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We present theoretical studies for the third-order elastic constants of Mg, Be, Ti, Zn, Zr, and Cd with a hexagonal-close-packed
(HCP) structure. ,e method of homogeneous deformation combined with first-principles total-energy calculations is employed.
,e deformation gradient Fij is applied to the crystal lattice vectors ri, and the elastic strain energy can be obtained from the first-
principles calculation. ,e second- and third-order elastic constants are extracted by a polynomial fit to the calculated energy-
strain results. In order to assure the accuracy of our method, we calculated the complete set of the equilibrium lattice parameters
and second-order elastic constants for Mg, Be, Ti, Zn, Zr, and Cd, and our results provide better agreement with the previous
calculated and experimental values. Besides, we have calculated the pressure derivatives of SOECs related to third-order elastic
constants, and high-pressure effects on elastic anisotropy, ductile-to-brittle criterion, and Vickers hardness are also investigated.
,e results show that the hardness model Hv � 1.877(k2G)0.585 is more appropriate than Hv � 2(k2G)0.585 − 3 for HCP metals
under high pressure.

1. Introduction

In the theory of linear elasticity, infinitesimal deformation
strains are assumed, and using finite deformation on ma-
terials is very significant for practical application. ,e sec-
ond-order elastic constants (SOECs) are sufficient to
describe the elastic stress-strain response and wave propa-
gation in solids [1], whereas the third- and higher-order
elastic constants (TOECs and HOECs) must be considered
to characterize the strain properties of materials [2–5]. In
general, the SOECs and TOECs describe the response of
materials to the linear and nonlinear elasticity, respectively.
For single crystals, TOECs reflect variation in acoustic ve-
locities as a result of elastic strain [6, 7], so not only can
TOECs describe mechanical phenomena when large am-
plitude stress are acted, but also it can describe other
anharmonic properties including thermal expansion,

temperature dependence of elastic properties, the interac-
tions of phonon and phonon [6, 8]. In the past research,
many experiments have been implemented to determine
TOECs [3]. However, it is very difficult to obtain a complete
set of TOECs from experimental methods for HCP metals,
so it is eager to predict the TOECs of HCP metals by using
theoretical methods. ,ere are quite a few of the available
theoretical methods for determining TOECs, including
empirical force-constant models [9–13], molecular-dy-
namics simulations [14, 15], and first-principles total-energy
methods [1, 16]. Nielson and Martin first applied to the
methods of first-principles total-energy calculations deter-
mining TOECs of materials [17, 18]. Recently, the method
from cubic symmetric crystals has been extended to arbi-
trary symmetric crystals by Zhao et al. [19].

In the present study, we describe the method combined
homogeneous deformation with first-principles total-energy

Hindawi
Advances in Materials Science and Engineering
Volume 2021, Article ID 8726250, 12 pages
https://doi.org/10.1155/2021/8726250

mailto:mengzy@cqupt.edu.cn
https://orcid.org/0000-0001-8428-1855
https://orcid.org/0000-0002-0438-3331
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8726250


calculations for determining TOECs of HCPmetals (Mg, Be,
Ti, Zn, Zr, and Cd). It is well known that the properties in
HCP materials have been studied for a long time, especially
for Mg. Mg has good ductility, better characteristics sup-
pressing vibration and noise than aluminium, and excellent
castability [20], and alloying magnesium can increase the
strength-to-weight ratio due to their lightweight and high
strength, making them important materials for structural
applications [21–24]. Furthermore, zirconium and titanium
have also been broadly applied, particularly in structural
applications, for example, in the automotive and aerospace
industries due to their corrosion resistance, lightweight, high
strength, and so on [25]. ,is paper systematically studies
the elastic characterization for HCP metals including Mg,
Be, Ti, Zn, Zr, and Cd to better understand the strain be-
havior by using first-principles calculations. In order to test
the feasibility of our model, we have calculated the equi-
librium lattice parameters and SOECs, which are compared
with previous theoretical and experimental results, and it is
shown that our results are in perfect agreement with ac-
ceptable data. ,is paper is organized as follows: Section 2
gives a general overview of the nonlinear elasticity theory.
Section 3 describes employed methodology and results
discussion for TOECs obtained from first-principles cal-
culations. Section 4 deals with the determination of the
pressure dependent elastic constants related to TOECs,
high-pressure effects on elastic anisotropy, ductile-to-brittle
criterion, and hardness of Mg, Be, Ti, Zn, Zr, and Cd. Finally,
we present our conclusions in Section 5.

2. Nonlinear Elasticity Theory

In this work, we will recall some basic facts from the
nonlinear theory of elasticity [5, 26–30]. Let ai be the initial
coordinates of some crystal element. After applying a finite
deformation to a crystal, the initial crystal element will move
to the position xi. After introducing the deformation gra-
dient Fij,

Fij �
zxi

zaj

, (1)

where i and j (�1, 2, 3) represent the Cartesian coordinates.
,en, we may define the Lagrangian strain tensor η:

ηij �
1
2

􏽘
p

FpiFpj − δij􏼐 􏼑, (2)

which is a convenient estimation of deformation for an
elastic body, and the Lagrangian strains tensor does not
contain information referring to rigid rotation of the crystal
element based on its symmetry.

In the nonlinear elasticity theory, the Lagrangian strain
tensor is related to the internal energy, and the free energy is
related to the Lagrangian strain tensor. ,e elastic constants
can be obtained by expanding the internal energy as a Taylor
series in terms of the Lagrangian strain tensor at constant
entropy by Bruuger [29]:

U(V, η, S) � U(V, 0, S) +
V
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(3)

where V is the volume of the system, S is the entropy, and
U(V, 0, S) is the corresponding internal energy of the
ground state. An expansionU(V, η, S) in terms of symmetric
Lagrangian strains tensor is appropriate because the internal
energy is unaltered under rigid rotation [2]. ,e SOECs,
TOECs, and HOECs are defined as the second-, third-, and
higher-order derivatives of equation (3) with regard to the
Lagrangian strain, respectively. ,us, the isentropic elastic
constants can be written as

C
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And the isothermal elastic constants are

F(V, η, T) � U(V, 0, T) +
V
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(5)

which is obtained by expanding the Helmholtz free energy as
a Taylor series of η at constant temperature [2, 6]. Since our
first-principles calculations are performed at T � 0K,
F � U − TS � U, then CS � CT. We will not distinguish
between isentropic elastic constants CS and isothermal
elastic constants CT in this work.

Only six of each set of the nine Lagrangian strain tensors
are independent due to its symmetry, and it is convenient to
introduce the Voigt notation (11 ⟶ 1, 22 ⟶ 2, 33 ⟶
3, 23⟶ 4, 31⟶ 5, 12⟶ 6), for the Lagrangian strain
tensors, η11⟶ η1, η22⟶ η2, η33⟶ η3, η23⟶ η4/2, η31
⟶ η5/2, η12⟶ η6/2 . So, the Lagrangian strain tensors η
can be written as follows:
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. (6)

Equations (3) and (5) now can be written as

ΔU
(V, η)
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(7)
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where ΔU(V, η)/V � [U(V, η) − U(V, 0)]/V as a function of
applied finite strain is the elastic energy per unit volume. As
shown above, the second and third orders of elastic con-
stants can be obtained via using the method of homogeneous
deformation by applying various simple deformations to the
crystal, and the internal energy for the deformed crystal is
calculated. ,en, SOECs and TOECs are extracted by fitting
equation (8) to the first-principles calculated energy-strain
results.

Besides, the Lagrangian stress t is defined as the first-
order derivative of the internal energy with regard to the
Lagrangian strain tensor η:

tij �
1
V

zU

zηij
, (8)

which can also be used to evaluate the elastic constants. In
the following section, we will obtain the SOECs and TOECs
by applying to the system ten simple deformation strains in
the first-principles calculations.

3. Determination of the Elastic Constants

3.1. Computational Methodology. In the work presented
here, we have determined the second-order elastic constants
and third-order elastic constants for Mg, Be, Ti, Zn, Zr, and
Cd combined with the first-principles calculations based on
density functional theory (DFT). ,e deformation gradient
Fij is applied to the crystal lattice vectors ri to obtain the unit
cell for the strained crystal, and the deformed lattice vectors
can be determined:

ri
′ � 􏽘

j

Fijaj. (9)

To carry out the different deformation modes in our
work, the deformation gradient matrix Fij needs to be
obtained. Fij is related to the strain η and is determined by
inverting equation (2):

Fij � δij + ηij −
1
2

􏽘
k

ηikηkj +
1
2

􏽘
kl
ηikηklηlj + . . . . (10)

In general, the deformation gradient Fij is not single for a
given strain η, while the various possible solutions differ
from one another by a rigid rotation. ,e lack of a one-to-
one relationship between the deformation gradient matrix
Fij and the strain η is insignificant due to the invariability of
the calculated total energy under rigid deformation [19]. For
a given specific deformation, to obtain the minimized energy
for the strained lattice, relaxation of the crystal internal
coordinates for the distorted unit cell was performed.

For hexagonal structure, there are five independent
SOECs (C11, C12, C13, C14, C44) and ten TOECs (C111, C222,
C333, C112, C113, C123, C133, C144, C155, C344. To determine
these elastic constants, we introduced Lagrangian strain
tensors η for hexagonal crystals that result in an energy
expansion (equation (3)), including a small quantity of
second-order elastic constants and third-order elastic con-
stants. So, we can confirm the nonzero components of each
Lagrangian strain tensor ηij according to a single

parameter ξ. Moreover, the selection of the different de-
formation modes results in different strains used in our
work, which are written as ηα, α � A, B, . . ., J and presented
in Table 1. Inserting these strains into equation (7), the
elastic energy per unit volume which resulted in this se-
lection of the deformation mode can be expressed as an
expansion in the strain parameter ξ:

V
−1

[U(ξ) − U(0)] �
1
2
P2ξ

2
+
1
6
P3ξ

3
+ O ξ4􏼐 􏼑 . (11)

Coefficients P2 and P3 represent combinations of sec-
ond-order elastic constants and third-order elastic constants
of the crystal, respectively. Furthermore, coefficients P2 and
P3 for the specific strain tensors η are listed in Table 1. We
can obtain these coefficients by fitting equation (10) to plots
of energy per unit volume versus strain ξ. In every case for η,
to obtain accurate TOECs, ξ is varied between −0.08 and 0.08
with Step 0.008. For every deformation mode, the coordi-
nates of atoms optimized and stress tensors and internal
energy are calculated based on density functional theory
(DFT).

In this work, we implement first-principles total-energy
calculations on the basis of the density functional theory
(DFT), which is embodied in the Vienna ab simulation
package (VASP) [31–33]. All calculations on Mg, Be, Ti, Zn,
Zr, and Cd are carried out by using the Per-
dew–Burke–Ernzerhof (PBE) [34, 35] exchange-correlation
functional for the generalized-gradient-approximation
(GGA). ,e projector augmented wave (PAW) method has
been carried out in the VASP package [36]. ,e Monkhorst-
Pack special k-point scheme [37] represents reciprocal space
with 21 × 21× 21 grid meshes is enough for obtaining
accurate results. Meanwhile, the plane-wave cutoff was set to
600 eV for all the calculated HCPmetals.,e convergence of
energy and force are set to 1.0 × 10−6 eV and 1.0 ×10−5 eV/Å,
respectively.

Taking Mg as an example, Figure 1(a) shows the rela-
tionship between the internal energy convergence and the
k-point grid size. ,e internal energy is well converged after
15 × 15 × 15 mesh size. ,e test of the cutoff energy affects
the internal energy convergence displayed in Figure 1(b),
and E

\spmathrmMg
\spmathrmcutoff � 350 eV is sufficient for Mg. ,e equi-

librium lattice parameters a and c/a for Mg can be deter-
mined by minimizing the stress on the unit cell and the
Hellmann–Feynman force on the atoms. Figure 1(c) shows
the internal energy calculations for Mg corresponding to the
equilibrium lattice parameters a and c/a. It shows that our
values of calculation agree well with the previous experi-
mental and calculated values (see Table 2).

3.2. Results and Discussion. We list our calculated values of
second-order elastic constants (SOECs) Cij and third-order
elastic constants (TOECs) Cijk for Mg, Be, Ti, Zn, Zr, and Cd
in Tables 2 and 3, respectively. We also provide values of
calculation for SOECs and compare them with previous
results to ensure the correctness of our calculation. ,e Cij
values are slightly different for different fitted curves. Taking
Mg as an example, C11 from coefficients in fA(ξ) and fD(ξ)
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Table 1: ,e coefficients P2 and P3 in equation (12) of corresponding Lagrangian strains are shown as combinations of second-order and
third-order elastic constants for the hexagonal crystal.

Strain type P2 P3

ηA � (ξ, 0, 0, 0, 0, 0) C11 C111
ηB � (ξ, ξ, 0, 0, 0, 0) 2 C11 + 2C12 4C111 + 6C112 − 2C222
ηC � (ξ, ξ, ξ, 0, 0, 0) 2C11 + 2C12 + 4C13 + C33 4C111 + 6C112 + 6C113 + 6C123 + 6C133 − 2C222 + C333
ηD � (0, ξ, 0, 0, 0, 0) C11 C222
ηE � (0, 0, ξ, 0, 0, 0) C33 C333
ηF � (0, ξ, , ξ, 0, 0, 0) C11 + 2C13 + C33 3C113 + 3C133 + C222 + C333
ηG � (0, 0, ξ, 0, 0, 2ξ) 2C11 − 2C12 + C33 6C113 − 6C123 + C333
ηH � (0, ξ, 0, 0, 2ξ, 0) C11 + 4C44 12C144 + C222
ηI � (0, 0, ξ, 0, 2ξ, 0) C33 + 4C44 C333 + 12C344
ηJ � (ξ, ξ, 0, 0, 2ξ, 0) 2C11 + 2C12 + 4C44 4C111 + 6C112 + 12C144 + 12C155 − 2C222
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Figure 1: In the calculated internal energy of Mg as a function of k-points grid size, the cutoff energy, and lattice constants, respectively.
(a),e analogous dependence on the density of k-points mesh (energy cutoff of 600 eV is used for all points). (b),e dependence of internal
energy on the cutoff energy (Monk-Pack sampling 21 × 21 × 21 is applied to all points). ,e energy converges well when the k-point mesh
size and the cutoff energy are beyond 15 × 15 × 15 and 300 eV, respectively. In our calculation, we choose the Monkhorst-Pack sampling
21 × 21 × 21 and the energy cutoff of 600 eV for Mg. (c) ,e equilibrium lattice parameters for Mg a and c/a are 3.193 Å and 1.627 Å, which
is determined from the corresponding minimum value of the internal energy\enleadertwodots.
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is 64.02GPa and 63.90GPa, respectively; the C44 values are
17.15GPa, 17.03Gpa, and 16.88GPa from coefficients in
fH(ξ), fI(ξ), and fJ(ξ), respectively. In such cases, the
average of all calculated values is presented in Table 2. It is
shown that our results of SOECs agree well with the available
data from other theoretical and experimental values. ,e
energies-strain (E − ξ) curves for Mg, containing the results
of the first-principles calculations and the fitted polynomials,
are plotted in Figure 2. ,e hollow circle denotes results of
DFT results, solid lines represent the curves obtained from
nonlinear elasticity theory, and dashed lines indicate the
curves obtained from linear elasticity, respectively. For the
curves obtained from nonlinear elasticity theory, E-ξ with
positive strains are always smaller than those with negative
strains, so the majority of values of TOECs Cijk are negative
(see Table 3), while it is the opposite for SOECs (see Table 2).

,e determination of Cijk is sensitive to errors in the
calculation methods and the parameters and needs super-
convergence of parameters controlling the precision of com-
putations. In all of our calculations, the energy cutoff of 600 eV
and the Monkhorst-Pack sampling 21 × 21 × 21 are very
reliable for Mg, Be, Ti, Zn, Zr, and Cd on the basis of our tests.
,e projector augmented wave (PAW)method chosen to solve
Kohn–Sham equations does not affect the computation
markedly [38] because the calculations of the static and dy-
namical properties for a wide range of solids within PAW have

been performed properly [39]. Besides, we carry out GGA-PBE
exchange-correlation functional and have proven its effec-
tiveness for calculating the TOECs. As shown in Table 2, our
results show that the equilibrium lattice parameters and SOECs
perfectly agree with the theoretical values.

Next, our concern is to investigate for which range of
strains (ξ) the third-order effects dominant the properties of
solids. ,e maximum strain ξmax is an important parameter
in these calculations as well. In the present study, for the
second-order term, the fitted coefficient P2 was almost in-
dependent of the range of fitting, while the coefficient P3 was
more sensitive to ξmax. To illustrate this feature, we also show
the curves of the nonlinear elasticity comparison with the
linear elasticity for Mg in Figure 2. ,e results show that
linear elasticity is not appropriate when the maximum strain
ξmax larger than 30% and the third-order effects must be
considered. ,erefore, the Lagrangian strain tensor η can be
expressed as η � χ − 1/2χ2, where χ is the linear strain tensor.

4. The Effective Elastic Constants under
Pressure and Mechanical Properties for Mg,
Be, Ti, Zn, Zr, and Cd

4.1. $e Effective Elastic Constants. In the case of materials
under larger hydrostatic pressure, it is of value to describe

Table 2: Calculated values for the lattice parameters a, in Å) and elastic constants (Cij, in GPa), and the available experimental and
theoretical data are given.

Mg Be Ti Zn Zr Cd
a 3.193 2.262 2.925 2.648 3.234 3.032

3. 21a, 3.19b 2. 28a, 2.2856c 2. 90a, 2.9506c 2. 64a, 2.65b 3. 20a, 3.2312c 3. 03b, 2.98d

c/a 1.627 1.578 1.580 1.910 1.600 1.910
1. 62a, 1.61b 1. 56a, 1.5677c 1. 55a, 1.5857c 1. 81a, 1.93b 1. 56a, 1.5931c 1. 82b, 1.89d

C11 63.96 390.06 175.26 167.71 142.46 92.18
60b, 59.3e 292e, 292.3f 160e, 176.1g 163b, 165e 144e, 155.4g 70b, 116e

C33 67.27 367.95 191.25 61.79 164.98 40.04
75b, 61.5e 349e, 246.0f 181e, 190.5g 67b, 61.8e 166e, 172.5g 57b, 50.9e

C44 17.02 160.46 36.35 26.30 22.25 17.38
22b, 16.4e 163e, 162.5f 46. 5e, 50.8g 46b, 39.6e 33. 4e, 36.3g 24b, 19.6e

C12 28.30 23.93 96.14 37.86 71.66 44.96
34b, 25.7e 24e, 26.7f 90e, 86.9g 53b, 31.1e 74e, 67.2g 60b, 43e

C13 20.51 13.823 81.21 48.46 63.19 31.89
21b, 21.4e 6e, 14f 66e, 64.6g 36b, 50e 67e, 64.6g 40b, 41e

aReference [50] calculated from first-principles calculations. bReference [51] calculated from first-principles calculations. cReference [52] taken from Barrett
and Massalski. dReference [53] obtianed from experiments. eReference [54] obtained from the data compiled by Hearmon. fReference [55] taken from
Simmon and Wang. gReference [56] obtianed from an ultrasonic wave interference technique.

Table 3: Predictions for the third-order elastic constants (TOECs) of Mg, Be, Ti, Zn, Zr, and Cd. ,e unit of all data is GPa.

Mg Be Ti Zn Zr Cd
C111 −879.14 −3865.41 −1591.00 −3007.54 −856.89 −1978.36
C222 −801.04 −2931.07 −1457.22 −2988.01 −835.38 −2340.52
C333 −670.98 −2932.89 −1635.42 −528.17 −1303.69 −414.87
C112 −801.58 250.623 309.761 −289.74 −224.99 −368.93
C113 −74.08 −21.59 −750.07 −125.04 −220.521 −134.95
C123 −53.82 −176.83 −1112.21 −81.77 −556.40 −42.00
C133 −193.31 81.44 419.96 −265.92 −94.83 −185.52
C144 −28.16 −256.83 8.22 −33.88 28.61 14.33
C155 −36.03 111.16 −345.29 −101.28 22.94 −131.33
C344 −160.09 −930.03 −109.11 −139.51 −77.46 56.53
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Figure 2: Continued.
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the nonlinear elastic properties employing the concept of
effective elastic constants Cij(P). For many applications, it is
sufficient to consider only the terms linear in the external

hydrostatic pressure. ,e five effective SOECs have been
obtained from the finite strain theory [1] on the basis of
SOECs and TOECs [40]:

C11(p) � C11 + η 4C11 + 2C12 + C111 + C112( 􏼁 + ξ −C11 + 2C13 + C113( 􏼁,

C12(p) � C12 + η C111 + 2C112 − C222 + 2C12( 􏼁 + ξ −C12 + C123( 􏼁,

C13(p) � C13 + η C113 + C123( 􏼁 + ξ C13 + C133( 􏼁,

C33(p) � C33 + η 4C13 − 2C33 + 2C133( 􏼁 + ξ 5C33 + C333( 􏼁,

C44(p) � C44 + η 1/2 C11 + C12( 􏼁( 􏼁 + C13 + C144 + C155 + ξ 1/2 C13 + C33( 􏼁 + C44 + C344( 􏼁.

(12)

,e Lagrangian parameters η (along the basal plane) and
ξ (along the unique axis) obtained in terms of hydrostatic
pressure are

η �
C11 − C33( 􏼁p

C11 + C12( 􏼁C33 − 2C
2
13

, (13)

ξ �
2C13 − C11 − C12( 􏼁p

C11 + C12( 􏼁C33 − 2C
2
13

. (14)

,e calculated hydrostatic pressure derivatives of
SOEC Cij′ for Mg, Be, Ti, Zn, Zr, and Cd in terms of our
prediction for SOECs and TOECs are shown in Table 4.
Here, Cij′ represents dCij

′/dp. In [40], the above method
has been employed to confirm the pressure dependence of
the SOECs. First, applying the hydrostatic pressure to a
crystal, then the pressure-dependent elastic constants
that can be obtained from the crystal have been addi-
tionally deformed. ,e first-principles calculated results
for the total elastic energy combined with the strain-
energy relation will enable us to determine Cij(P) and Cij′.
,erefore, we believe that the method used in our paper is
correct.

4.2. Elastic Anisotropy. In this section, elastic anisotropy of
Mg, Be, Ti, Zn, Zr, and Cd has been investigated. It is well
known that the acoustic velocities are related to the elastic
constants by the Christoffel equation
(Cijklnjnk − Mδil)ui � 0. M is the modulus of propagation
and is written as M � ρυ2. ρ is density, υ is the velocity, the
fourth rank tensor Cijkl is used to describe elastic constants,
and n is the propagation [41]. ,e acoustic anisotropy is
defined as [42]Δi � Mi[nx]/Mi[100], where i is the index for
the three types of elastic waves (one longitudinal and the two
polarizations of the shear wave) [42] and nx is the extremal
propagation direction except [100]. ,e anisotropy of the
compressional wave (P) can be obtained by solving the
Christoffel equation for a hexagonal lattice as Δp � C33/C11.
For the shear waves, the anisotropies of the wave polarized
perpendicular to the basal plane (S1) are Δs1

� (C11 + C33 −

2C13)/(4C44) and the ones polarized in the basal plane (S2)

are Δs2
� 2C44/(C11 − C12). For S1, the extremum occurs at

an angle of 45° from the c axis in the a − c plane, and for S2
and P waves, it occurs along the c axis. ,e calculated elastic
anisotropy factors,Δp,Δs1

, andΔs2
forMg, Be, Ti, Zn, Zr, and

Cd as a function of the applied pressure are shown in
Figure 3. ,e five-pointed star, triangle-right, circle,

−0.08 −0.04 0 0.04 0.08
Lagrangian strain (ζ)

DFT results
nonlinear elasticity
linear elasticity

5

0

10

15 ×108

(j)

Figure 2: ,e strain-energy relations for Mg. ,e hollow circle denotes the results of DFTresults; solid lines represent the curves obtained
from nonlinear elasticity theory; dashed lines indicate the curves obtained from linear elasticity. (a–j) Lagrangian strains
ηA, ηB, ηC, ηD, ηE, ηF, ηG, ηH, ηI, and ηJ respectively.
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triangle-up, diamond, and square represent Mg, Be, Ti, Zn,
Zr, and Cd, respectively.We find that changing tendencies of
the elastic anisotropy Δp, Δs1

and Δs2
in the pressure range

0–5GPa is similar for all six metals investigated here. It is
easy to see that they become small with the increase in
pressure. From Figure 3(a), the anisotropy of the com-
pression wave Δp for Zr, Cd, and Zn increases gradually with

the increase of the pressure, while the variation trends of Δp

for Be, Ti, and Mg are the opposite. Besides, Δp for all six
metals from big to small, arrange Be>Zr>Ti>
Mg>Cd>Zn. It is seen that the anisotropy of the shear
waves Δs1

and Δs2
varies gently generally in the wide range of

pressure. However,Δs1
of Cd andΔs2

forMg increase rapidly,
particularly over 3.5GPa, with the increase in pressure in

Table 4: Predictions for the pressure derivatives of second-order elastic constants for Mg, Be, Ti, Zn, Zr, and Cd.

Mg Be Ti Zn Zr Cd
C11′ 12.21 7.51 3.25 6.91 2.13 7.92
C12′ 14.94 1.53 1.47 2.50 3.24 2.52
C13′ 1.41 0.34 3.88 3.30 2.99 3.68
C33′ 5.62 4.23 -0.32 3.74 2.53 5.32
C44′ 0.27 1.35 0.16 0.76 −0.84 −2.29
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Figure 3: Elastic anisotropy factors varied with the applied pressures. (a–d) describe Δp, Δs1
, Δs2

, and AU respectively. ,e five-pointed star,
triangle-right, circle, triangle-up, diamond and square represent Mg, Be, Ti, Zn, Zr and Cd respectively.
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Figures 3(b) and 3(c). ,e different change tendencies are
determined by the anharmonicity of the acoustic vibrations.

In order to investigate the elastic anisotropy of HCP
metals systematically, the universal anisotropy AU has been
investigated as well. ,e universal anisotropy AU introduced
by Shivakumar et al. can be used to measure the anisotropy
of hexagonal, trigonal, and monoclinic [43]. For an elasti-
cally isotropic solid, Δp � Δs1

� Δs2
� 1, while AU is zero.

AU � 5GV/GR + 5BV/BR − 6≥ 0, which can be obtained from
[43]. GV and GR are the Voigt [44] shear modulus and Reuss
[45] shear modulus, and BV and BR are the Voigt bulk

modulus and Reuss bulk modulus, respectively. For the
hexagonal structure, BV � (1/9)[2(C11 + C12) + 4(C13 +

C33)], GV � (1/30)(M + 12C44 + 12C66), BR � C
2/M, GR �

(5/2)[C
2
C44C66]/[3BVC44C66 + C

2
(C44 + C66)]M � C11+

C12 + 2C33 − 4C13, C
2

� (C11 + C12)C33 − 2C
2
12. ,e calcu-

lated universal anisotropy AU for Mg, Be, Ti, Zn, Zr, and Cd
as a function of the applied pressure is shown in Figure 3(d).
It is seen that AU for Be, Ti, and Zn varies gently in the
pressure range of 0–5GPa. AU for Cd and Zr becomes small
with the increase of the pressure, while the universal
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Figure 4: Brittleness and ductility as functions of pressure. ,e material is ductile when the ratio is below the critical value of 0.5, and the
material is considered brittle when the ratio G/B is larger than 0.571. ,e five-pointed star, triangle-right, circle, triangle-up, diamond, and
square represent Mg, Be, Ti, Zn, Zr, and Cd, respectively.
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Figure 5: Vickers hardness (Hv) as a function of pressure, in which (a, b) adopt various methods.,e five-pointed star, triangle-right, circle,
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anisotropy AU of our calculation for Mg increases rapidly as
the pressure increases.

4.3. Ductile-to-Brittle Criterion and Vickers Hardness. A
universal ductile-to-brittle criterion: to evaluate material
ductility or brittleness, the classical criteria of pressure and
of Pugh’s modulus ratio G/B were proposed by Pugh et al.
[46]. G indicates shear modulus and B bulk modulus.
According to Voigt [44] and Reuss [45], G and B can be
calculated from elastic constants C11, C12, C13, C33, and C44
by using the relations G � (GV + GR)/2 and
B � (BV + BR)/2. G/B � 0.571 corresponds to critical Pugh’s
modulus ratio defined by Pugh [46]. Brittleness and ductility
for Mg, Be, Ti, Zn, Zr, and Cd as functions of pressure are
presented in Figure 4. It is seen that Figure 4 is divided into
three regions, I, II, and III, which represent ductility region,
transition region, and brittleness region, respectively. ,e
material is ductile when the ratio is below the critical value of
0.5, and the material is considered brittle when the ratio G/B
is larger than 0.571. It is evident that Mg, Ti, Zr, and Cd
belong to the ductility region, in which metallic bonding is
stronger, and the majority of Zn is between ductility region
and brittleness region, while Be in the brittleness region.
Furthermore, Pugh’s modulus ratio G/B for Mg, Be, Ti, Zn,
Zr, and Cd decreases with the increase in pressure. In other
words, for Mg, Be, Ti, Zn, Zr, and Cd, larger pressure leads to
higher ductility, namely, lower brittleness.

Vickers hardness Hv for HCP metals under pressure
ranges 0–5GPa. Hardness is defined as the resistance of a
material to deformation. Recently, Chen et al. proposed a
new hardness model [47, 48], Hv � 2(k2G)0.585 − 3, where
k � G/B. We can obtain that the hardness is connected not
only with the bulk modulus but also with the shear modulus.
Vickers hardness (Hv) as a function of pressure is presented
in Figure 5(a). However, we find that the hardness values of
Mg and Zr are negative. Generally speaking, the hardness
values are positive, so we adopt another hardness model
Hv � 1.877(k2G)0.585 [47], as shown in Figure 5(b). ,is
model is also obtained by Chen et al. via investigating the
hardness of polycrystalline materials and bulk metallic
glasses and analyzing these data. Comparing Figure 5(a)
with Figure 5(b), it is easy to find that variation trend of
hardness value as the change of pressure is approximately
consistent. From Figure 5(b), we can obtain that the
hardness values of all six metals are mainly linearly related to
the pressure. ,e hardness Hv for Be and Cd varies by a
small amount, while that for Mg, Ti, Zn, and Zr decreases as
the pressure increases. Besides, the hardness value of
Hv ≈ 48.1 (at zero pressure) is the biggest among six kinds of
HCP metals.

5. Conclusions

In this work, we have described a systematic scheme to
calculate the SOECs and TOECs for Mg, Be, Ti, Zn, Zr, and
Cd using the homogeneous deformation method and first-
principles calculations. Our calculated values of SOECs and
TOECs for Mg, Be, Ti, Zn, Zr, and Cd are listed in Tables 2

and 3, respectively. To verify the reliability of the present
method, we have compared our calculated results for the
equilibrium lattice parameters and SOECs with previous
theoretical and experimental results, and our results are in
perfect agreement with the previous available calculated and
experimental values. ,e pressure derivatives of SOECs Cij

′
are calculated by using the obtained TOECs. Besides, high-
pressure effects on elastic anisotropy, ductile-to-brittle cri-
terion, and Vickers hardness are also investigated. It is easy
to find that the hardness model Hv � 1.877(k2G)0.585 is
more appropriate than Hv � 2(k2G)0.585 − 3 for Mg, Be, Ti,
Zn, Zr, and Cd under the pressure range 0–5GPa. A method
of the nonlinear theory of elasticity for HCP metals must
accelerate the improvement of experimental methods of
measuring TOECs. We believe that our first-principle
computation of TOECs can be a very useful tool in applying
the material with the hexagonal structure to practical
engineering.
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