
energies

Article

Core Stress Analysis of Amorphous Alloy Transformer for Rail
Transit under Different Working Conditions

Jianwei Shao, Cuidong Xu and Ka Wai Eric Cheng *

����������
�������

Citation: Shao, J.; Xu, C.; Cheng,

K.W.E. Core Stress Analysis of

Amorphous Alloy Transformer for

Rail Transit under Different Working

Conditions. Energies 2021, 14, 164.

https://doi.org/10.3390/en14010164

Received: 15 October 2020

Accepted: 17 December 2020

Published: 30 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University,
Hong Kong 999077, China; perc.ee.polyu@gmail.com (J.S.); cuidong.xu@polyu.edu.hk (C.X.)
* Correspondence: eeecheng@polyu.edu.hk; Tel.: +852-27666162

Abstract: The rail transit system is a large electric vehicle system that is strongly dependent on
the energy technologies of the power system. The use of new energy-saving amorphous alloy
transformers can not only reduce the loss of rail transit power, but also help alleviate the power
shortage situation and electromagnetic emissions. The application of the transformer in the field
of rail transit is limited by the problem that amorphous alloy is prone to debris. this paper studied
the stress conditions of amorphous alloy transformer cores under different working conditions and
determined that the location where the core is prone to fragmentation, which is the key problem
of smoothly integrating amorphous alloy distribution transformers on rail transit power supply
systems. In this study, we investigate the changes in the electromagnetic field and stress of the
amorphous alloy transformer core under different operating conditions. The finite element model of
an amorphous alloy transformer is established and verified. The simulation results of the magnetic
field and stress of the core under different working conditions are given. The no-load current and
no-load loss are simulated and compared with the actual experimental data to verify practicability
of amorphous alloy transformers. The biggest influence on the iron core is the overload state and
the maximum value is higher than the core stress during short circuit. The core strain caused by the
side-phase short circuit is larger than the middle-phase short circuit.

Keywords: amorphous alloy transformer; large electric vehicle system; magnetostriction; normal
load; load imbalance; overload; short circuit; no-load current; no-load loss

1. Introduction

New materials are now increasingly used in the traditional power industry, bringing
new solutions to the problems in the power system. The rail transit system is a large
power system and the use of new energy-saving amorphous alloy transformers, not only
can reduce the loss of rail transit power, but also help alleviate the power shortage situa-
tion [1–3]. Amorphous alloy is increasingly used in the iron core of power transformers
due to its excellent low loss performance [4,5]. The advantages of using amorphous fer-
romagnetic alloys as a replacement for grain-oriented Si-steel in power transformers are
widely reported owing to their low no-load core losses [6]. With the rapid development
of amorphous alloy technology, the energy-saving advantages of amorphous alloy core
distribution transformers have gradually been accepted by manufacturers and users [7,8].
Due to the shortcomings of amorphous alloy strips such as high hardness, poor short-circuit
resistance, and high magnetostriction, the application and market promotion of amorphous
alloy transformers are limited [9].

Therefore, it is important to study the stress conditions of amorphous alloy trans-
former cores under different working conditions, and determine where the core is prone
to fragmentation. This is the key problem of smoothly integrating the amorphous alloy
distribution transformer into rail transit power supply systems [3]. Many scholars have
conducted research on improving the short-circuit resistance of amorphous alloys, reducing
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vibration and noise, and improving process measures [10]. Du et al. [11] focused on mag-
netostriction variation at different positions on the core surface to identify the correlations
between the vibration amplitude and frequency. Liu et al. [12] presented a noise reduction
measurement for amorphous alloy core distribution transformers and verification was
carried out by some experiments. This paper emphasizes discussion on the effects of tem-
perature and different materials. Liu et al. [13] developed an analytical model for copper
loss calculation of Litz-wire in amorphous/nanocrystalline core-based high-frequency
transformer. Haifeng et al. [14] designed a new type of clamp to withstand the huge force
caused by short-circuit troubles and with the help of ANSYS software, the stress and strain
of the end covers and the winding clamps were calculated, respectively, confirming the
feasibility of this new structural method. Guo [15] proposes a three-dimensional buckling
finite element method (FEM) to calculate the tilt limit force of the rectangular winding of an
amorphous alloy transformer and experimental results of the short-circuit test on several
amorphous alloy transformers verify the effectiveness of the proposed method.

With a large number of amorphous alloy transformers in operation, oil-immersed
amorphous alloy transformer faults caused by iron core debris of amorphous alloy are more
and more common [7]. There are two sources of core debris of amorphous alloys. One is the
debris generated during the manufacturing, transportation, and assembly processes before
operation, and the other is the core debris generated during operation of the amorphous al-
loy transformer. When the transformer is in operation, due to the mechanical sensitivity of
the amorphous alloy, the transformer core will be deformed because of the electromagnetic
force and the hysteresis force, resulting in core debris [16]. According to [16], in an amor-
phous alloy transformer, the strain caused by magnetostriction is much greater than the
strain caused by the magnetic field force. Different working conditions such as unbalanced
load, overload, and short circuit of transformer operation will cause changes of core force.
After the amorphous alloy transformer is put into operation, the core debris will affect the
electromagnetic performance, resulting in excessive temperature rise of the transformer,
faster deterioration of the insulation medium, insulation failure, shorter effective working
time of the transformer and increase of leakage field and electromagnetic interference.

Therefore, this paper focuses on the research gap in the amorphous alloy core devel-
opments and studies the stress of amorphous alloy transformer cores caused by magne-
tostriction under different working conditions and seeks to determine where the core is
prone to fragmentation.

In this paper, the finite element analysis method is used to study stress conditions
of amorphous alloy transformer cores under different working conditions. The finite el-
ement method [17] is an effective method to analyze the electromagnetic characteristics
of amorphous alloy transformers. Bahmani [18] used the equivalent elliptic loop (EEL)
method in Ansoft Maxwell 3D (Ansoft Corp., Pittsburgh, USA) to calculate the core losses
of high-frequency high-power transformers and compared them with the empirical equa-
tions, verifying the practicability of the finite element method in electromagnetic field
analysis. Chang et al. [19] studied the magneto mechanical effects of three-phase three-leg
transformers with amorphous cores in different bending structures, where the magnetic
properties of audible noises related to core vibrations are discussed. Experimental results in
this paper indicate that amorphous-cored transformers with rectangular cores have higher
vibration intensities.

This paper is organized as follows. Section 2 discusses the mathematical model of
stress and strain induced by magnetostriction. Section 3 establishes a simulation model
based on the structure, and physical and electromagnetic parameters of the actual amor-
phous alloy transformer. The simulation results of the magnetic field and stress of the
core of amorphous alloy transformers under different working conditions are given in
Section 4. The no-load current and no-load loss are simulated and compared with the
actual experimental data to verify the practicability of amorphous alloy transformers in
Section 5. The discussion and conclusion are given in Sections 6 and 7, respectively. The
research framework of the whole paper is shown in Figure 1.
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2. Mathematical Model of Stress and Strain Induced by Magnetostriction

Amorphous alloy iron core is formed by stacking amorphous alloy strips, and there is
eddy current and magnetic flux in the iron core column and iron yoke. Under the action
of ampere force, the amorphous alloy core has slight deformation. The comparison of the
magnetostriction coefficient of amorphous alloy and the magnetostriction coefficient of
oriented silicon steel sheet is shown in Figure 2 [20]. It can be seen from the figure that
under the same magnetic field strength, the degree of magnetostriction of the amorphous
alloy is much higher than that of the silicon steel sheet. Correspondingly, under the action
of the same magnetic field strength, the amorphous alloy core has a much larger heart
shape variable than the silicon steel core. The largest strain caused by magnetostriction is
where amorphous fragments are easily generated.

Figure 2. Magnetostrictive characteristic curve of amorphous alloy and silicon steel sheet.
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2.1. Fully Coupled Model

The relationship between the object strain and the magnetic field intensity caused by
the magnetostriction of the amorphous alloy wound core can be expressed by the magnetic
pressure equation, which includes two aspects [21]:

εp =
6
∑

q=1
sH

pqσq +
3
∑

m=1
dpmHm p = 1, 2, · · · , 6

Bn =
6
∑

q=1
dnqσq +

3
∑

m=1
µσ

nmHm n = 1, 2, 3
(1)

where 1, 2, · · · , 6 are strain tensors of x, y, z, xy, yz, xz; ε is strain tensor; sH is elastic constant
in a constant magnetic field; σ is stress tensor; d is piezomagnetic coefficient; H is magnetic
field intensity; B is magnetic induction intensity; µ is magnetic conductivity.

According to the relationship between the body strain caused by the magnetostriction
of the amorphous alloy coil core and the magnetic field strength, the core strain when the
magnetic field acts alone is:

ε′ =



d11 d12 d13
d21 d22 d23
d31 d32 d33
d41 d42 d43
d51 d52 d53
d61 d62 d63


 Hx

Hy
Hz

 (2)

The amorphous alloy iron core is wound, and the internal sheer force of the iron core
is very small, so the shear strain of the amorphous iron core is ignored, and the shear strain
magnetostriction coefficient is defined as dij = 0 (i = 3, 4, 5).

Formula (2) is simplified to:

ε =

 d11 d12 d13
d21 d22 d23
d31 d32 d33

 Hx
Hy
Hz

 (3)

Because amorphous alloys are isotropic materials, the magnetostriction coefficient can
be simplified to two: dij = d (i = j), dij = d′ (i 6= j).

The constitutive equation of stress and strain of amorphous alloy is:

σx = (a + 2b)εx + aεy + aεz
σy = aεx + (a + 2b)εy + aεz
σz = aεx + aεy + (a + 2b)εz

σxy = bεxy
σyz = bεyz
σzx = bεzx

(4)

a =
Ev

(1 + v)(1− 2v)
(5)

b =
E

2(1 + v)
(6)

where E is Young’s modulus and v is Poisson’s ratio.
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Then: 

εx = σx
E −

vσy
E −

vσz
E

εy =
σy
E −

vσx
E −

vσz
E

εz =
σz
E −

vσx
E −

vσy
E

εxy =
2(1+v)σxy

E

εyz =
2(1+v)σyz

E

εzx = 2(1+v)σzx
E

(7)

The magnetic-mechanical coupling energy of the amorphous alloy transformer core,
that is, the magneto strictive energy is:

According to Formula (7), the constitutive equation of strain and stress can be obtained:

λ′ = −vλ (8)

where λ is magnetostriction.
Substituting Formula (9) into Formula (8), this can be simplified as:

∫
Ω

σTλHdV =
E

(1 + v)(1− 2v)

∫
Ω



(1− v)εx + vεy + vεz
vεx + (1− v)εy + vεz
vεx + vεy + (1− v)εz

(1− 2v)εxy/2
(1− 2v)εyz/2
(1− 2v)εzx/2



T

λ λ′ λ′

λ′ λ λ′

λ′ λ′ λ
0 0 0
0 0 0
0 0 0


 Hx

Hy
Hz

dV (9)

∫
Ω

σTλHdV = λE
∫

Ω

(
Hxεx + Hyεy + Hzεz

)
dxyz (10)

The total energy of amorphous alloy distribution transformer core includes strain
energy, magnetic energy, magnetostrictive energy, potential energy of external force, and
potential energy of current [22]. Introducing the vector magnetic potential A, the energy
functional function can be obtained as:

I =
∫

Ω2

(
1
2 σTsHσ

)
dV +

∫
Ω1

(
1
2 lHT H

)
dV +

∫
Ω2

(
σTλH

)
dV −

∫
Γ1

fΓldV
−
∫

Ω1
JAdV−

∫
Ω2

fV ldV
(11)

where l is the deformation of the iron core; fV and f Γ are the external volume force of the
transformer core and the boundary force on the surface of the iron core, respectively; A is
the introduced magnetic vector position, satisfying B = ∇ × A; J represents the external
current density; Ω1 represents the analysis domain of the magnetic field and Ω2 represents
the analysis domain of the mechanical field.

Based on the variational principle, the energy functional is subjected to unit discretiza-
tion, and the variational problem of the functional is transformed into the problem of
finding the extreme value of the multivariate function. The conditions for taking the
extreme value of the functional I are:

∂I
∂Aij

= ∑
e

∂Ie
∂Aij

= 0
∂I

∂dij
= ∑

e

∂Ie
∂dij

= 0
i = x, y, z; j = 1, 2, · · · , n (12)

The finite element equations of the overall magnetic field-mechanical field strength
coupling can be obtained: [

S D
C M

][
A
L

]
=

[
J

fV + fΓ

]
(13)

where S and M are the magnetic field stiffness matrix and the mechanical stiffness matrix,
respectively; A is the electromagnetic vector potential; L is the deformation of the core, C is
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the contribution matrix of the magnetic field to the core deformation; D is the contribution
matrix of the core deformation to the magnetic field pair; J is the current density.

According to the electromagnetic field-mechanical field strength coupling theory, the full
coupling model is used to simulate the magnetostrictive deformation of amorphous alloys.

2.2. Actual Calculation Model

If the full coupling model is used to simulate the magnetostrictive deformation of the
amorphous alloy according to the electromagnetic field-mechanical field strength coupling
theory, the calculation or the computation power will be huge, and the calculation cost will
be increased.

Besbes et al. [23] proposed a strong and weak coupling model based on the finite
element method, and compared the two models. The analysis results show that in the
coupling analysis with small deformation variables, the weak coupling has stronger con-
vergence and has a negligible effect on the results [23]. This effect can also be seen in the
motor modeling in hybrid flux [24]. Therefore, when analyzing the influence of magne-
tostrictive properties on the deformation of amorphous alloy cores, the simplification of the
electromagnetic field-mechanical field coupling theory only considers the magnetostrictive
effect and does not consider its inverse effect.

In this paper, the indirect coupling method is used to analyze the magnetostriction
phenomenon. A mathematical model describing the material’s magnetostrictive properties
is established based on the piezomagnetic equation, and then the model is indirectly
coupled to the magnetic field finite element calculation.

When calculating the magnetostriction in this paper, the influence of applied stress is
not considered. Based on the above analysis and taking into account the isotropic properties
of amorphous alloys, Formula (1) can be simplified as:{

ε = dH
B = µH

(14)

In order to further derive the relationship between magnetostriction and magnetic field
strength, Formula (14) with ε and B is combined and the strain in the formula is changed to
magnetostriction.

λ =
d
µ
× B = k× B (15)

In the formula, k is the magnetostriction coefficient. By interpolating the relationship
between the magnetostriction of the amorphous alloy and the magnetic field strength
in Figure 2, the magnetostriction can be obtained with the help of the magnetic field
distribution in the core.

3. Modeling
3.1. Transformer

The research object of this paper is the SBH15-M 10 kV oil-immersed amorphous
alloy transformer [8,9,17], as this type is the most commonly used in China, and its outline
diagram is shown in Figure 3. The rated capacity is 315 kVA, the rated voltage of high-
voltage winding is 10 kV, and the rated voltage of low-voltage winding is 0.4 kV. Table 1
shows its nameplate data.
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Figure 3. SBH15-M 10 kV Amorphous Alloy Distribution Transformer.

Table 1. SBH15-M 10 kV amorphous distribution transformer nameplate data.

Model Number Phase Number Rated Voltage
(kV) Join Groups Rated Capacity

(kVA)
Frequency

(Hz)
Rated Current

(A) Tapping Range

SBH15-M 3 10/0.4 Dyn11 315 50 18.2/454.7 10 × (1 ± 2 × 2.5)

3.2. Core

The core of SBH15-M 10 kV amorphous alloy distribution transformer is made of
FA24S07-86 amorphous alloy produced by Antai Nanrui Amorphous Technology Co., Ltd.
The core structure has three phases, four frames, and five columns (Figure 4) and the core
structure parameters are shown in Table 2. Core material properties can be seen in Table 3.
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Table 2. Core structure parameters.

Parameters Inner Frame
Length (mm)

Inner Frame
Height (mm)

Thickness
(mm) Width (mm)

Big frame iron core 185 130 86 142.2
Small frame iron core 185 70 86 142.2
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Table 3. Core material properties.

Performance
Saturated
Magnetic

Induction (T)

Lamination
Coefficient

Resistivity
(µΩm)

Density
(g/cm3)

Young’s
Modulus

(GPa)

Poisson
Ratio

Vickers
Degree (HV)

Thickness
(m)

Size 1.56 0.86 1.3 7.18- 110 0.3 900 24

Figure 5 shows the magnetization curve of the amorphous alloy, and Figure 6 shows
the iron loss curve of the amorphous alloy. The red lines in the two figures are the data
entered by the authors, and the black lines are the curves fitted for the core material by
ANSYS according to the data entered by the user. In order to accurately simulate the loss
characteristics of amorphous alloy cores, the thickness of the material is set to 24 m, and
the lamination factor is 0.86.
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3.3. Winding

Since the core cross section of the amorphous alloy transformer is rectangular, in
order to make the structure compact, the winding interface of the amorphous alloy is also
rectangular. The high-voltage winding of the SBH15-M 10 kV amorphous distribution
transformer is a three-layer cylindrical structure, and the low-voltage winding is a foil
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winding. Since the amorphous alloy is particularly sensitive to mechanical stress, the
winding is not attached to the core during assembly. In order to prevent a major impact
on the iron core from the short circuit of the winding, there is a certain gap between the
winding and the iron core, and the gap is filled by the laminate, which can minimize the
impact of the deformation of the iron core when a short circuit occurs.

The connection group of the winding is Dyn11. As shown in Figure 7, the third
harmonic can form a loop in the high-voltage side delta winding, so that there is no third
harmonic voltage component in the secondary side voltage. The harmonic causes extra AC
loss [25] and therefore harmonics should be minimized.
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Winding parameters are shown in Table 4.

Table 4. SBH15-M 10 kV amorphous distribution transformer winding parameters.

Winding High-Voltage Winding Low-Voltage Winding

Turns 818 18
Sectional area (mm2) 3.94 152

Resistance (Ω) 5.2399 0.002614
Rated current (A) 18.2 454.7

Material red copper red copper
Winding connection mode D Y

Sinusoidal voltage (kV) 10 0.4

3.4. Meshing

In this paper, a meshing method combining manual and adaptive methods is used.
A manual meshing method is used for the core and windings, and only the maximum
distance of the meshing unit is set (37.42 mm for core and 41.2 mm for winding). The
meshing result is shown in Figure 8.
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3.5. Electromagnetic-Circuit Coupling

According to the connection group of transformers, the Dyn11 type is adopted, and a
triangular connection method is adopted at the power supply side. The terminal on the
power supply side is set through Maxwell field coupling and connected to the transformer
winding in the simulation model during editing. The primary resistance in the excitation
circuit is 5.2399 Ω. To prevent the software from iteration error by using a Norton equivalent
circuit in the calculation, a very small resistance of 1 mΩ is added to the power supply. The
excitation circuit model corresponding to the simulation model is shown in Figure 9.
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Figure 9. No-load driving circuit.

As secondary side, active power output by three-phase transformer:

P = Pa + Pb + Pc (16)

Secondary phase voltage:

U = 231V =Ua = Ub = Uc (17)

The phase current is Ia, Ib, Ic. Then active power per phase:
Pa = Ua Ia cos β
Pb = Ub Ib cos β
Pc = Uc Ic cos β

(18)

If circuit is a pure resistive load, then cosβ = 1.
Load factor is:

η =
P

315
× 100% (19)

1. Normal load Considering that amorphous alloy transformers are mostly used in the
distribution network, the load rate is generally 30~60%. In this study, a 1 Ω load
being added (η = 50%), the transformer windings and the load are connected to the
three-phase power supply.

2. Load imbalance Phase A and Phase B add 1 Ω load, and Phase C adds 0.7 Ω load.
Pa = 53.3 kVA, Pb = 53.3 kVA, Pc = 76.2 kVA. With the gradual decrease of phase C
resistance, phase C active power gradually increases, and the load becomes more
unbalanced. When the resistance drops to 0, a short circuit occurs.

3. Overload 0.3 Ω loads have been added to simulate the overload situation of the
transformer during operation (η = 169%).
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4. Short circuit Setting the three-phase loads to 1 Ω, 1 × 10−9 Ω, and 1 Ω, respectively, a
single-phase short circuit occurs. The very small resistance of phase B is equivalent to
short-circuit.

4. Verification of Transformer Model

In order to verify the correctness of the finite element model of amorphous alloy
transformers established in this paper, the simulation data are compared with experimental
data. No-load current and no-load loss are selected for verification, so that the electro-
magnetic characteristics and the loss characteristics of the transformer can be verified.
Since the secondary winding of the transformer is unloaded, the current of the secondary
winding can be set to zero, which not only simulates the actual unloaded condition of the
transformer accurately, but also makes the excitation circuit simpler.

4.1. No-Load Current

Circuit excitation (Figure 9) is connected with transformer model to realize joint
simulation of electromagnetic field and circuit. The simulated no-load current is shown in
Figure 10.
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From the simulation results, it can be seen that the maximum excitation phase current
of the transformer can reach 41.844 A, and the peak value of rated phase current on
the primary side of the 10 kV amorphous alloy distribution transformer of SBH15-M
type is 14.681 A. The maximum excitation phase current can reach 2.81 times the rated
current, which is consistent with the fact that when the secondary winding is unloaded,
the primary magnetic potential will have a large amplitude at the beginning. At this time,
the amorphous alloy core is in the saturation region, the permeability is very small, and
there will be a high unloaded current. After a period of time, the no-load current tends to
stabilize, taking phase B current, as shown in Figure 11. It can be seen that the amplitude
of the transformer tends to be stable after a period of time, but the current waveform is not
completely sine wave, which is due to the hysteresis characteristic of the transformer core.
When the transformer is unloaded, the current is almost completely used for excitation,
and the influence of hysteresis characteristic will appear, causing current fluctuation. The
peak value of no-load phase current at steady state is 82.295 mA, the percentage of no-load
current is 82.295/14.681.
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4.2. No-Load Loss

Circuit excitation (Figure 9) is connected with transformer model to realize joint
simulation of circuit and electromagnetic field. The simulated no-load loss is shown in
Figure 12.
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From the simulation results, it can be seen that the average no-load loss of the trans-
former is 176.2439 W when it is stable, and the actual product field test no-load loss data are
170 W, with a difference of 3.67%, which again shows good agreement with the simulation
(provided by Shandong Zhixin Intelligent Equipment Co. Ltd.).

The finite element model of the amorphous alloy transformer established in Section 3
has a no-load current and no-load loss which are similar to the field test data of the product
when the secondary winding is in no-load operation, and the data error is relatively small.
Therefore, it can be verified that the model established in this paper is practical and it is
feasible to ignore the influence of transformer oil in electromagnetic field simulation.

The paper provides a means to minimize the core loss for high power transformers
and the associated harmonics studied in the core analysis. It notes the application for
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rail systems and other power distribution. It is expected that using the proposed study,
electromagnetic emission and loss can be improved.

5. Simulation Analysis of Iron Core Electromagnetic Field and Strain under Different
Working Conditions
5.1. Normal Load

The excitation circuit for electromagnetic field simulation is shown in Figure 13, and
the magnetic field distribution in the core of the amorphous alloy transformer during
normal operation can be obtained [16].
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Figure 13. Excitation circuit during normal operation.

Figure 13 shows the magnetic induction intensity vector distribution when the three-
phase magnetic fluxes of A, B, and C reach their maximums.

It can be seen from Figure 14 that the three-phase magnetic flux lags by 2/3 when it
reaches the maximum. The magnetic induction intensity of the transformer core column
and iron yoke is about 1.34 T, basically working in the linear working area of the magneti-
zation curve, which is the normal working range of the transformer. The magnetic field
simulation results show that the transformer’s magnetic field changes sinusoidally under
the excitation of a three-phase voltage source. The test maximum magnetic induction inten-
sity of the actual product is 1.348 T (provided by Shandong Zhixin Intelligent Equipment
Co. Ltd.). Thus, this model can accurately simulate the magnetic field distribution of the
SBH15-M 10 kV amorphous alloy distribution transformer.

Figure 15 shows the strain cloud diagram of the amorphous alloy core caused by
magnetostriction when the three-phase magnetic flux reaches the maximum in the normal
operation of the amorphous alloy transformer.

It can be seen that the strain caused by magnetostriction is mainly concentrated at the
corner where the iron core column and the iron yoke intersect, which is consistent with the
distribution of the magnetic induction intensity in Figure 15, and the maximum strain is
2.3376 × 10−5 m/m.
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Figure 15. Strain of transformer core caused by magnetostriction during normal operation.
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5.2. Load Imbalance

The excitation circuit for electromagnetic field simulation is shown in Figure 16.

Energies 2021, 14, x FOR PEER REVIEW 16 of 24 
 

 

 
(c) ωt = 11π/6 

Figure 15. Strain of transformer core caused by magnetostriction during normal operation. 

It can be seen that the strain caused by magnetostriction is mainly concentrated at the 
corner where the iron core column and the iron yoke intersect, which is consistent with 
the distribution of the magnetic induction intensity in Figure 15, and the maximum strain 
is 2.3376 × 10−5 m/m. 

5.2. Load Imbalance 
The excitation circuit for electromagnetic field simulation is shown in Figure 16. 

 
Figure 16. Excitation circuit during load imbalance. 

The magnetic field distribution of the transformer core model is shown in Figure 17 
when the load is unbalanced. 

 
(a) ωt = π/2 

0

0

LA1

LB1

LC1

LA2

LB2

LC2

+ 8164.97V
LabelID=V8

+ 8164.97V
LabelID=V9

+ 8164.97V
LabelID=V10

5ohm
R11

5ohm
R12

5ohm
R13

1ohm
R14

1ohm
R15

0.7ohm
R16

1mOhm
R17

1mOhm
R18

1mOhm
R19

Figure 16. Excitation circuit during load imbalance.

The magnetic field distribution of the transformer core model is shown in Figure 17
when the load is unbalanced.

Energies 2021, 14, x FOR PEER REVIEW 16 of 24 
 

 

 
(c) ωt = 11π/6 

Figure 15. Strain of transformer core caused by magnetostriction during normal operation. 

It can be seen that the strain caused by magnetostriction is mainly concentrated at the 
corner where the iron core column and the iron yoke intersect, which is consistent with 
the distribution of the magnetic induction intensity in Figure 15, and the maximum strain 
is 2.3376 × 10−5 m/m. 

5.2. Load Imbalance 
The excitation circuit for electromagnetic field simulation is shown in Figure 16. 

 
Figure 16. Excitation circuit during load imbalance. 

The magnetic field distribution of the transformer core model is shown in Figure 17 
when the load is unbalanced. 

 
(a) ωt = π/2 

0

0

LA1

LB1

LC1

LA2

LB2

LC2

+ 8164.97V
LabelID=V8

+ 8164.97V
LabelID=V9

+ 8164.97V
LabelID=V10

5ohm
R11

5ohm
R12

5ohm
R13

1ohm
R14

1ohm
R15

0.7ohm
R16

1mOhm
R17

1mOhm
R18

1mOhm
R19

Energies 2021, 14, x FOR PEER REVIEW 17 of 24 
 

 

 
(b) ωt = 7π/6 

 
(c) ωt = 11π/6 

Figure 17. Magnetic induction intensity vector at different moments during load imbalance. 

Figure 18 shows the strain cloud diagram of the amorphous alloy core caused by 
magnetostriction when the load is unbalanced. 

 
(a) ωt = π/2 

 
(b) ωt = 7π/6 

 
(c) ωt = 11π/6 

Figure 18. Strain of transformer core caused by magnetostriction during load imbalance. 

Figure 17. Magnetic induction intensity vector at different moments during load imbalance.



Energies 2021, 14, 164 16 of 23

Figure 18 shows the strain cloud diagram of the amorphous alloy core caused by
magnetostriction when the load is unbalanced.
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Further reducing the resistance of the C, the stress situation in a more unbalanced
state is explored as shown in Table 5.

Table 5. Maximum values of strain in different unbalanced states.

Phase C (Ω) 0.6 0.5 0.4 0.3 0.2 0.1 10−9

maximum values of
strain at 11π/6 (10−5) 2.78 2.81 2.85 2.90 2.93 2.95 2.99

As the load becomes more unbalanced, the strain of the iron core gradually increases.
When a short circuit occurs, the strain of the iron core reaches the maximum.

5.3. Overload

The excitation circuit is shown in Figure 19.
The magnetic induction intensity vector distribution of the transformer core model

when there is overload is shown in Figure 20.
Figure 21 shows the strain cloud diagram of overload of transformer core caused by

magnetostriction in the overload situation.
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Figure 19. Excitation circuit during overload.
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Figure 21. Strain of transformer core caused by magnetostriction during overload.

We reduce the resistance of the three phases at the same time, and simulate the iron
core stress under different overload conditions as shown in Table 6.

Table 6. Maximum values of strain in different overload states.

η 50 70 90 110 130 160

maximum values of strain
at 11π/6 × (10−5) 2.19 2.29 2.42 2.66 2.85 3.02

Under normal circumstances, as the load increases, the stress of the iron core increases.
When the transformer is overloaded, the core stress increases faster. The maximum value
is higher than the core stress during C-phase short circuit.

5.4. Short Circuit

Figure 22 shows the excitation circuit.
The magnetic induction intensity vector distribution of the transformer core model

when a short circuit occurs on the secondary side is shown in Figure 23.
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Figure 23. Magnetic induction intensity vector at different moments during short circuit.

Figure 24 shows the strain cloud diagram of overload of transformer core caused by
magnetostriction when a short circuit occurs. The maximum value of strain at 11π/6 is
2.76 × 10−5, which is less than C-phase short circuit and overload situation. The core strain
caused by the side-phase short circuit is larger than the middle-phase short circuit.
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Figures 25 and 26 show the maximum values of magnetic induction and strain of
transformer core, respectively, in the four operating modes (Section 3.5) when the three-
phase magnetic fluxes of A, B, and C reach their maximums.
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It can be seen from Figures 25 and 26 that under load imbalance, overload, and short-
circuit conditions, the magnetic induction intensity of the transformer core and the strain
caused by magnetostriction both increase. The biggest influence on the iron core is the
overload state, and the average stress is 49.37% higher than that under normal operation.
In the short-circuit state, the average stress increased by 36.93%. Load imbalance has little
effect on the transformer core strain.

6. Discussion

In this paper, the physical model of the SBH15-M 10 kV amorphous alloy distribution
transformer is established, the model being reasonably divided, and the no-load current
simulation and no-load loss simulation verifying the correctness of the model. A mathe-
matical model of the electromagnetic field-mechanical field coupling of the amorphous
alloy core is established, and the electromagnetic field distribution and the strain under the
influence of the magnetostrictive characteristics of the transformer under different working
conditions are analyzed.

When a transformer or core with a different structure or characteristics is used, the
force result will change, but the conclusion will not be affected, because the electromagnetic
field law applying to the core is the same under the same working conditions.

The results of the model provide a certain basis and reference for calculating the force
of the iron core under different working conditions, optimizing transformer design, and
providing technical support for the integration of amorphous alloy transformers.

However, the simulation model in this paper was established after proper simplifica-
tion. Only the simulation research of amorphous alloy transformer cores under different
working conditions was carried out, and it was not strongly combined with the experiment.
In addition, this paper does not analyze the debris generated under stress. Further research
can be carried out on the following aspects:

1. Combining the simulation analysis results with the experiment and testing the stress
of the iron core under different working conditions;

2. Calculating the amount of amorphous debris generated under stress by simulation;
3. Studying the flow trajectory and distribution of the amorphous debris in the trans-

former oil after generation;
4. Studying detailed strain analysis under different overloads and load imbalance, and

its effect during high-speed rail operation.

7. Conclusions

The work done and the conclusions obtained are as follows:
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1. A strong coupling theory of electromagnetic field and mechanical field for magne-
tostriction of amorphous alloys and an actual calculation model of indirect coupling
method using interpolation are proposed.

2. The finite element model of the amorphous alloy transformer established has no-
load current and no-load loss, similar to the field test data of the product when the
secondary winding is in no-load operation, and the data error is relatively small.

3. The normal operation of amorphous alloy transformers is simulated, and the charac-
teristics of electric field, magnetic field, and eddy current field are analyzed. During
normal operation, the electromagnetic characteristics of the transformer conform to
the actual situation, which verifies the correctness of the simulation.

4. As the load becomes more unbalanced, the strain of the iron core gradually increases.
When a short circuit occurs, the strain of the iron core reaches the maximum. Under
normal circumstances, as the load increases, the stress of the iron core increases. When
the transformer is overloaded, the core stress increases faster and the maximum value
is higher than the core stress during C-phase short circuit.
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