m—Z( X r)
y2 V32)(A’ X, tr) _y%m(k’ X, tr) + 9m(A’ X5 tr)
PV t) - yd, (A t) + B (Axt,)
—2(/1’ X, tr)
VA xt) 46, (Axt)
WV Ax )+, (A xt,)
(125)

where P=(Ay)€ X, 5 (xt,)eC* and A (A X 1),
Dm (/\> X, tr)’ 'Szim()" X5 tr)’ T 9m (/\’ X, tr) Em 2’ (A Xt

), F,._»(A, x, t,) are defined as in (36)-(38). Hence, (39) (45)
also hold in the present context. Similarly, we have

ay = o) (o9 + 28) (209 + By)
m-2 ; (126)

6w

—Z(A’ X, tr) = (

j=1

-
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LA xt,) = (ot = Bo) (g +23y) (20 + )
ot i (127)
(A-vi(xt,)),
]=1
Fpa(Ax, 1) = (By = ) (g + 28) (209 + By))
'”2 3 (128)
(A=&(xt,))-
-1

After defining pi;(x, 1,), V;(x, 1,), § ;(x, 1,) as (46)-(48) by
replacing (x) with (x, ¢,), one infers from (74), (75), (124),
and (128) that the divisors (¢,(P, x,t,)) and (¢,(P,x,t,))
of ¢, (P, x,t,) and ¢, (P, x, t,) are as follows:

(¢2(Px,1,)) = gpoo:;’/v\l(x’tr)’“"/V\m72(x’tr)(P) - gp
($5(Px. 1)) =

o 1 (58, )1+ (351,) (P),

P, >/!;1 (X‘[r)’“";mfz (xt,) (P) ’

(129)

Differentiating (122) and (123) with respect to ¢, and
using (116), we get

. (&) VR Vi, + Vi,
- _
i Yi/¢ v,

=(r) (1) =(r)
Vv + Vi v + Vi,

-¢
2 L4
(") (1) () (1) (") (1)
=V + (sz -V )‘/’z + Vo3 = Vio 95 = Vi3 6,6,
(1) () ()
6, = (ﬁ) _VavitVay, t Viy,
e l//1 t, l//1
() (1) (1)
Vit Vv + Visys )
3 =V
41
(V3 = V) + V6, - VI - Vi
(130)

Further properties of ¢,(P, x,t,) and ¢,(P, x,t,) can be
presented, similar to (55)-(63), replacing (x) with (x,t,),
(P,x) with (P, x,t,), etc. The four important ones of that
are given as follows:

¢2,x(p’ X tr) + Uy (x’ tr>¢§(P’ X tr) + ¢2 (P’ X, tr)¢3 (P’ X tr)
+ 2iA¢2 (P’ X5 tr) - (/)3 (P’ X5 tr) U (x’ tr) =0,

¢3,x(P’ X tr) + ¢§ (P’ X, tr) + Z"1 (x’ tr)(/)Z(P’ X, tr)¢3(P’ X tr)
—iAgs(Px ) — 9y (Poxst,) = 1=0,
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(1) (1) (1)
b, (P 1) = V5 (1) + (V3 (0. 1,) = V) (1))

S Gy(Poxs ) + Vi (5, 1,)¢5(Poxs 1)

~ V1 (e ) BA(Pox ) - V13 (x0t,)

: ¢2(P,x,t )95(P, %, t,),
-V

31 (x,1,) + (

s, (P2 1) =

$3(Pox ) + V“< £)$, (P x,1,)
-V (o )2 (Pox 1) - V1 (x01,)
'¢2(P’x’ r) S(P’x’ r)‘

(131)

Lemma 5. Assume (116) and (117) and let (A, x,t,) € C°.
Then,

n

(1) (1)
ViV -V
“JVgs) - V "

(1) () (r) (1)

o V=V ), VIV - ViV

tEn2| 3|V o Vi | W m
u Vi - Vi, uVis = Vi,

Em 2, (A Xt ) m 2x(A Xt )

>

(132)
(n) 57(1) () 57(1)
VyuVy VsV,
Fm—Z,t,(A’ X%t ) m ZX(A X5t )% Fm—Z(A’ X, tr)
Vo —u,Vi,
(1) (1) ) r)
() V2r1 _“2V2r3 (m) Vgl)vzs V§3)V
3\ V2 T Tl RGN A W |
Vo —u,Vas Vo —u,Vis

(133)
n) (1) n) 77(r)
Vél)ij — ng) V31
T
() _ () (") (1)
13 V(f) _ Vi =V v g V.(;Il) Vi — Vgg) Vi
3BT Ty o V33 P ,, :
vy V(31) _ V(32)

‘C}m 2!(A Xt )

m Zx(A Xt ) + ‘C}m72(l’ X tr)

31 32

(134)

Proof. Differentiating (59) (by replacing (x) with (x,t¢,))
with respect to t,, we get

E,._
(E—Z,x)t = axatr(ln Em—Z)

= [ (82 + 93403 + 65 + 634937,

- [ul’t' +uy (VQQ -V )) + V32] (6, + ¢ +65%)
(V3 =V, V) (65 + 934457)
—u V[ + (93746577
V8 @37+ (95 )] - (7 + V)
(895 + 4305 63°937) + 3 (V3] + V)

= (V0@ 934057) + V(0 + 4501) + 371

(135)

13

Without loss of generality, we take the integration con-
stant as zero, then get

at,(ln E,»(Lxt,))= V (‘/52 +¢y ") + V (¢3 +¢3+437)
} ViV - v
w Vi - vy

_ [E
+371) = [W (L t,)— i)
Em—Z
(1) (r)
+3 (VYI) } ulV(% - V‘ﬁ) Vw)’
uy Vis = Vi,

which implies equation (132). Differentiating (55) (by
replacing (x) with (x,t,)) with respect to ¢, and using
(55), (60), and (63), we can deduce

F,,\ _ (Vo B o, s
_(E 2) ¢2¢2¢2 < ) ¢2¢2¢2 [

(136)

m-2 ¢2 ¢2
1 1 S (b b3 3‘*)
oy Vs T3
(sbz*sbz* >+ 23(¢2+¢;+ 5
+3V££:—V (¢ +¢3+657)

13 (‘/’3 +¢3+¢37) - 3V11)]

n) (1) n) 7(r)
Vgl)VB B Vg3) V21 (Fm—Z,x + 517L)
Vvl \F

=(r) (1)

-~ Vy! -u,V E,_

+3 <V§rz) . (znl) = ?fo Vg?) - z’t']
Vol —u, Vi

(137)

Thus, we prove the expression (133). The last one can
be proved in the same way.

We present some properties of v, (P,x, Xy, t,,t,,) as
follows.

Lemma 6. Assume (116) and (122), P =
and let (A, x, x,, t,, ,,) € C. Then,

) [i/\ +u, (x', tr>¢2 (P,x', t,)

5 (Pt ) dx' + JZ [V (Lot ) + 71 (et

¢, (P, Xp» t’) + v\ (/\, Xp» t’>¢3 (P, Xp» t')}dt'),

(/\’y) € ‘%m—z \ {Poo}’

WI (P’ X5 x()’ tr’ tO,r) =exp <J

(138)

V(P X, Xgs o b, )W, (P75 5, X5 s B, )Y (P
E (A xt
== Eno(bxts) exp (2iM(x - xy)),
Eo(A xps to,)

) xO’ tr’ tO,r)

(139)
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Lxt,) 1"
P, x,x,,t,, = L
Wl( X, x() tr tO,r) |:E ( X tU,r):| XCXP
* 2 )’2(” Vgs) - VS?) -y A, — ) *2/3(“1‘/5? - VSZ))SW!
. J Zid+ 5
*o m-2

o (Vi -V ) v, - dt) v 23wV - Vs,
dx +J . ar' .

to, m-2

(140)

Similar to Lemma 1, the zeros {‘u (x )}]";2, {v;(x) };Z 2 and

2[VI () :t,) -

(e ) VS (1 1),
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{gj(x)};:z of E, ,(Ax), F, ,(Ax), and %, (A, x) are

described in terms of Dubrovin-type equations as follows.

Lemma 7.

(i) Assume the zeros {u;(x, 1‘,)};';2 of E,_,(Axt,)
remain distinct for (x,t,) € Q,,, where O, € C is open

m—2

and connected. Then, {u;(x, tr)}j: satzsfy the system

of differential equations

e (i) ssalosis)]

n"‘j,x(x’ tr) =

(30 = Bo) (@0 +20) (28 + By )ity (5 1T g (1500 1) =y (1,))

(r) (1) -~
2 {V V<12) Vi Vg?} ’ [3)’2 (/"j(x’ tr)) +
/\=[4j(x,tr)

<j<m-—12,

s 50

."’j,t, (x’ tr) =

(ii) Assume the zeros {v;(x, t,)}j":z of F, (A xt,)

remain distinct for (x, t,) € Q,, where Q,, € C? is open

6 [Vg) (vi(xt,), % t,) = uy(x,

Vj,x(x’ tr) =

(30 = Bo) @y +20) (28 + By )it (5 1T o (1500 1) = (1))

VS ()06 ), %

, 1<j<m=2 (141)

and connected. Then, {v;(x, tr)}j";2 satisfy the system
of differential equations

t )] [352(%;(x.1,)) + S (vi(:1,))]

(g = Bo) (g +2By) (2ag + By ), (s

~(r){,(n
o7 -

)Hk 1k#] (vi(xt,) =wi(x. 1)

V;Z)Vg’?} ’A_ ( t)[3y2($j(x’ £)) + S (vi(x 1))
=v;(%:t,

1<j<m-2,

(142)

vj,t,(x’ tr) =

(iii) Assume the zeros {§;(x,t )}',”72 of Fo(Axt )
remain distinct for (x,t )EQE, where Oy € C?

3V (E (ot t,) = VA (§ 1), 0

(@0 = Bo) (@0 +2y) (20t + B (6 )T} Ve (Vi 1) = vl 1,))

)] [32(& ( ))

, 1<j<m-2

open and connected. Then, {;(x, tr)}j";Z satisfy the

system of differential equations

(&0 t)]

Ej,x(x’ tr) =

S[7ve -

(% ﬁo)(%+Zﬁo)(2%+l30)Hk1;#]( (%

VR o [P (B0 0) #8060 )]

, 1<j<m=-2,

ka, r)

Ej,t, (x’ t,)=-

(% ﬁo)(“o+2ﬁo)(2“0+ﬁo)nklk;&]( (%

1<j<m-2. (143)

t)=&(x 1))
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For convenience, we introduce the notation

1]‘) j= 12,3,
~(r) k=0
Vi = . (144)
~(r,0,1) ~(0,1) —k
Vi = Y VLA j=1,23
k=0
where
~(L0) = :
V. =V 5 = 1) 23 3)
1jk-1 1jk-1 BymL =0,y R )
~(01) = :
V., ,=V , =123,
1ik=1= VYV 1jk-1 Bym0 =Lty e €R J
(145)
and the corresponding homogeneous cases
= (r,1,0 L= (1,0
VEJ -y Vij’k)_l)t"k, i=1,23
= k=
vy = 0 (146)
r01) K .
Zvuk A i=1,23
with
:(1,0) ~
Vije1=Vijgea| - »j=L23
ap=1,B,=0,0,=-=a,=f,=-=f,=0
:(0,1) ~
V1= Vijk-1 . ) - »j=123
&y=0,By=1,6;="-=&=p;=--=p,=0
(147)

In view of (138), we denote the function I,(p, x, t,) by

VO xt) + V(L t,)8,(Poxot,)
+ f/gg) (A x, t,)05(P, x, t,),

L(P,xt,) = (148)

and 1,(p, x, t,) is the associated homogeneous quantity replac-

(1) (r)
”"gvzz’vu’

" = =0 .
mials V11 , V55, V5, that is,

5;) by the corresponding homogeneous polyno-

= (r)
V ( ) + V12 (A’ X tr)¢2(P’ X tr)

§ax>%@xm,

I(P,x,t,)= (149)

especially

1,0 =(r) | ()
Ig ) = (Vu V¢ + Vs ¢3>

Iim) (ng) + V12 ¢, + V13 ¢3)

&= Oﬁu L= =q,=p==f,=0

15

Lemma 8. Assume (x,t,) € C?, A ={"" denotes the local coor-

dinate near Pooj,j =1,2, 3. Then,
21 = (1,0
o 29 Loy, PP,
U ’ !
I£1,0) = = (1,0) (151)
_iV13,r + O(C)’ P— Pooz’
T+ 0(0), P—P,,,
2i =(0.1)
1/7 V12,r + O(C), P— Pool’
1
7D - _ (01 152
' (*7 - iViS,r) + O(C), P— POOz’ ( )
"+ 0(), P—P,,

Proof. We only prove (151) and accordingly obtain (152).
From (149), it is easy to see that

V= g, - ig,

1 21 =(10)
¢+ _V121 0(¢), P—P,,
(153)
T i+ o), P—P,,
o), P—P,;

thus, (151) is right for r = 1. By using (116), (117), and (149),
we have

—_ 7,1,0 = (r,1,0
010 (1) =, | Vi ) + Vs (L. t,)

¢2(P X r)+V13 (A X r)¢3(P Xt )

= 0 [id+ uy (x, 1), (P X, 1)) + §3 (P X, 1,)].
(154)

(i) When P— P, , by investigating (153), one can

assume that fil’o) (P, x, t,) has the following expansion

751’0)(P,x, ) C +Zc1J (x,t,){,asP — P,

j=0

(155)

for some coefficients {c,;(x, tr)}jdN
P

. Suppose that (as P —
0

oo,

¢, = Z Kl,j—lcj :
=0
2] .
¢s = Z X1,j(]’
0

(156)
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where x| i1 and Xy, are defined in (74) and (75). Substituting

(155) and (156) into (154) and comparing the same powers of
{ yield

Sujx = (”1”1,]' + Xl’j)t ,j=0,1,2, -,

21 = (1,0)

Clox = (”1”10+X10) = |:uV12,r:| >
1 x

S = (1 K11+X11) = |:_V11,r -3V

2 /=10 1 =(10) i =(10)
- a (VIS,r - ”_1 Vi, ) + ”_1 V12,r+1:| x’

from which it can be inferred

Sro(%:t,) =€10(t,) + 0 Viges
1

<z|

(10)  ty, 5(010)
1L,r uz 12,r

Su(x ) =¢,(t) -
1
2 —ng (159

2 (=10 1 =(10
" 3u, Vie = u_1V12,r t -
where €, (t,) and ¢, | (t,) are integration constants. We find

that the coefficients of the power series for ¢,(P,x,1t,), ¢,
(P,x,t,) near P, and the coefficients of the homogeneous

12,r+1>

= (1,0
polynomials V(1 j,r) are differential polynomials in u, with no

arbitrary integration constants in their construction, and the
definition of 751,0), it follows that it also can have no arbitrary
integration constants and must consist purely of differential
polynomials in u, and & ((t,) =€, ,(t,) =0. Therefore, we
have

_ 2 = (1,0
1P, x, ) =0+ 27 -
1

2 :(1,0)
+ 3u, Vis, =

= (1,0) ulx = (1,0)
VvV =
|: 11,r u% 12,r

=(1L0)\ 2 =(10)
Vl ) u V12,r+1:| (
1 1

+ O(C2>,asP—>POOl

(159)
On the other hand, we find
1,0) = (r+1,1,0) = (r+1,1,0) = (r+1,1,0)
I£+1 (Px,t,) =V, +V, ¢+ Vi3 ¢,
“15(10) | F(10)  =(10) = (1,0)
=T >+Vllr Vi 0+ Vs, 45 (160)
—r— 1 od (1 0)
=¢ Vi +O(),asP— P,

(ii) When P — P, , by analysing (153), one can assume
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that I )(P x, t,) has the following form:

1, x,t,

Zczj (x, )¢, asP— P, (161)

for some coefficients {c,;(x, tr)}jdN
p

. Suppose that (asP —
0

o0,)

- (162)
¢y = ZXz,j—lgjil’
=0

where Ky, and x, i1 are defined in (74) and (75). Inserting

(161) and (162) into (154) and comparing the same powers
of { imply

Cojx = (”1"2,]' + XZ’])[ ,j=0,1,2,-,

.= (10)
C0x = (”1“2,0 + Xz,o)tr = [_lvls,r } >
X

Coux = (“1"2,1 + X, 1)

:(10 =10\ = (10) (163)
g Vigy =t Viz, | =iV
X
from which it can be inferred

.=(1,0)
G t,) = &0(F,) —iVys,

(1Lo) 1 [/ =(10) = (1,0) .= (1,0)
1 — g(vlz,r _”1V13,r)_’V13r+1>

(164)

<z|

Su(%t,)=8&,(t) -

where €, (t,) and ¢, | (t,) are integration constants. Managed
together, we find that &, ,(t,) = &, ,(t,) = 0. Then,

—(1,0 =(1,0) =(1,00 1 /=(10) = (1,0)
IS )(P’ xt,) ==V, — |:V11,r + 3 (V12,r -y Vi, )

.= (1,0) 2
+iV 5,0 (+O(C ),asP—>POO2

(165)
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On the other hand, we get

=(1,0) = (r+1,1,0) (r+1 1,0) r+1 1,0)
Ir+1 (P X, t ) Vll ¢2 ¢3
~15(1,0 ( ; ) 10 = (10)
=T+ Vin, + V12,r ¢+ Vs, ¢, (166)

1,
= IV§3 Til + O(()’ asP— Poo2

(iii) When P — P,
that 751’()) (P, x, t,) has the following expansion:

in terms of (153), one can assume

(o]
ﬁl)O) (P) X, tr)(:0 a (ﬂ + Z C3]‘("’ tr)(]’ asP — P003’
— i=1

(167)
for some coefficients {c;;(x, tr)}jeN‘ Suppose that (asP —
Py,)

(e8]
¢, = Z K3,j<]’
=

(168)

¢s = Z X3,j(j’
=1

where K3 and x; j are defined in (74) and (75). Substituting

(167) and (168) into (154) and comparing the same powers
of { yield

C3jx = (”1”3,]‘ + XS,j)t ,j=0,1,2,,

(169)
= (1,0)
Caix = (“1"3,1 + Xs,l)t, = |:_V11,r:| >
X
from which one can infer
= (1,0
S (X 1,) =&,(t,) - Vllr’ (170)

where &;,(t,) is an integration constant. Similarly, one can
conclude &5, (t,) = 0. Therefore,

_ = (1,0
1P xt,) = ¢ VT o((z), asP— Py,

(171)
On the other hand,
= (r+1,1,0) = (r+1,1,0) = (r+1,1,0)
IE+1)(P xt)=Vy +Vy ¢+ Vi, ¢,

=10 510 =(10) = (1,0)
=C lli '+ Vi T Vi, 6+ Vi, ¢ (172)

=y 0({),asP — P,
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Thus, we complete the proof of (151). Similarly, we can
prove that (152) is right.
From (116), one infers that

r
~ 71,0 > =(1,0
Ir(P’ X5 ti‘) = z (“r—llg )(Pa X, tr) + ﬁr—lll( >(P, X, t,,.)
1=0
(173)
Therefore,
(t,—t, )i&_,{”ﬂn (% fy) +0(), asP—P,,
g uy (% to,) o
j.t;,,lr (P’ o t,)dt,(io (t = foy) ;ﬁril(il +0(0). asP— Pooz’
(tor —1,) Z(&,_, + [;H) '+ o), asP— Py,
=0
(174)

Let wg,z) »J €N,1=1,2,3, be the normalized differential
00p>.
of the second kind holomorphic on %, \ {P,, } with a
pole of order j at P, ,

o ®)=, ((i 4 o(1))dC, asP— P, (175)

ool’,’

Furthermore, we define the normalized differential of the
second kind by

T T
©) = (2) ; (2)
Qr+1(P) Z ar—llewl,ZH + Z ﬁr—llew2 J+1
(176)

In addition, we define the Vector of b-periods of the
differential of the second kind Q

r+1’
77(2) 77(2) 77(2)
Ur+1 = (UHI,I" : "Ur+1,m—2) >
R P
Ur+1 k ;J r+1° (177)
bk
k=1,---,m-2
Integrating Equation (176) gives rise to
=N, 7+ (Q) + ), asP— P, ,
1=0
" 5@ C
[ Q‘f+1 = Zﬁr ZC + 62 (Q()) + O(c) asP — P002>
JQ =0
Y (G B )+ e7(Q) + O, asP P,
=0
(178)
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where e1 (QO) (QO) e3 (Qo) are constants.

Given these results, the theta function representations of
¢, (P, x,t,), ¢5(P, x,t,) and vy, (P, x, %y, t,» t,,), particularly,
the algebro-geometric solutions of CCIRD hierarchy, are
shown as follows.

Theorem 9. Assume that the curve X ,,_, is nonsingular. Let
= (L) € y2\{Peo,> Poo,» Poo, } and let (x,xp, 1, ty,) €

C*. Suppose that Do) O D5,

(t) OF @E is nonspecial.
Then,

VS
—
o
S
e
la~]
§
/‘\
—~
/o)
N
|
m
W
—~
/)
S
Ny
~—
=
+
~~
o
s
—
/)
Ny
|
o
S
/)
S
N
~——
o
N~

01(Px k) = N o) eég(a E(i, t)))o

6 g(sz,é(x, t,))
([t (100 )

: ((eé”(%) - '[Q 09 ) (x-x) + <e§”(Qo> - JQ ﬁiil(P)) (t,- to,r)>’

(181)
o Ofe(rasiten)
Ni(xoto) = uy(xos to,r)@(g(Poo3 H(xo t,,,)>) Ter
(57(Q0) (@) )30 + (¢57(Q0) = e7(Q0) ) o — €1, ()
(182)
N (%o, to,r):ie( ( Exo o )

)

— X exp

()

(7)) = &7 ) xo + (¢57(Q0) = €5”(Q0) )t = €52, (Q))-
(183)

Finally, the theta representations of u,(x, t,) and u,(x, t,)
read

9<§(P003’ H (%0 tm)))
9(5(1)001 !‘(xo tw)))
: ((e§2)(Qo) - 352)(Q0)) (x—x) + (egZ)(Qo) - ez (Qo)> (t - tU,r)) >
(184)

X exp
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4 0Py 3(61)))0(2(Po,s
u; (X, tar)@(z(Pool,Q(x t)))@(g(P
’ (653303(00 _ez 100, (Qo) -
(&7 @) -4 @)t - ro,,>).

(%> tm)))
(%o tm)))

) ) (x—x,)

”2("’ tr) =

X exp

h:) |t>

\_/

(185)

Proof. The proof of (179), (180), and (182)-(185) is similar to
that of Theorem 4, so we only need to prove (181). Let ¥, be
defined by the right-hand side of (181). We want to prove
that v, =¥, with y, given by (138). Then, we compute by
using (124) and (125) that

lA + ul (x’ tr)(pZ(P’ X tr) + ¢3(P’ X tr)

—il+ ulyzvgg) _yAm +Bm _ yzvg) _y’dm + ‘%m
Em—2 Em—2
1 n n
= E K”lv(n) - V§2)>)’2 - (mA, —d,)y
m-2
LY. )+2(u Vi —yl >) } +id
3 m-2,x m-2 1%13 12
1 Em—Z,x 2 (U1V§§) - V@) (3y*+S,,)
“3E,, 3 E, ,
Viy(y+ A,V ) - VEZ')y(ﬁﬂm/Vi?)
Em—2
2 (X5 tr
+ =il = —M+Ol = 0,In
3 A-p(xot,) A— I,l]. (x, tr) A—p(xot,)

: (/\ - (%, t,)) +0(1),

VI x )+ V5 (A 1) ¢y (Poxt,) + Vi (L x, ),

) PV A +B
(P t) =V 4 ) Ey m ¥ P

m-2
‘7(’) y2 V(l? _y'dm + ‘%;m
13 E
m-=2
1 (r) ¢ (n ()¢ ,(n (1) (1)
“E [(V (13) - V13 Vi )))’ (VIZ A=V dm))’
m-2
1 2 /- (r)y(n =~ (1) A(n
+ gEm—z,t,_g (V13 V(lz) -V V(13)) S
(1) (1) () (
. lEm_z,t, +2(V12V - VRV (37 +5,)
"3 E, 3 E,_ 2
('r n n
V12 13 )’()’+A /V13) §2>J’(J’+dm/V§2))
E,._
(ot
!’i].,t,( ) J. In

- Bl _
ottty A5 8) O it
. (}L ~j(x t,)) +0(1).

(186)
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Then,

X

¥ (P, X, X0, 1,5 tg,,) = €xp ([

[i)t +u, (x', t,) ¢, (P, x', t,)
vy (1) | + J V0 (L t!) + 7 (A )
¢, <P, Xp t’) + v (/\, Xps t’)¢3 <P, Xp» t’)] dt')

A—pi(xt) A—py(xp £, )0(1): A-p(xt)
- #i(x0 1) A = (%05 to ) A= (%o, 1)

(A - (%, t,)) o(1), for Pnear pi(x, t,) # (o to,)»

- ) oq),

o(1)

for Pnear i (x, t,) = {i;(xo: o, )»

-1
(A=t ta,)) - O(1),  for Prear i (xpnt,) # i (5. 1,),
(187)

where O(1) # 0. Consequently, all zeros and poles of v, and
¥, on 5\ {Ps, P, Poo,} are simple and coincident.
Similar to Theorem 4, one can find that ¥, and ¥, have the
same essential singularities at P, , P, ,P,, . Then, the
Riemann-Roch uniqueness results in ¥, = y,.

We can explicitly rewrite 0(§(Pooj,E(x, t,))),@(g(Pooj,
¥(x,1,))), and O(z(Pey , € (x,1,)) as

6<g(Pooj p(xt, )))
0(2(Pop (1)) )
0(2(Po, b))

r+1°r

(9(M§j> + U( i+ U2 )

r+l°r

B(ng) + U( I+ U2t )

0(my + UYx+ 0,

r+1
(188)
where-
MY =M - d(PooJ-) + B<S) (0> o) — U(22>x0 - 051)1 to»j=1,2

,3,5=1,2,3, with the aid of the following theorem.
Theorem 10. Assume that the curve & ,,_, is nonsingular and

let (x,1,), (xg, ty,) € C°. Then,

P (xp tg,) + US (x = x0) + UL (8,

r+l1

B

"
-
I

tOr >
@ (x,t,) = p@ (xp0 ty,) + U (x = x) + U (8, — t
P (x’ r) p (xO’ 0,r) +U; (X X ) r+1( or)>

)
)
P (6 1,) = P9 (s tg,) + US (x = x) + U (8 ~ tg,)-
(189)

Proof. First, we consider a meromorphic differential

O(x, %9, 1,5 tg,) = % In (y (P, %, xg: 2 1) ). (190)
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From the representation (180), we have
Q totg,) = —(x—x)Q® — (t, —t, )OO
(x’x0> r> Or)_ (x xO) (r O,r) r+1
n i (191)
w,\ o + w,
= (xgsto,e )t (X
where @ denotes a holomorphic differential on % ,,_,, that

is, w= Zjlee for some ¢;€C,j=1,---,m—2. Because

v, (P X, X, £, ty,) is single- Valued on #,,_,, all a- and b
-periods of Q are integer multiples of 274, and hence,

ZﬂimeJ =ek, k=1,"'

A

Q(x, g, tys ty,) = J w

3

for some m; € Z. Similarly, for some n, € Z,

0®
by

—(t. —t +
(r 0,r Jb r+1 ZLk i (xt,) ,uj(XO’tO,Y)

= | @ (emxg)| OOt -10))] A2
by by

by

2ming = Jb Q(x, %9, tys ty,) = —(x = xO)J
k

m=2 .“-j(x’tr) m=2 @)
. Z J’\ wy, = 27mi Z m J w; = 27i(x = x0) Uy
j=1 .‘"j(xo’tor) j=

m-2
~(2) .
t, = to ) Upiix + 2mi Z miTx

j=1
I’»] (xt,) (%05 tOr
+ 27 ZJ
j=1 JQ

- 27i(

MZJ
j=1

(193)
in terms of
3) ) Q,
J le,QZ:ZmJ wp, k=1, ,m-1. (194)
by Q
By symmetry of 7, this is equivalent to ((x,t,) € Q,)
@
P () = pW (xgs to,) + UL (x = xg) + U3 (8, — to,)-
(195)
Using this equality and the linear equivalence
@Pml )E(X’fr) ~ @sz,/v_\(x,t,)’ and @POOl )E(X’fr) ~ @Pma;\ o , that
is,
A (Py,) +pV (1) = (Py,) +pP (%, t,),
(196)
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we can present the other two equalities

2 ~(2)
P(z) (x1,)= P(z) (9> Eoy) + U(z )(x —Xo) + Uy (8, — o)

2 ~ (2
P t,) = pC) (g, ) + US (2= x0) + UL (1, ty,):
(197)

6. Conclusions

In this paper, firstly we obtain the CCIRD hierarchy related
to a 3 x 3 matrix spectral problem based on the Lenard recur-
sion equations, and a trigonal curve %,,_, of arithmetic
genus m — 2 with three infinite points is introduced by using
the characteristic polynomial of Lax matrix for the stationary
CCIRD equations, from which the stationary Baker- Akhiezer
function and associated meromorphic functions are given on
K i_p- Then, the stationary CCIRD equations are decom-
posed into the system of Dubrovin-type ordinary differential
equations. Furthermore, we present the explicit theta func-
tion representations of the stationary Baker-Akhiezer func-
tion, of the meromorphic functions, and, in particular, of
the potentials for the entire stationary CCIRD hierarchy.
Finally, we extend all the Baker-Akhiezer function, the mer-
omorphic functions, the Dubrovin-type equations, and the
theta function representations dealt with in Sections 3 and
4 to the time-dependent case. The technology presented in
this paper can be applied to other hierarchies related to 3 x
3 matrix spectral problems, to get more various algebro-
geometric solutions, which will enrich and supplement the
known results.
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