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Abstract: New null Lagrangians and gauge functions are derived and they are called nonstandard
because their forms are different than those previously found. The invariance of the action is used to
make the Lagrangians and gauge functions exact. The first exact nonstandard null Lagrangian and
its gauge function for the law of inertia are obtained, and their physical implications are discussed.
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1. Introduction

Most classical and quantum theories of modern physics are formulated using the stan-
dard Lagrangians and Lagrangian formalism [1]. There are also nonstandard Lagrangians,
whose applications to physics are considered in [2], and null Lagrangians, whose relevance
to ordinary differential equations (ODEs) has already been studied [3]. The main objective
of this paper is to derive a new set of nonstandard null Lagrangians and their gauge
functions, make them exact, and apply them to the law of inertia.

In the calculus of variations, the action A[x(t)], where x(t) is a dynamical variable (or
classical object’s trajectory) that depends on time t, is defined as an integral over a local real
function called a Lagrangian [4], which, for a second-order ODE, is denoted as L(ẋ, x, t),
where the time derivative ẋ represents the particle’s velocity in dynamics. The Hamilton
principle [1,4] requires that A[x] be stationary (to have either a minimum or maximum
or saddle point), which is mathematically expressed as δA = 0, where δ is the functional
(Fréchet) derivative of A[x(t)] with respect to x. The necessary condition that L(ẋ, x, t)
satisfies the Hamilton principle is ÊL[L(ẋ, x, t)] = 0, where ÊL is the Euler–Lagrange
operator [4].

A general second-order ODE with constant coefficients is of the form D̂x(t) = 0,
where D̂ = d2/dt2 + bd/dt + c is a linear operator and b and c are constants. Let D̂o be
the operator with b = c = 0, and D̂c be the operator with b = 0. Then, for D̂ox(t) = 0, its
Lagrangian depends only on ẋ2. However, for D̂cx(t) = 0, its Lagrangian depends on both
ẋ2, the kinetic energy-like term, and x2, the potential energy-like term, as originally shown
by Lagrange [5]. Moreover, if D̂x(t) = 0, its Lagrangian becomes the Caldirola–Kanai
Lagrangian [6,7]. Thus, Lagrangians that depend either on ẋ2 or on ẋ2 and x2 are called
standard Lagrangians (SLs).

Since the standard Lagrangians are not unique, it is also possible to construct other
Lagrangians that typically depend on ẋ and x but not on powers of these variables, and
depend also on arbitrary functions of the independent variable t; Arnold [8] refers to such
Lagrangians as non-natural Lagrangians. Here, Lagrangians that depend on ẋ and x, and
on functions of t are called nonstandard Lagrangians (NSLs).

The existence of the standard and nonstandard Lagrangians is guaranteed by the
Helmholtz conditions [9]. The procedure of finding these Lagrangians for given ODEs
is called the inverse (or Helmholtz) problem of the calculus of variations [10,11]. There
are different methods to find the standard [12–16] and nonstandard [15–20] Lagrangians.
Generalized nonstandard Lagrangians can also be obtained [21] and applied to the ODEs,
whose solutions are special functions of mathematical physics [22]. Other generalizations
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of the nonstandard Lagrangians have been applied to the Riccati equation [23] and to a
Liénard-type nonlinear oscillator [24].

In addition to the SLs and NSLs, there is also a family of null (or trivial) Lagrangians
(NLs) for which the Euler-Lagrange (E-L) equation vanishes identically [3]. Another
property of these NLs is that they can be expressed as the total derivative of a scalar
function [3], which is called a gauge or gauge function [25,26]; in other words, all NLs have
their corresponding gauge functions (GFs). The NLs were constructed and investigated
in mathematics, specifically in Cartan and Lapage forms, symmetries of Lagrangians,
in Carathéodory’s theory of fields, and extremals and integral invariants [3,27–32]. The
NLs were also applied to elasticity, where they represent the energy density function of
materials [33,34].

The fact that the NLs and their GFs may also play an important role in physics
was shown recently by using them to restore Galilean invariance of the standard La-
grangian for Newton’s laws of dynamics [35,36] and to add forces to an undriven harmonic
oscillator [37]. Since those previously constructed NLs resemble the standard Lagrangians,
they are called here standard NLs, and their corresponding GFs become standard GFs. In
this paper, the standard and nonstandard NLs and their GFs are constructed and applied
to the law of inertia in Galilean space and time with the Galilean group of the metric [8,25].

The outline of the paper is as follows. In Section 2, previously obtained standard null
Lagrangians and their gauge functions are described. In Section 3, the derived new non-
standard null Lagrangians are presented and compared to the standard null Lagrangians.
Invariance of the action is used to define the exact nonstandard gauge functions in Section 4.
Applications of the obtained results to the Newtonian law of inertia are presented and
discussed in Section 5. Section 6 summarizes the results of this paper.

2. Standard Null Lagrangians

For the considered ODEs of the form D̂x(t) = 0, its standard Lagrangian is given by

Ls(ẋ, x, t) =
1
2
(ẋ2 − cx2)ebt . (1)

This Lagrangian was first derived by Caldirola [6] and Kanai [7], and it reduces to that
given originally by Lagrange [5], if b = 0.

One of the well-known null Lagrangians [4] is

Lsn1(ẋ, x) = c1 ẋx , (2)

where c1 is an arbitrary constant. In this Lagrangian, the power of the dependent variables
is the same as in the standard Lagrangian given by Equation (1); however, the dependent
variable and its derivative are mixed.

Recently [35], Lsn1(ẋ, x) was generalized to

Lsn2(ẋ, x, t) = c1 ẋx + c2(ẋt + x) + c3 ẋ + c4 , (3)

where c2, c3, and c4 are arbitrary constants, and Lsn2 becomes Lsn1 if c2 = c3 = c4 = 0. This
Lagrangian was constructed based on the principle that the power of the terms with the
dependent or independent variable, or their combination, does not exceed the power of
the terms in the original standard Lagrangian given by Equation (1).

Since

Lsn2(ẋ, x, t) =
dΦsn2(x, t)

dt
, (4)

the gauge function Φsn2(x, t) is given [35] by

Φsn2(x, t) =
1
2

c1x2 + c2xt + c3x + c4t . (5)
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Following [36], the derived Φsn2(x, t) is generalized by replacing its constant coef-
ficients by arbitrary functions that depend only on the independent variable. Then, the
standard GF, Φsn3(x, t), can be written as:

Φsn3(x, t) =
1
2

f1(t)x2 + f2(t)xt + f3(t)x + f4(t)t . (6)

Since Φsn3(x, t) is a function of the variables x and t, and its total derivative results in
the following general standard null Lagrangian

Lsn3(ẋ, x, t) = [ f1(t)ẋ +
1
2

ḟ1(t)x]x +
[

f2(t)ẋ + ḟ2(t)x
]
t

+ f2(t)x +
[

f3(t)ẋ + ḟ3(t)x
]
+
[

f4(t) + ḟ4(t)t
]

, (7)

where f1(t), f2(t), f3(t), and f4(t) are arbitrary but at least twice differentiable functions of
the independent variable [37]. Additional constraints on these functions are presented in
Section 4, where invariance of the action is considered.

The generalization of the gauge function given by Equation (6), is one natural way
to obtain a new NL, but there is also another way, namely, by replacing the constant
coefficients in Lsn2(ẋ, x, t) (see Equation (3)) by the functions f1(t), f2(t), f3(t), and f4(t).
The result is:

Lsn4(ẋ, x, t) = f1(t)ẋx + f2(t)(ẋt + x) + f3(t)ẋ + f4(t) . (8)

Applying ÊL{Ls,test(ẋ, x, t)} = 0, it is found that Lsn4(ẋ, x, t) is a NL if, and only if,
the following condition

ḟ1(t)x + ḟ2(t)t + ḟ3(t) = 0 . (9)

on the functions f1(t), f2(t), and f3(t) is imposed.
There are several different solutions to Equation (9); the simplest one is f1(t) =

c1, f2(t) = c2, and f3(t) = c3, which reduces Lsn4(ẋ, x, t) to Lsn2(ẋ, x, t) without any
generalization, but with an additional requirement that f4(t) = c4. More interesting cases
are: (i) f1(t) = c1, which gives ḟ2(t)t = − ḟ3(t); (ii) f2(t) = c2 and ḟ1(t)x = − ḟ3(t); and (iii)
f3(t) = c3 with ḟ1(t)x = − ḟ2(t)t. In all three cases, three new standard NLs are obtained.

Since the functions f1(t), f2(t), and f3(t) in Lsn4(ẋ, x, t) are limited by the auxiliary
condition, given by Equation (9), and since Lsn3(ẋ, x, t) does not require any restrictions on
these functions, the standard NL, given by Equation (7), is more general than Lsn4(ẋ, x, t);
thus, the standard general NL becomes Lsgn(ẋ, x, t) = Lsn3(ẋ, x, t).

The following Corollary summarizes (without a formal proof) the results obtained in
this Section.

Corollary 1. The Lagrangian Lsgn(ẋ, x, t) is the general null Lagrangian among all null La-
grangians that can be constructed based on the principle that the power of the dependent variable
cannot exceed the power of this variable in the SL, given by Equation (1).

3. Nonstandard Null Lagrangians

Any Lagrangian different from Ls(ẋ, x) is a nonstandard Lagrangian. Among different
known nonstandard Lagrangians, the most commonly used [15–19] is:

Lns(ẋ, x, t) =
1

g1(t)ẋ + g2(t)x + g3(t)
, (10)

where g1(t), g2(t), and g3(t) are arbitrary and differentiable functions to be determined.
Since there are no nonstandard NLs in the literature, the objective of this paper

is to find them. The procedure is based on the two following conditions. First, for a
null Lagrangian to be called nonstandard, it must be of different form than the standard
NLs, given by Equations (3) and (7), and its form must be similar to that of Equation (10).
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The latter means that it must contain ẋ, x, and arbitrary functions of t, or constants. The
second condition is similar to that used to construct Lsn2(ẋ, x, t), Lsn3[ẋ, x, t] and Lsn4(ẋ, x, t),
namely, the power of the dependent variable and its derivative must not exceed their order
in the nonstandard Lagrangian given by Equation (10). The obtained nonstandard null
Lagrangians are presented in Propositions 1 and 2, and in the Corollaries that follow them.

Proposition 1. Let a1, a2, a3, and a4 be constants in the following nonstandard test-Lagrangian

Lns,test1(ẋ, x, t) =
a1 ẋ

a2x + a3t + a4
. (11)

Then, Lns,test1(ẋ, x, t) is a null Lagrangian if, and only if, a3 = 0.

Proof. Since this Lagrangian must satisfy the E-L equation, ÊL{Lns,test1(ẋ, x, t)} = 0, the
required condition is a1a3 = 0. With a1 6= 0, then a3 = 0, and Lns,test1(ẋ, x, t) = Lnsn1(ẋ, x, t),
where the latter is the nonstandard NL. This concludes the proof.

Corollary 2. Let Lnsn1[ẋ, x] be the nonstandard null Lagrangian given by:

Lnsn1(ẋ, x, t) =
a1 ẋ

a2x + a4
, (12)

then its gauge function Φnsn1(x) is:

Φnsn1(x) =
a1

a2
ln |a2x + a4| . (13)

Corollary 3. Another nonstandard null Lagrangian that can be constructed is Lnsn2(t) =
b1/(b2t + b3) and the corresponding gauge function is Φnsn2(t) = (b1/b2) ln |b2t + b3|; however,
the Lagrangian and gauge function do not obey the first condition; thus, they will not be further
considered.

Generalization of Lnsn1(ẋ, x) is now presented in Proposition 2.

Proposition 2. Let h1(t), h2(t), and h4(t) be at least twice differentiable functions and Lnsn1(ẋ, x)
be the nonstandard null Lagrangian given by Equation (12), with the corresponding nonstandard
gauge function given by Equation (13). A more general nonstandard null Lagrangian is obtained if,
and only if, the constants in Φnsn1(x) are replaced by the functions h1(t), h2(t), and h4(t).

Proof. Replacing the constant coefficients a1, a2, and a4 in Lnsn1(ẋ, x) by the functions
h1(t), h2(t), and h4(t), respectively, the resulting Lagrangian is:

Lns,test2(ẋ, x, t) =
h1(t)ẋ

h2(t)x + h4(t)
. (14)

Using ÊL{Lns,test2(ẋ, x, t)} = 0, it is found that Lns,test2(ẋ, x, t) is the nonstandard
NL only when h1(t) = a1, h2(t) = a2 and h4(t) = a4, which reduces Lns,test2(ẋ, x, t) to
Lnsn1(ẋ, x, t) and shows that no generalization of Lnsn1(ẋ, x, t) can be accomplished this
way.

Now, replacing the constant coefficients in Φnsn1(x) by the functions h1(t), h2(t) and
h4(t) generalizes the gauge function to

Φnsgn(x) =
h1(t)
h2(t)

ln |h2(t)x + h4(t)| . (15)
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Since the total derivative of any differentiable scalar function that depends on x and t
is a null Lagrangian, the following nonstandard NL is obtained:

Lnsgn(ẋ, x, t) =
h1(t)[h2(t)ẋ + ḣ2(t)x] + ḣ4(t)

h2(t)[h2(t)x + h4(t)]
+

[
ḣ1(t)
h2(t)

− h1(t)ḣ2(t)
h2

2(t)

]
ln |h2(t)x + h4(t)| . (16)

As expected, ÊL{Lnsgn(ẋ, x, t)} = 0; thus, Lnsgn(ẋ, x, t) is the general nonstandard
null Lagrangian when compared to Equation (12). This concludes the proof.

The derived Lnsgn(ẋ, x, t) and Φnsgn(ẋ, x, t) represent new families of nonstandard
general NLs and their GFs. These NLs and GFs were derived based on the condition that
the power of the dependent variable in the nonstandard general NLs is either the same as,
or lower than, that displayed in the original NSL given by Equation (10).

4. Action Invariance and Conditions for Exactness

Since the functions in the standard and nonstandard general null Lagrangians are
arbitrary, they require either mathematical or physical constraints, or both. Among pos-
sible mathematical constraints is invariance of the action, which is used to introduce
exact gauge functions [36], and symmetries of Lagrangians and the resulting dynamical
equations [38–42]. Moreover, by using Galilean invariance [35], the additional physical
constraints are imposed on the GFs [36]. Here, only the invariance of the action is applied to
the obtained standard and nonstandard general NLs and GFs; symmetries of Lagrangians
are also briefly discussed.

In the calculus of variations, the action is defined as:

A[x; te, to] =
∫ te

to
(L + Lnull)dt =

∫ te

to
Ldt +

∫ te

to

[
dΦnull(t)

dt

]
dt

=
∫ te

to
Ldt + [Φnull(te)−Φnull(to)] , (17)

where to and te denote initial and final times, L is a Lagrangian that can be either any
SL or any NSL, Lnull is any null Lagrangian and Φnull is its gauge function. Since both
Φnull(te) and Φnull(to) are constants, they do not affect the Hamilton principle that requires
δA[x] = 0. However, the requirement that ∆Φnull = Φnull(te)−Φnull(to) = const adds this
constant to the value of the action. In other words, the value of the action is affected by the
gauge function.

Using invariance of the action, the following definitions are introduced.

Definition 1. A null Lagrangian, whose ∆Φnull = 0, is called the exact null Lagrangian (ENL).

Definition 2. A gauge function with ∆Φnull = 0 is called the exact gauge function (EGF).

The condition ∆Φnull = 0 is satisfied when either Φnull(te) − Φnull(to) = 0, or
Φnull(te) = 0 and Φnull(to) = 0; let the latter be valid. Then, the exact null Lagrangians are
those whose exact gauge functions make the action invariant.

Invariance of the action may now be used to establish constraints on the arbitrary func-
tions in the standard NL, Lsgn(ẋ, x, t) (see Equation (7)), and its gauge function, Φsgn(x, t)
(see (6)), and make them exact. Taking Φsgn(te) = 0 and Φsgn(to) = 0, the following
conditions are obtained:

1
2

f1(te)x2
e + f2(te)xete + f3(te)xe + f4(te)te = 0 , (18)

and
1
2

f1(to)x2
o + f2(to)xoto + f3(to)xo + f4(to)to = 0 , (19)
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with xe = x(te) and xo = x(to) denoting the end points. If the arbitrary functions satisfy
these conditions, then Lsgn(ẋ, x, t) and Φsgn(x, t) are exact. The first condition may be
solved by taking f3(te) = − f1(te)xe/2, and f4(te) = − f2(te)xe. Similar solutions are valid
for to showing that the end values for the functions can be related to each other.

Applying the same procedure to Lnsgn(ẋ, x, t), (see Equation (16)), and to the resulting
general gauge function Φnsgn(ẋ, x, t), (see Equation (15)), the conditions on the arbitrary
functions are: [

h1(te)

h2(te)

]
ln |h2(te)xe + h4(te)| = 0 , (20)

and [
h1(to)

h2(to)

]
ln |h2(to)xo + h4(to)| = 0 . (21)

Since ln[h2(te)x + h4(te)] 6= 0 and ln[h2(te)x + h4(te)] 6= 0, both conditions set up
stringent limits on the function h1(t), whose end values must be: h1(te) = 0 and h1(to) = 0;
however, the procedure does not impose any constraint either on h2(t) or on h4(t).

Further constraints on all arbitrary functions that appear in the standard and non-
standard, general, exact null Lagrangians (ENLs) can be imposed by considering symme-
tries of these Lagrangians and the resulting dynamical equations. In general, Lagrangians
posses less symmetry than the equations they generate [38]. Among different symme-
tries, Noether and non-Noether symmetries are identified [39–42]. The presence of NLs
does not affect the Noether symmetries [38,41]; however, it may effect the non-Noether
symmetries [42]. All these symmetries impose new constraints on the functions.

5. Applications to Newtonian Law of Inertia

Let (x, y, z) be a Cartesian coordinate system, and let t be time in all inertial frames;
then the one-dimensional motion of a body in one inertial frame is given by D̂ox(t) = 0,
which represents the law of inertia. Let to = 0 and te = 1 be the end conditions, and let
x(0) = xo = 1, x(1) = xe = 2 and ẋ(0) = uo be the initial conditions. Then, the solution to
D̂ox(t) = 0 is x = uot + 1.

The standard Lagrangian for this equation of motion is given by Equation (1), with the
coefficients b = c = 0, and no arbitrary function to be determined. However, the standard
general NL and the corresponding GF are given by Equations (7) and (6), respectively. To
make the NL and GF exact, the following conditions (see Equations (18) and (19)) must be
imposed on the arbitrary functions:

f1(1) + f2(1) + f3(1) + f4(1) = 0 , (22)

and
f3(0) = −

1
2

f1(0) . (23)

These conditions guarantee that Lsgn(ẋ, x, t) and Φsgn(x, t) are the standard general
ENL and the standard general EGF, respectively.

The nonstandard Lagrangian for the law of inertia is presented by the
following Proposition.

Proposition 3. Let g1(t), g2(t), and g3(t) be arbitrary but differentiable functions, and let
D̂ox(t) = 0 be the equation of motion for the law of inertia. Then, the nonstandard Lagrangian for
this equation of motion is:

Lns(ẋ, x, t) =
1

C1(aot + vo)2
1

(aot + vo)ẋ− aox + C2
, (24)

where ao, vo, C1, and C2 are constants.
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Proof. Following [18], the functions must satisfy

g2(t)
g1(t)

+
1
3

ġ1(t)
g1(t)

= 0 , (25)

ġ2(t)
g1(t)

− 1
2

ġ1(t)
g1(t)

g2(t)
g1(t)

+
g2

2(t)
2g2

1(t)
= 0 , (26)

and
ġ3(t)
g1(t)

− 1
2

ġ1(t)
g1(t)

g3(t)
g1(t)

+
g3(t)
g1(t)

g2(t)
2g1(t)

= 0 . (27)

Eliminating g2(t) from Equations (25) and (26), and defining u(t) = ġ1(t)/g1(t), one
obtains:

u̇(t) +
1
3

u2(t) = 0 , (28)

which is a special form of the Riccati equation. Following [22], the solution to Equation (28) is:

u(t) = 3
v̇(t)
v(t)

, (29)

with v(t) representing a solution to v̈(t) = 0, which is the auxiliary condition [21,22].
The initial conditions v(t = 0) = vo and v̇(t = 0) = ao are different from those used

for D̂ox(t) = 0. Then, the solution becomes v(t) = aot + vo, and the functions g1(t), g2(t)
and g3(t) become

g1(t) = C1(aot + vo)
3 , (30)

where C1 is an integration constant. Having obtained g1(t), g2(t) becomes

g2(t) = −C1ao(aot + vo)
2 . (31)

Finally, g3(t) can be found by eliminating g1(t) and g2(t) from Equation (26). The solution
is

g3(t) = C1C2(aot + vo)
2 , (32)

where C2 is an integration constant.
Substituting g1(t), g2(t), and g3(t) into Equation (10), for D̂ox(t) = 0, the following

final form of the NSL is obtained

Lns(ẋ, x, t) =
1

C1(aot + vo)2
1

(aot + vo)ẋ− aox + C2
, (33)

which is the same as that given by Equation (24). This concludes the proof.

The derived NSL depends on two constants, ao and vo, which are given by the initial
conditions for v̈(t) = 0, and two arbitrary constants, C1 and C2, which may be determined
by the initial conditions for D̂ox = 0. It is easy to verify that Lns(ẋ, x, t) gives D̂ox(t) = 0
when substituted into the E-L equation. This is the first example of the nonstandard
Lagrangian for the Newtonian law of inertia.

The nonstandard general null Lagrangian Lnsgn(ẋ, x, t), and its gauge function,
Φnsgn(x, t), are given by Equations (16) and (15), respectively. To make this NL and
its GF exact, the following conditions must be obeyed (see Equations (20) and (21)):[

h1(1)
h2(1)

]
ln |2h2(1) + h4(1)| = 0 , (34)

and [
h1(0)
h2(0)

]
ln[h2(0) + h4(0)] = 0 . (35)
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Since ln[h2(1) + h4(1)] 6= 0 and ln[h2(0) + h4(0)] 6= 0, the end values of the function
h1(t) must be: h1(1) = 0 and h1(0) = 0, but the end values of either h2(t) or h4(t) are not
limited by the conditions for exactness. Further constraints on the functions h1(t), h2(t),
and h4(t) may be imposed by considering symmetries and Lie groups [26] of the derived
nonstandard general ENL (see Section 4). With these constraints, the first nonstandard EGF
for the law of inertia is obtained.

The derived nonstandard null Lagrangians are of different forms when compared to
the standard null Lagrangians obtained in Section 3; therefore, it is suggested that the NLs
be divided into two separate sets. In previous work [35,36], it was shown that standard
null Lagrangians and their gauge functions can be used to restore Galilean invariance of
Lagrangians in classical mechanics, and to introduce classical forces. The main physical
implication of the results obtained in this paper is that similar restoration of invariance of
Lagrangians and definition of forces can also be carried out by using the derived general
nonstandard NLs, and that the resulting forces will be of different forms from those
previously determined [36]. The fact that not all general standard NLs contribute to the
forces was shown by [37]; only NLs of special forms can be used to define forces [36,37]. In
general, most NLs have no influence on these forces. It remains to be determined whether
the derived general nonstandard null Lagrangian and its gauge function define forces, and
whether they can be used to convert the first law of dynamics into the second law; however,
such studies are beyond the scope of this paper.

The presented methods of finding general standard and nonstandard ENLs and their
EGFs can be extended to all second-order ODEs of the form D̂x(t) = 0, which includes the
equations of motion of undamped and damped oscillators, and other dynamical systems.
In previous work [43], the general standard ENLs and EGFs were derived for the Bateman
oscillators; however, the nonstandard ENLs and EGFs are yet to be obtained. The presented
methods may also be generalized to partial differential equations of quantum mechanics,
such as the Schrödinger equation.

6. Conclusions

This paper presents methods to construct null Lagrangians. Using these methods, two
different sets of null Lagrangians were obtained and classified as standard and nonstandard.
The corresponding sets of gauge functions were also derived. The presented general
standard null Lagrangians are known, but the general nonstandard null Lagrangians
obtained in this paper are new. Since there are differences in the forms and properties of
the two sets of null Lagrangians, it is suggested that these Lagrangians be divided into two
classes that correspond to these sets.

The invariance of the action is used to introduce the exactness of both general standard
and nonstandard gauge functions. Having obtained the exact gauge functions, they are
used to derive the exact null Lagrangians. All null Lagrangians and gauge functions,
derived in this paper are exact, which gives constraints on the end values of the arbitrary
functions these Lagrangians and gauge functions depend on. Further constraints can be
imposed by symmetries of the exact null Lagrangians and the corresponding exact gauge
functions, as well as their underlying Lie groups [26].

The obtained results are applied to the ordinary differential equation (ODE) that
represents the law of inertia for which the general exact nonstandard null Lagrangian
and the corresponding general exact gauge function are derived. It is suggested that
the derived Lagrangian and gauge function be used to restore Galilean invariance of the
standard Lagrangian for this law, and to introduce forces as carried out in the previous work
for the general standard null Lagrangians [35–37]. Since there are significant differences
between the general standard and nonstandard null Lagrangians, the resulting forces must
also be different, which may allow establishing a general procedure of defining forces in
classical mechanics independently from Newton’s law of dynamics.

Finally, it must be pointed out that the same method can be used to obtain the general
exact nonstandard null Lagrangians and their gauge functions for any ODE given by
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D̂x(t) = 0, and that it can be extended to homogeneous and inhomogeneous partial
differential equations, and applied to physical problems described by these equations.
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