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Abstract 
In this paper, we investigate the thermal and turbulent behaviour of incom-
pressible Newtonian flow, by numerical simulation, combining two physical 
phenomena, namely, the heat-transfer by mixed convection and the onset of 
turbulence, around different isothermal complex geometries, using the im-
mersed boundary method coupled with the virtual physical model, in order to 
model the presence of the isothermal body. Boundary conditions of the Di-
richlet and Neumann type are implemented. For turbulence modelling, the 
Smagorinsky and Spalart-Allmaras models are used, for Reynolds and Rich-
ardson numbers ranging up to 5000 and 5, respectively. This work confirms 
that, downstream of the immersed body, the recirculation: 1) increases with 
the increase in the number of Reynolds, keeping the number of Richardson 
constant, and 2) decreases with the increase in the number of Richardson, 
preserving the number of Reynolds constant. It also confirms the generation 
of thermal plumes moving upwards. For Reynolds numbers in the order of a 
few hundred and Richardson numbers around 5, it is observed, for tandem 
cylinders, the vortex wake being established in the downstream region. Inte-
ractions within the vortex wake, with the shear layer separated from the 
downstream cylinder, create two vortices near the downstream cylinder. The 
shear layer separating from the upstream cylinder creates a vortex behind the 
downstream cylinder. 
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1. Introduction 

Many physical phenomena in fluid mechanics can be described by mathematical 
modelling, using a set of partial differential equations, often non-linear, known 
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as the laws of conservation of fluid mechanics. They are: conservation of mo-
mentum, conservation of mass (continuity) and conservation of energy. These 
laws model the dynamics of the forces acting on the fluid with the so-called 
Navier-Stokes equations, as well as the energy exchanges that occur in the dif-
ferent regions of the flow. 

Traditional methods of domain discretization present some difficulties in 
terms of computational implementation and CPU resources, requiring succes-
sive remeshing processes (construction of new meshes) for each new iterative 
process, in addition to the need to introduce a new generalized coordinate sys-
tem. Thus, considering these physical and mathematical problems, a computa-
tional code was developed for the immersed boundary methodology for the 
thermofluid dynamics interaction. Next, we review some of the most significant 
works in the area of immersed boundary method [1], considering the heat-transfer 
by different convection processes. These references aim the preparation of the 
theoretical foundation of the methodology used in this work. 

Among the predecessor works involving the thermal part, we mention Badr 
and Dennis [2], and Badr et al. [3]. These works do not present the immersed 
boundary method, but they are a precursor concerning the flow around a rotat-
ing circular cylinder involving forced convection, being the theoretical basis 
used in other works for the implementation of the thermal part ([4] [5] [6]). In 
summary, the experimental and numerical works of Badr and Dennis consider 
the problem of laminar flow with heat-transfer by forced convection with a ro-
tating circular cylinder around its own axis, initially with the Reynolds number 
equal to 100, at a specific rotation rate [ ]0.5,3α ∈ . Meanwhile, the second work 
uses the Reynolds number range varying between 3 410 10Re≤ ≤ , with specific 
rotation rate equal to 4α = . In these both works, the cylinder is located in a 
uniform flow. Their findings report that the temperature fields are strongly in-
fluenced by the rotation of the cylinder and that the heat-transfer coefficient 
tends to decrease, as the rotation of the cylinder increases. An attribution of the 
presence of a layer of rotating fluid around the cylinder is also verified, being 
separated from the main flow of the flow. Also, their results demonstrate con-
vergence and numerical stability compared to others available works (see, Shar-
ma et al. [6] and Lai and Peskin [7]). 

Santos [8] presents the immersed boundary method with a virtual physical 
model, based on the equations of conservation of momentum, mass and energy, 
to model the physics of incompressible laminar flow. The motivation was to 
continue the work developed by Silva et al. [9], seeking to contribute to the res-
olution of engineering problems of flow around obstacles, implementing a 
computational code destined to present the heating in a rotating cylinder subject 
to forced convection; in other words, for the simulation of a flow around 
non-stationary cylinders, rotating with different values for the specific rotation 
varying in the interval [ ]0,4 , and the Reynolds number in the interval 
[ ]47,250 . The vorticity, temperature and pressure fields are obtained, as well as 
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the drag, lift, pressure coefficients, Strouhal (which calculates the vortex shed-
ding frequency) and Nusselt numbers. The results are compared based on the 
experimental work of Carvalho [10] and other numerical works. 

Ashrafizadeh and Hosseinjani [11] present an extension of the immersed 
boundary method for the analysis of the natural and mixed convection process, 
for the case of two cylinders side by side with rotation velocity alternated with 
heating, both in a cold and square cavity containing air, with Prandtl number 
(Pr) equal to 0.7. The variables in this study involve the rotation rates, α , for 
different numbers of Rayleigh number ( { }4 5 610 ,10 ,10Ra∈ ), and Richardson 
number ( { }1,2, ,100Ri∈  ). Cases of pure natural convection are also consi-
dered. Isothermal lines (or isotherms), streamlines, Nusselt numbers (Nu), local 
and average around the solid boundary, is studied and presented in each case. 
An extension of the immersed boundary method is used for the boundary con-
ditions and in the resolution of the governing equations, for a two-dimensional 
flow, using an orthogonal Cartesian mesh. 

There are several flows inside the square cavity, called ascending, descending 
and circulatory. It is verified the location of ascending and descending plumes 
that are affected by the rotation of the cylinders. The authors find that the aver-
age Nusselt numbers on the side walls of the immersed body are higher than on 
the upper and lower surfaces. These extreme points depend on both the number 
of Richardson (Ri), and the number of Rayleigh (Ra), as well as, the specific ro-
tation. With respect to thermal convection, the rotation shows a smaller effect 
compared to the effects of Rayleigh and Richardson number. In the analysis for 

610Re = , the flow patterns became unstable and oscillating, resulting from the 
different rotation rates and the number of Richardson. It was also verified the 
existence of a mixed convection regime, where for Richardson numbers greater 
than 1, there is a decrease in the heat transfer rate in comparison with the natu-
ral convection regime for the relevant Rayleigh number. The results showed a 
good numerical approximation with others available in the literature. For the 
case of forced convection, considering an isothermal body with flow around a 
square cylinder, the work developed by Santos et al. [12] presents more details. 

The contributions presented in this work, in contrast to some studies, such as 
Silva et al. [9], and Ashrafizadeh and Hosseinjani [11], are the two-dimensional 
simulations of flows, with the Reynolds number between 1 and 5000, associated 
with the heat transfer process by mixed convection. Heat transfer is carried out 
around bodies, immersed in an incompressible Newtonian fluid, with constant 
temperature on its surfaces. These contributions involved the development of a 
computational code that brings together both physical phenomena that, in dif-
ferent works, including those mentioned above, are done in a segregated way. 
The methodology, which we propose here, performs the calculation of the force 
field over a sequence of Lagrangian points, which represent the interface, using 
the Navier-Stokes and heat equations. Two turbulence models were imple-
mented, namely, the Smagorinsky sub-mesh model and the Spalart-Allmaras 
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model with heat transfer, both in the immersed boundary methodology coupled 
with the virtual physical model. The term “virtual” refers to the non-slip condi-
tions that must be modelled without the direct imposition of velocity on the in-
terface (for more details, see [12]). Flow simulations were carried out around an 
isothermal square cylinder and around tandem and angulated isothermal circu-
lar cylinders. It was found that the simulations presented numerical convergence 
compared with published results. 

This paper is organized as follows. In Section 2, we introduce the mathemati-
cal methodology. The Section 3 is devoted to the URANS (unsteady Rey-
nolds-averaged Navier-Stokes), Smagorinsky and Spalart-Allmaras turbulence 
models. Section 4 details the numerical schemes necessary for the spatial discre-
tization of the various differential operators, and the numerical algorithms for 
the temporal evolution of the different fields involved. In Section 5, we report 
the results, followed by the conclusions. 

2. Mathematical Methodology 
2.1. Mathematical Formulation for the Fluid Motion and  

Temperature 

Consider an incompressible and two-dimensional flow for a Newtonian fluid 
with a domain Ω  and border b∂Ω , with the surface of the immersed body 
being heated with isothermal temperature (or constant temperature on the sur-
face of the immersed body), modelled through discretized (Lagrangian) points. 
Since the effect of the frontier is taken into account through the introduction of 
a forcing term in the momentum and heat equations, the description of heat 
transfer by mixed convection in the immersed boundary methodology is written 
by (Pope [13]): 

0,∇⋅ =u                              (1) 

( ) 2
0 ,p

t
ρ µ∂ + ⋅∇ = −∇ + ∇ + ∂ 

u u u u f                  (2) 

( ) ( )( )2
0 0 1 ,p T T

t
ρ µ ρ β ∞

∂ + ⋅∇ = −∇ + ∇ + − − + ∂ 

u u u u g f         (3) 

( ) 2
0 ,p

Tc T k T q
t

ρ ∂ + ⋅∇ = ∇ + ∂ 
u                    (4) 

where Equations (1), (2) and (4) are used in forced convection, while Equations 
(1), (3) and (4) are for natural convection; in Equation (3), the Boussinesq ap-
proximation is used. The fields u , p, T and the scalar T∞  denote the incom-
pressible velocity vector, the pressure, the temperature, and the reference tem-
perature, respectively. In (2)-(4), the quantities 0ρ , µ , β , k and pc  are, re-
spectively, the fluid density at temperature T T∞= , the viscosity, the thermal diffu-
sivity, the thermal expansion coefficient, and the specific heat at constant pres-
sure; g  is the downward gravitational acceleration; the term ( )0 T Tρ β ∞− g  
accounts for the effects of the fluid temperature on the fluid flow. 

https://doi.org/10.4236/am.2021.122008


R. D. C. Santos, S. M. A. Gama 
 

 

DOI: 10.4236/am.2021.122008 95 Applied Mathematics 
 

The force f  appearing in the both Equations (2) and (3) is the Euler force 
field, being intended to model the interface immersed in the flow  

( ) ( ) ( ), , d ,
b

k k kt F t δ
∂Ω

= −∫f x X x X X  

where ( ),kF tX  is the Lagrangian force density, calculated on the interface 
points x  and kX  which are the position vectors of the Eulerian and Lagran-
gian points, respectively. The presence of the Dirac delta function, ( )kδ −x X , 
represents the interaction between the fluid and the immersed boundary. Simi-
larly, the thermal source, represented by q, is added to Equation (4), being re-
sponsible for making the flow feel the presence of the heated solid interface; in 
other words, it is the heating source at the Lagrangian point on the immersed 
border, being expressed by  

( ) ( ) ( ), , d .
b

k k kq t Q t δ
∂Ω

= −∫x X x X X  

Here, ( ),kQ tX  is the heat flux on the Lagrangean point kX . 

2.2. Dimensionless Equations for Mixed Convection  

Equations (1)-(4) in dimensionaless form assume the writing (Pope [13])  

0,∇⋅ =U                             (5) 

( ) ( )21 , d ,
b

t k kD p F t
Re

δ
∂Ω

 = −∇ + ∇ + − 
  ∫ kU U X x X X         (6) 

( ) ( )2
2

1 , d ,
b

t k k k
GrD p F t

Re Re
δ

∂Ω

   = −∇ + ∇ + Θ + −   
    ∫U U j X x X X     (7) 

( ) ( )21 , d ,
b

t k k kD Q t
Pe

δ
∂Ω

 Θ = ∇ Θ+ − 
  ∫ X x X X            (8) 

where ( )t tD • = ∂ • + ⋅∇ •U  is the material derivative, U , p and Θ  are the 
dimensionless velocity, pressure and temperature fields, respectively, and 

( )Re u D ν∞=  is the Reynolds number ( u∞  is a reference flow velocity and D is 
a characteristic linear dimension of the fluid). 

In this work, we will also refer to the number of Richardson  

( )
2 .cg T T D

Ri
u

β ∞

∞

−
=  

which expresses the ratio between natural convection and forced convection (g is 
the gravitational acceleration, β  is the thermal expansion coefficient, cT  is 
the boundary/wall temperature, and T∞  is a reference temperature). 

2.3. The Indicator Function 

The indicator function, represented by ( ), tx , aims to signal and identify the 
position of the immersed body. This function was proposed by Unverdi and 
Tryggvason [14], being an interface monitoring method, where the function is 
calculated in the whole domain or part of it. In this work, the indicator function 
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is defined by  

( ) ( )2 , , ,t G t∇ = ∇⋅x x                        (9) 

being ( ),G tx  given by  

( ) ( ) ( ) ( )
1

, ,
N

ij k k k
k

G t D s
=

= − ∆∑x x X n X X  

where N is the number of Lagrangian points, ( )ij kD −x X  is an interpola-
tion/distribution function (to be defined for convenience), ( )kn X  is the vector 
normal to the interface at the Lagrangian point kX , and ( )ks∆ X  is the dis-
tance between two consecutive Lagrangian points. After solving the Poisson Eq-
uation (9), we obtained the indicator function, ( ),x t , for the whole calcula-
tion domain. To solve the linear system obtained by the discretization of Equa-
tion (9), we used the modified strongly implicit procedure (MSIP), developed by 
Schneider and Zedan [15]. 

2.4. The Virtual Physical Model 

The virtual physical model, developed by Silva et al. [9], is a methodology for 
calculating the forces that act on the discrete points of a given border, also called 
the interfacial force or Lagrangian force. The characterization of the Lagrangian 
force represents the difference between the various immersed boundary metho-
dologies. In this work, only rigid boundaries were treated (no elasticity), but the 
model can be used, or extended, to other types of interface (for example, elastic 
boundaries, boundaries between different fluids, etc). The virtual physical model 
uses the diffusion of interfacial forces on the interior of the flow. Thus, the Eule-
rian force field is applied in the vicinity of the immersed boundary, and its value 
is minimized as the distance to the interface increases. This model dynamically 
assesses not only the force that the fluid exerts on the solid surface immersed in 
the flow, but takes into account the thermal exchange between them. 

The Lagrangian force, ( ),k tF X , and the thermal source, ( ),kQ tX , are eva-
luated separately. In other words, for the Lagrangian force, a balance of mo-
mentum was carried out on a fluid particle that is close to the fluid-solid inter-
face, while, for the thermal part, the dimensionless heat Equation (8) was ap-
plied, which shows the interaction between the particle-fluid and the interface, 
as shown in Figure 1. Thus, the density of the interfacial force can be evaluated 
using the principle of conservation of momentum and energy. Therefore, taking 
the particle-fluid, as illustrated in Figure 1, crossing an arbitrary immersed in-
terface, we obtain  

( ) ( ) ( ) ( )

( ) ( )2

,
, , ,

, , .

i
a

p v

k
k k k

k k

t
t t t

t

p t t

ρ ρ

µ

∂
 = + ∇  ∂

+∇ − ∇

FF

F F

U X
F X U X U X

X U X





 

           (10) 

Here, from left to right, we have the acceleration force aF , the inertial force  
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Figure 1. Control volume illustration lo-
cated in a Lagrangian fluid particle. 

 

iF , the pressure force pF , and the viscous force vF , respectively. In Equation 
(10), the terms aF , iF , pF  and vF  are analysed at the Lagrangian mesh in-
terface itself, considering the pressure and velocity fields, where, simultaneously, 
the calculation of these forces is performed in Eulerian mesh, through Lagrange 
interpolation. 

Similarly, the calculation of the thermal source in the particle-fluid in contact 
with the interface, an energy balance is performed as follows  

( ) ( ) ( ) ( ) ( )2, 1, , , , ,k
k k k k

t
Q t t t t

t Pe
∂Θ   = +∇ Θ − ∇ Θ  ∂  

X
X U X X X     (11) 

where, from left to right, we have the local temperature variation rate, the ther-
mal dissipation rate due to convection, and the diffusive thermal energy trans-
port rate. 

2.5. Calculation of Velocity, Pressure and Temperature 
2.5.1. Auxiliary Point Allocation Process 
The first step is to arbitrate an initial Lagrangian point for calculating the inter-
facial force, ( ),k tF X . Then, two mutually orthogonal auxiliary lines are drawn 
on this point, one of which is parallel to one of the Eulerian axes. Two auxiliary 
points are marked on each of the lines, on the outside of the solid body, at a dis-
tance x∆  and 2 x∆  of the Lagrangian point considered. This distance is ne-
cessary in order to prevent two auxiliary points from being allocated within the 
same Eulerian cell. The meshes that are more than 2 x∆  distance away from the 
Lagrangian point, do not contribute to the interpolation. The internal and ex-
ternal regions of the solid body were identified with the aid of the normal unita-
ry vector on the surface, which has its positive direction facing outside the im-
mersed body. The auxiliary points are always located in the region of interest of 
the flow. Thus, the velocity, the pressure and the temperature at these points, in 
general, are not known, but they can be obtained from the neighbouring cells by 
interpolation. 

Therefore, the velocity at the Lagrangian and auxiliary points is written  
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( ) ( ) ( ),k i k i
i

D x x= −∑U X X U                  (12) 

where ( )kU X  are the Lagrangian velocities, calculated at the auxiliary points 
and at the point kX  by the interpolation of the Eulerian velocities. 

The general equations for obtaining the pressure and temperature at the aux-
iliary points, or at the interface, and at the Lagrangian point, in x and y direc-
tions, are given respectively by  

( ) ( ) ( )

( ) ( ) ( )

k i i
i

k i i
i

p D x p x

D x x

 = −


Θ = − Θ


∑

∑

k

k

X X

X X
 

and  

( ) ( ) ( )

( ) ( ) ( )

k i k i
i

k i k i
i

p D y p y

D x y

 = −


Θ = − Θ


∑

∑

Y Y

Y Y
 

where ( )kp X  and ( )kp Y  are the pressure values at the interface, or at aux-
iliary points, and ( )ip x  and ( )ip y  are the pressure values at the nearest Eu-
lerian mesh points, in x and y directions, respectively. Similarly, ( )kΘ X  are 
the temperatures at the auxiliary points, and ( )ixΘ  are the temperatures at the 
nearest Eulerian points. Since this work deals with two-dimensional flows, the 
transverse direction was disregarded. 

The distribution/interpolation function, ( )D ⋅ , adopted in this work, is used 
for the interpolation of variables in the Eulerian mesh. Equation (13) shows the 
specific mass calculation process in the kX  position  

( ) ( ) ( ), ,
1 1

, , d d ,
yx nn

k i j k i j
i j

t D x x t x yρ ρ
= =

= −∑∑X X             (13) 

where xn  and yn  represent the totality of cells in the x and y directions, re-
spectively. Concerning the computational cost involved, it was reduced when 
considering non-zero ( )D ⋅  for distances less than 2 x∆  from the interpolation 
point, which is also valid for the ( ),k tF X  distribution. Therefore, this work 
has considered (Peskin [16] [17], Juric [18]):  

( )
( ) ( )

2
1

,
N x y

k
m

g r g r
D

h=

− =∏x X  

with  

( )
( )

( )
1

1

0 1
0.5 2 1 2
0 2

g r r
g r g r r

r

≤ <
= − − ≤ <
 ≥

 

where ( ) ( )2
1

1 3 2 1 4 4
8

g r r r r= − + − , being r the radius of influence of the  

distribution function, given here by ( )1
kh x x− −  or ( )1

kh y y− − . The quantity 
h x y= ∆ = ∆ , is the size of the Eulerian mesh and ( ),x y  the coordinates of an 
Eulerian point in the domain. According to the definition of ( )g ⋅ , the interpo-
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lation covers a distance of, at most, two meshes from the point considered, since 
the value of the function ( )D ⋅  is cancelled for greater distances. This can be 
explained because the region of coverage of the function ( )D ⋅  must be finite in 
order to keep the computational cost reasonable. Without this observation, a 
bunch of points would contribute, causing a high computational cost. This dis-
tribution function is of Gaussian type. It is important to note that ( )D ⋅  also al-
lows the transfer of quantities between the Eulerian and Lagrangian meshes. 
This function acts as an interpolation function, distributing the Lagrangian force 
outside the interface. A convenient procedure to tune the interpolation region is 
to allocate a square centred on each auxiliary point (green dotted box), 
represented by dot lines in Figure 2, to obtain the velocity, pressure and tem-
perature. 

Thus, only the points inside this “dotted box” in Figure 2 are important in the 
calculation process, thereby reducing the computational cost, because for Eule-
rian points very distant from the analysed point kX , the function ( )D ⋅  takes 
the value zero. The use of internal points of the interface during the interpola-
tion procedure (see Figure 3) is physically coherent, since the internal flow is 
also solved by the Navier-Stokes equations. 
 

 
Figure 2. Illustration of the velocity interpolation procedure at auxiliary point 3: (a) in 
x-direction, and (b) in y-direction. 
 

 
Figure 3. Illustration of auxiliary points in the interpolation scheme for the calculation of 
Lagrangian forces. 
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After the interpolation of velocity, pressure and temperature at the interface at 
auxiliary points, the derivatives at the Lagrangian source terms, in (10) and (11), 
are determined using Lagrange polynomials of first and second order. 

2.5.2. Calculation of Lagrangian Force Distribution and Thermal Source 
After calculating the terms of Equation (10) and Equation (11), and obtaining 
the values for ( ),k tF X  and ( ),kQ tX , then the Eulerian terms are calculated 
for f  and q. Figure 4 illustrates the distribution of interfacial force and ther-
mal field. 

The calculation of f  and q is done by  

( ) ( ) ( )

( ) ( ) ( )=

i i k k
i

i i k k
i

D s

q D Q s

 = − ∆



− ∆


∑

∑

f x x X F X

x x X X
                  (14) 

( ) ( ) ( )

( ) ( ) ( )

i i k k
i

i i k k
i

D s

q D Q s

 = − ∆



= − ∆


∑

∑

f y y Y F Y

y y Y Y
                   (15) 

where ( )if x  and ( )if y  are the forces at each Eulerian node, while ( )kF X  
and ( )kQ X  are the force in each Lagrangian node. In (14)-(15), (i) ( )iq x  
and ( )if y  are the thermal sources for each Eulerian node, and (ii) ( )kQ X  
and ( )kQ Y  are the thermal source for each Eulerian node. Thus, there is a 
thermal field of Eulerian forces acting on the Lagrangian grid, both acting to-
gether with the fluid particles in the vicinity of the border. The remaining terms 
are the average distances between two adjacent Lagrangian points, represented 
by s∆ , and D is the distribution function. 

In this work, the boundary conditions, for the Navier-Stokes equation, are Di-
richlet and Neumann conditions (Dirichlet condition defines the values at the  
 

 
Figure 4. Distribution of the interfacial force, ( )if x  and the 

thermal force, ( )iq x  at each Lagrangian node in the body 

immersed in the flow, resulting in a heated interfacial force field, 
allowing the particle-fluid to recognize the heated body. 
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border; Neumann condition fixes the values for the derivatives at the border). 
Dirichlet and Neumann conditions are used to specify the pressure, temperature 
and components of the velocity vector at the boundaries of the calculation do-
main. 

3. Mathematical Modelling of Turbulence 

Among the methodologies available for numerical resolution of turbulence 
models, the most common is the direct numerical simulation (DNS), which pro-
vides full resolution of the equations (all scales of the flow are solved), requiring, 
in general, high temporal and spatial resolutions. As a consequence, extremely 
refined meshes must be used, so that all scales present in the flow can be proper-
ly calculated. For this reason, studies involving DNS, in general, are restricted to 
very simple generic configurations and to flows involving low or moderate Rey-
nolds numbers. 

3.1. The URANS Formulation for Turbulence 

In the URANS method, the turbulent vortices are not directly resolved and the 
entire turbulence behaviour is then modelled. In fact, with the temporal average 
technique, only the relatively low frequency variations of the flow field are cap-
tured by the URANS approach, in contrast to the turbulent high-frequency fluc-
tuations, being fully modelled by other methods. In this respect, the velocity field 
is decomposed into  

( ) ( ) ( ) ,i i iu t u t u t′= +  

where ( )iu t  represents the coherent part of the velocity in the turbulent flow, 
that involves all organized low-frequency movement, and ( )iu t′  indicates the 
high frequency floating part of the turbulent velocity. This decomposition is also 
applied to the pressure. The URANS equations for incompressible flows, in 
Einstein notation for indices, are  

( ) 21 1 ,i j iji i

j i j j j

u uu up
t x x x x x

τ
ν

ρ ρ

∂ ∂∂ ∂∂
+ = − + −

∂ ∂ ∂ ∂ ∂ ∂
           (16) 

where ij i ju uτ ρ ′ ′=  is the Reynolds stress tensor (Pope [13]). This tensor acts as 
a tension on the fluid element and, physically, is interpreted as a correlation of 
velocity fluctuation. To make Equation (16) “solvable”, ijτ  must be expressed 
based on coherent flow variables. The turbulent viscosity models relate the Rey-
nolds stress tensor with a new variable, defined as turbulent viscosity, tν  (Le-
sieur [19]). 

3.2. The Smagorinsky Turbulence Model 

The Smagorinsky model [13] [19] [20] is based on the local equilibrium hypo-
thesis for small scales, so that the injected energy in the spectrum equals the dis-
sipated energy by the viscous effects. This model offers  

( )2 2 .t s ij ijC S Sν = 
                      (17) 
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Here, 1
2

ji
ij

j i

uu
S

x x
 ∂∂

= +  ∂ ∂ 
 is the strain rate tensor,   is the length of the  

sub-mesh, and sC  is Smagorinsky constant.  

3.3. The Spalart-Allmaras Turbulence Model 

According to this model, the turbulent viscosity, tν , is calculated thanks to the 
auxiliary work variable ν  [13] [21]. Then  

1
,t vfν ν=   

where ( )1 1

3 3 3
v vf Cχ χ= + , with χ ν ν=  , and ν  obeying the transport equa-

tion:  

( ) ( ) ( )
1 2 2

1
2 1

2
2

2

11

.

j b t b
j j j j j

b
w w t t

w

u c f S c
t x x x x x

c
c f f f U

dk

ν ν ν νν ν ν ν
σ

ν

  ∂ ∂ ∂ ∂ ∂ ∂
+ = − + + +   ∂ ∂ ∂ ∂ ∂ ∂   

  
− − + ∆  

  

   



  



    (18) 

Here, the installments on the right-hand side of Equation (18) represent the 
production of turbulent viscosity, the turbulent and molecular diffusions of tur-
bulent viscosity, the dissipation of turbulent viscosity, the destruction of turbu-
lent viscosity, responsible for its decrease, and terms that model transition effects 
to turbulence. The various coefficients (and corresponding numerical values) 
that appear in this turbulence model can be found in the 2015 Kostic review ar-
ticle [22].  

4. Numerical Method 

Exact solutions of differential equations are only known in restricted situations, 
since, in general, these equations involve nonlinear terms. This implies the need 
to use numerical algorithms and demanding computational facilities to perform 
the calculations. In our case, the spatial (computational) domain was discretized, 
that is, divided into control volumes and, for each volume, a nodal point was as-
sociated. The set of theses discrete points (nodal points) is called the mesh, 
where the solution was obtained for each of these nodal points. The conservation 
equations were discretized by the finite difference method. Among the various 
existing numerical methods, we opted for the fractional-step method (FSM), de-
veloped by Chorin [23], and later improved by Kim and Moin (1985) [24], for 
the temporal discretization. 

The numerical solution of Equations (5)-(7) was performed in a segregated 
manner, requiring the treatment of the coupling between pressure and velocity. 
The method FSM is used in a non-iterative way, initially solving the momentum 
equations, using the velocity fields of the previous time, which leads to an esti-
mate for the velocity field, which, in general, does not satisfy the continuity equ-
ation. The difference of this estimate is used as a source term for the solution of 
a Poisson equation for the correction of pressure, being used to update the ve-
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locity field and, finally, guaranteeing the conservation of mass to the corrected 
velocity. The importance of the Poisson equation for the correction of pressure 
is due to the fact that it makes the connection between the equations of mo-
mentum and continuity. 

The Navier-Stokes equation in forced convection is discretized, and for natu-
ral convection the process is analogous. Thus, Equation (6) can be rewritten in 
the following way  

( ) ( )
1 11 .

nn n nn
jn n ni i i

i j t i
j i j j i

uu u upu u f
t x x x x x

ν ν
ρ

+ +     ∂− ∂∂ ∂ ∂
+ = − + + + +     ∆ ∂ ∂ ∂ ∂ ∂      

   (19) 

In the FSM method, the velocity, the pressure and the forcing term of the pre-
dictive instant, n, are used to calculate, in the predictive step, an estimate for the 
velocity in the current time 1n

iu + , offered by the equation  

( ) ( )
1 1 .

nn n nn
jn n ni i i

i j t i
j i j j i

uu u upu u f
t x x x x x

ν ν
ρ

+     ∂− ∂∂ ∂ ∂
+ = − + + + +     ∆ ∂ ∂ ∂ ∂ ∂      

   (20) 

The next step, in the FSM method, is to subtract Equation (20) from Equation 
(19), resulting in  

1 11 ,
n n n

i i

i

u u p
t xρ

+ +′− ∂
=

∆ ∂
                       (21) 

where  
1 1 .n n np p p+ +′ = −                         (22) 

Knowing that the velocity field must satisfy the continuity equation, one ob-
tains  

1 2 11 1 .
n n

i

i i i

u p
t x x xρ

+ +′∂ ∂
=

∆ ∂ ∂ ∂
                      (23) 

The Equation (23) is a Poisson equation for the correction of pressure, p′ . 
Note that the source term is a function of the estimated velocity, which is known 
from the predictor step, Equation (21). Finally, with the pressure field calculated, 
we return to Equation (21), obtaining, then, the equation corrected for the ve-
locity  

1
1 1 .

n
n n
i i

i

t pu u
xρ

+
+ + ′∆ ∂
= −

∂
                      (24) 

The reader can find more details about this numerical scheme in [8] [12]. 

4.1. The Fractional Method Algorithm 

This algorithm consists in carrying out the following steps:  
1) Estimate the velocity field, Equation (19);  
2) With the estimated velocity field, solve the linear system for the pressure 

correction, Equation (23);  
3) Correct the velocity field, Equation (24), and pressure, Equation (22);  
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4) Check the conservation of mass within the specified tolerance;  
5) Advance to the next time step.  

4.2. Temporal Discretization 

The temporal discretization techniques used in the present work are presented 
in this section. 

4.2.1. Second-Order Runge-Kutta Method 
In two-dimensional simulations around a single immersed isothermal body, 
with or without border movement, the second-order Runge-Kutta method was 
used for the temporal discretization of the Navier-Stokes equations. The method 
consists of a predictor step that evaluates the field in an intermediate time, called 
the corrector, and then the update to the current instant is performed. In other 
words,  
• Predictor step:  

1
2

, , , , , ,

1
2

, , , , , ,

1
2

1
2

n n n n n n
I J i j xi j xi j x i j x i j

n n n n n n
I J i j y i j y i j y i j y i j

tu u A D P f

tv v A D P f

ρ

ρ

+

+

  ∆
= + − + − +  

  


 ∆ = + − + − +   





 

• Corrector step:  
1 1 1 1 1
2 2 2 2 2

, , , , , ,

1 1 1 1 1
2 2 2 2 2

, , , , , ,

1

1

n n n n nn
I J i j xi j xi j x i j x i j

n n n n nn
I J i j y i j y i j y i j y i j

u u t A D P f

v v t A D P f

ρ

ρ

+ + + + +

+ + + + +

  
= + ∆ − + − +  

  


  = + ∆ − + − + 
 





 

where A represents the advective source, D is for the diffusive term, P the pres-
sure correction gradient, and f the force term. 

4.2.2. Second-Order Adams-Bashforth Method 
This method was used in the simulations for the cases of a bluff isothermal body 
(square cylinder) and two tandem cylinders (in a row, with or without frontier 
movement), for the time advance of the momentum equations. For the first ite-
ration, the first order Euler method was used:  

( ) ( )

( ) ( )

1 1
, , , , , , , ,

1 1
, , , , , , , ,

11.5 0.5

11.5 0.5

n n n n n n n n
I J i j xi j xi j x i j x i j x i j xi j

n n n n n n n n
I J i j y i j y i j y i j y i j y i j y i j

u u t A D A D t P f

v v t A D A D t P f

ρ

ρ

− −

− −

   = + ∆ − + − − + − ∆ +     


   = + ∆ − + − − + − ∆ +    





 

4.3. The Spatial Discretization of Equations  
4.3.1. Discretization of Navier-Stokes Equations 
The discretization of the Navier-Stokes and heat equations used finite differenc-
es centred of second order for the spatial discretization, and the explicit Euler 
method of first order for the temporal discretization. The velocities are located 
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on the control volume. In Figure 5, a control volume of the Eulerian point 
( ),i j  is illustrated. This scheme was adopted to provide more stability in the 
pressure-velocity coupling. Therefore, considering a cell with coordinate ( ),i j , 
we have the distribution: (i) the pressure ( ,i jp ), and temperature ( ,i jθ ) in the 
centre of the Eulerian cell; (ii) the x components of Eulerian velocity, and force 
on the left side face ( 2x∆  away from the centre of the cell), and (iii) the y 
components Eulerian velocity, and force on the left bottom face ( 2y∆  away 
from the centre of the cell). All simulations have been carried in non-uniform 
meshes. For non-uniform mesh (Figure 6), we have:  

, 1, ,i j i j

i

p pp
x x

−′ ′−′∂
≈

∂ ∆
 

and  

( ) ( ) ( ) ( ) ( )1 1 .i j p p w w nw nw sw sw
j j i

u u u u u u u v u v
x x y
∂    ≈ − + −  ∂ ∆ ∆

 

The velocities defined by the average operator must be interpolated, being 
functions of the velocity on the faces of the mesh (using the mesh displacement 
scheme) given by  
 

 
Figure 5. Control volume of an Eulerian point. 

 

 
Figure 6. Illustrative scheme of two non-uniform Cartesian cells. 
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( ) ( ) ( )
( ) ( ) ( )

, 1 , , , 1 , 1,

, 1, 1 1, 1 , , 1

, , , , , ,

, , , , , .

p i j i j w i j i j nw i j i j

sw i j i j w i i j sw i j i j

u f u u u f u u u f u u

u f u u v f v v v f v v

+ − +

− + + − −

= = =

= = =
 

The approximation (25) discretizes the diffusive term, i.e.  

,

, 1 , , , 1
, 1

1 , 1 1, 1

1

, 1, , , , 1

1 2 2

,1

.

i j

N

S

j i j i j i j i ji
ef ef i j

j j i j j j

i i j i i j
ef

i i j

i j i j i j i j i j
ef

i j

u u u u uu
f

x x x x x x

u u v v
y y x

u u v v v
y x

ν ν ν

ν

ν

+ −
−

+ + + −

+

− −

    ∂ − −∂∂
+ ≈ −       ∂ ∂ ∂ ∆ ∆ ∆     

  −
+ +   ∆ ∆ ∆  

 − − −
− +   ∆ ∆  





  (25) 

The effective viscosity, which must be interpolated on the faces, is a function 
of the viscosity in the neighbouring cells  

( ), . 1 1, 1, 1
, , , ,

N i j i j I j I jef ef ef ef effν ν ν ν ν
− + + −

=  

( ), . 1 1, 1, 1
, , , .

S i j i j I j I jef ef ef ef effν ν ν ν ν
− − − −

=  

4.3.2. Discretization of the Pressure Correction Equation 
The Equation (23) for the correction of pressure is written as follows  

12 2

2 2 .
n

p p u v
t x yx y
ρ

+
′ ′  ∂ ∂ ∂ ∂
+ = + ∆ ∂ ∂∂ ∂  

 

Using the finite difference centred scheme, it reads  
1 1 1 1 1 1 1 1

, 1 , , , 1 1, , , 1,

1 1 1 1 1 1 1
, 1 , , , 1 1, , , 1,

1 1

1 1
2 2 2

n n n n n n n n
i j i j i j i j i j i j i j i j

n n n n n n n n
i j i j i j i j i j i j i j i j

p p p p p p p p
x x x y y y

u u u u v v v v
t x y
ρ

+ + + + + + + +
+ − + −

+ + + + + + + +
+ − + −

   ′ ′ ′ ′ ′ ′ ′ ′− − − −
− + −   

∆ ∆ ∆ ∆ ∆ ∆      

 + + + +
= − + −  ∆ ∆ ∆ 

1

.
2

  
      

  (26) 

The Equation (26) presents the terms for the pressure correction at iteration 
time 1n + . This way, all equations are coupled, generating a linear system of 
equations, which can be represented in the compact form  

,p p e e w w n n s s pa p a p a p a p a p b′ ′ ′ ′ ′+ + + + =               (27) 

where ,p i jp p′ ′= , 1,e i jp p +′ ′= , 1,w i jp p −′ ′= , , 1n i jp p +′ ′=  and , 1s i jp p −′ ′= . The 
coefficients , , ,p e w na a a a  and sa  are constant, for the entire uniform mesh. 
For the non-uniform mesh, they change along the domain, depending on the 
dimensions of each cell. The sub-indices p, e, w, n and s are illustrated in Figure 
7, and the coefficients take the values: 

( )

2

2

1 ,

1 ,

2 ,

e w

n s

p e n

a a
x

a a
y

a a a

= =
∆

= =
∆

= − +
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Figure 7. Collocation points p, e, w, n and s. 

 
and  

1 1 1 1
1, , , 1 , .

n n n n
i j i j i j i j

p

u u v v
b

t x y
ρ + + + +

+ + − −
= −  ∆ ∆ ∆ 

 

To solve the linear system (27), it was used the modified strongly implicit 
procedure—MSIP—proposed by Schneider and Zedan [15]. 

4.3.3. Discretization of the Smagorinsky Model 
The spatial discretization of the algebraic equation for the turbulent viscosity of 
the Smagorinsky sub-mesh model, Equation (17), is  

2 ,ij ijS S S≡  

where  

11 12 22

2 22

2 2

S S S

u u v vS
x y x y

   ∂ ∂ ∂ ∂ = + + +    ∂ ∂ ∂ ∂     


 

 

with  

, 1 ,
11

12

1 ,
22

i j i j

mn ms me mw

i i j

u u
S

x

u u v v
S

y x
v v

S
y

+

+

 − 
=  ∆ 

 − −  = +  ∆ ∆ 
 −  =   ∆ 
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where  

( )

( )

( )

, , 1 1, 1, 1

1, 1 1, , 1

1, 1 1, , 1 ,

1
4
1
4
1
4

ms i j i j i j i j

me i j i j i j i j

mw i j i j i j i j

u u u u u

v v v v v

v v v v v

+ − − +

+ − + + +

+ − + −

 = + + +

 = + + +



= + + +

 

is for uniform meshes. With regard to non-uniform meshes, the next section 
presents the interpolation process in a concise way. 

4.3.4. Interpolation of properties for non-uniform meshes 
With the use of non-uniform meshes, the quantities defined on the faces must be 
properly interpolated. The work of Patankar [25] proposes the use of an inter-
polation scheme. For the interpolation of velocities and density on the faces, a 
linear approximation between the points is used as follows  

( )1 ,e e P e Ef fφ φ φ= + −  

where the interpolation factor, ef , is the ratio between the distances of the 
non-uniform mesh, given by  

( )
( )

,e
e

e

x
f

x
δ
δ

+

=  

and for the viscosity, it is used  
1

1
.e e

e
p E

f f
φ

φ φ

−
 −

= +  
 

 

4.3.5. Discretization of the Spalart-Allmaras Model 
The spatial discretization of the transport equation for the turbulent viscosity of 
the Spalart-Allmaras model, Equation (18), is presented below. The same spatial 
discretization method was used to discretize the Navier-Stokes equation:  
• Advective term:  

( ) ( ) ( ), 1 , 1, ,
1 1 .l i j e i j w i j n i j s

j j i

u u u v u
x x y

ν ν ν ν ν+ +
∂

≈ − + −
∂ ∆ ∆

      

The auxiliary variable, ν , is located at the centre of the mesh cell. Thus, to 
calculate the values on the faces, one must interpolate with values of the neigh-
bourhood points, represented by  

( ) ( )
( ) ( )

, 1 , , , 1

1, , , 1,

, , , ,

, , , .

e i j i j w i j i j

n i j i j s i j i j

f f

f f

ν ν ν ν ν ν

ν ν ν ν ν ν

+ −

+ −

= =

= =

     

     

 

The turbulent viscosity production term of the Spalart-Allmaras model is 
proportional to the norm of the strain rate tensor, given by Equation (17) and is 
discretized as follows  

2 2 2
11 12 222 ,ij ijS S S S S= + +  

where  
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, 1 ,
11

1, ,
22

12
1 1
2 2

i j i j

j

i j i j

j

N S E W

i j

u uuS
x x

v vvS
y y

u u v vu vS
y x y x

+

+

− ∂
= ≈ ∂ ∆

 −∂ = ≈ ∂ ∆
    − − ∂ ∂ = + ≈ +       ∂ ∂ ∆ ∆       

 

The interpolated velocities are functions of the following variables:  

( ) ( )
( ) ( )

, , 1 1, 1, 1 , , 1 1, 1, 1

, , 1 , 1 1, 1 , 1, , 1 1, 1

, , , , , , ,

, , , , , , , .

N i j i j i j i j S i j i j i j i j

E i j i j i j i j W i j i j i j i j

u f u u u u u f u u u u

v f v v v v v f v v v v

+ + + + + − − +

+ + + + + − + −

= =

= =
 

• Diffusive term:  
The conservative diffusive term for the two-dimensional incompressible flow 

can be rewritten as follows  

( )

( )

2
2

, , , 1 1, , 1,
, , 2 2

, 1 , 1 , 1 , 1 1, 1, 1

1 1 1

2 2

j j j

i j i j i j i j i j i j
i j i j

j i

i j i j i j i j i j i j i

j j j j i i

x x x

v
x y

x x x x y y

ν νν ν

ν ν ν ν ν
ν ν

ν ν ν ν ν ν ν

− + −

+ − + − + − +

+ + +

 ∂ ∂
+ +   ∂ ∂ ∂ 

 − + − + 
≈ + + ∆ ∆ 

  − − − 
+ +      ∆ + ∆ ∆ + ∆ ∆ + ∆   

 



    



       , 1,

1

.j i j

i iy y
ν −

+

− 
 ∆ + ∆ 



 

• Diffusive term (non-conservative):  

, 1 , , 1 , 1, , 1, , .i j i j i j i j i j i j i j i j

j j j j j jx x x x y y
ν ν ν ν ν ν ν νν ν + + + +     − − − −∂ ∂

≈ +          ∂ ∂ ∆ ∆ ∆ ∆     

       

 

 

4.3.6. Discretization of the Indicator Function 
As for pressure, the indicator function and variables xG  and yG  located in the 
centre of the Eulerian mesh, Equation (9), for the two-dimensional case, can be 
rewritten as  

2 2

2 2 .yx GGI I
x yx y

∂∂∂ ∂
+ = +

∂ ∂∂ ∂
 

For its discretization, the following approximations were used  
2

1, , 1,
2 2 2

2 2
,i j i j i j e p w

j j

I I I I I II
x x x

+ −− + − +∂
≈ =

∂ ∆ ∆
 

2
, 1 , 1,

2 2 2

2 2
,i j i j i j n p s

j j

I I I I I II
y y y

+ −− + − +∂
≈ =

∂ ∆ ∆
 

( ) ( ), 1 , , 1 , ,
2

i j i j i j i jx x x xx

j

G G G GG
x x

+ −
+ − +∂

≈
∂ ∆

 

( ) ( ), 1, 1, , .
2

i j i j i j i jy y y yy

j

G G G GG
y x

+ −
+ − +∂

≈
∂ ∆
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4.3.7. Discretization of the Heat Equation 
The heat equation, Equation (8), can be rewritten as  

2 2

2 2

1 .u v q
t x y RePr x y
θ θ θ θ θ ∂ ∂ ∂ ∂ ∂
+ + = + + ∂ ∂ ∂ ∂ ∂ 

             (28) 

Performing the discretization of Equation (28), results in 
1

, ,

1, , , 1,
1, ,

1, , , 1,
1, ,

2
1, , , 1,

2

2
1, , , 1,

2

1
2 2

1
2 2

1

1

n n
i j i j

i j i j i j i j
i j i j

i j i j i j i j
i j i j

i j i j i j i j

i j i j i j i j

t t
u u u
x x

v v v
y y

x x xx

y y yy

θ θθ

θ θ θ θθ

θ θ θ θθ

θ θ θ θθ

θ θ θ θθ

+

+ −
+

+ −
+

+ −

+ −

−∂
≈

∂ ∆
+ + ∂

≈ − ∂ ∆  
+ + ∂

≈ − ∂ ∆  
− − ∂

≈ − ∆ ∆ ∆∂  
− −∂

≈ −
∆ ∆ ∆∂

,i jq q

 
 
 

≈

 

5. Results 

This section is dedicated to the simulations and analyses of three different cases, 
namely, isothermal square cylinder, isothermal tandem cylinders and angled 
isothermal cylinders, involving the modelling of the onset of turbulence asso-
ciated with heat-transfer by mixed convection. As methodology, the immersed 
boundary method was used, using unsteady Reynolds averaged Navier-Stokes 
equation - URANS together with DNS. To calculate the turbulent viscosity, the 
Smagorinsky sub-mesh model was used, implemented in the context of the DNS 
methodology, and the Spalart-Allmaras turbulence model, in the URANS con-
text, both adopted for the two-dimensional case. For the validation of the me-
thodology, flow simulations were carried out around isolated bluff and circular 
bodies, and in tandem (in line), without boundary movement. The study of the 
main parameters related to the flow dynamics was carried out, thus demonstrat-
ing the reliability, relevance and potential of the methodology of this work for 
problems involving thermo-fluid dynamics around bodies immersed in incom-
pressible Newtonian fluids. The results obtained in the simulations considered 
low and moderate Reynolds numbers, that is, (1 5000Re≤ ≤ ), considering the 
heat-transfer process by mixed convection (natural and forced convections). 

The numerical results obtained were compared and validated with other nu-
merical results from different authors, available in the literature. In the following 
sections, the results are presented, where all the simulations were performed un-
til the flow field regime was established. 

5.1. Simulation and Analysis for a Bluff Isothermal Body 

In this section, the results of numerical simulations are presented for low and 
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moderate Reynolds numbers in [ ]1,100 . The interval [ ]1,40  was used to test 
the code, where we have obtained the results presented in Anjaiah [4], Dhiman 
[5] and Sharma [6]. For these simulations, a non-uniform mesh with 318 × 164 
points was used. The most refined mesh was used in regions with higher gra-
dients, close to the bluff immersed body, where better captures the hydrody-
namic fields, while in regions with low gradient, a less refined mesh was used. 

The use of a uniform mesh in all computational domains, would considerably 
increase the computational cost. The simulation of flow develops from left to 
right. The velocity profile in the input field is uniform, with unit value. In all si-
mulations, the domain dimensions were 55xL d=  and 30yL d= . The bluff 
body was positioned at 16.5x d=  and 15.0y d= , where d represents the 
length of the side of the bluff immersed body. The Cartesian mesh used is shown 
in Figure 8. 

The number of points in the mesh, Figure 8, aims to capture thermal and ro-
tation effects (for cases related to border movement, without considering elastic-
ity). For all simulations, a total of 201 points was used for the Lagrangian mesh, 
with the non-uniform mesh in the region of the isothermal square cylinder, 
maintaining a minimum amount of 30 meshes inside. For all simulations, the 
time step used in the calculation process was 10 a− , with 4,5,6a =  being dy-
namically calculated by the Courant-Friedrichs-Lewy stability criterion, also 
known as the CFL condition. 

The Prandtl number (Pr) was kept constant, namely, 0, 7 (in the air), in all 
simulations. For the lateral boundaries of the domain, free boundary conditions  
 

 
Figure 8. Illustration of a non-uniform mesh. 
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were used, i.e. zero velocity at the border. At the entrance of the domain, a ve-
locity profile (U∞ ) was imposed and, at the exit, the derivative is zero for the 
velocity. In summary, the boundary conditions are as follows  
• Domain entry:  

, 0.u U v∞= =  

• Domain exit:  

0.u v
x x
∂ ∂

= =
∂ ∂

 

• Upper and lower boundaries of the domain:  

0.u v
y y
∂ ∂

= =
∂ ∂

 

For the pressure, the boundary conditions used were Neumann at the en-
trance and Dirichlet at the exit and on the sides of the domain. The boundary 
conditions at the entrance of the domain, at the exit, and at the lower border 
were defined by  

0,p =  

0, 0.p p
x y
∂ ∂

= =
∂ ∂

 

For the temperature, the conditions are analogous, given by  

0,θ =  

0, 0.
x y
θ θ∂ ∂
= =

∂ ∂
 

5.2. Two-Dimensional Flow with Re = 1 Up to Re = 40, for Different  
Ri Numbers 

Figure 9 shows the temperature, pressure, isothermal temperature lines, and the 
aerodynamic coefficients (drag and lift) around the blunt isothermal body, for 

1Re =  and 0Ri =  (here, [ ]0,33x∈ ). It was found that there is no buoyancy 
or flow separation around the immersed geometry. Figure 10 and Figure 11 
correspond to 1Re =  with 0.5Ri =  and 1.0Ri = , respectively. The goal was 
to verify the influence of heat around an immersed square cylinder. 

Throughout these simulations, it was found that the heating can result in a 
small “delay” with respect to the separation of the flow around the isothermal 
cylinder. In other words, the flow is separated more quickly (after numerical ob-
servations) even for low Reynolds numbers, when heat transfer is neglected in 
the simulations which, in turn, may require more heating for the immersed 
body, as the Reynolds number is increased, as observed, for example, in 2Re ≥ , 
for 0.5Ri =  and 1.0Ri = . It was also observed that with an increase in the 
Richardson number (Ri), for any fixed Reynolds number, the region of the 
so-called von Kármán wake decreases. Therefore, from these simulations, even 
fixing the Reynolds number, the length of the wake for 0Ri =  is greater than  
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Figure 9. (a) Temperature, (b) pressure, (c) isothermal lines, and (d) drag and lift coeffi-
cients, for Re = 1 and Ri = 0. 
 

 
Figure 10. (e) Temperature, (f) pressure, (g) isothermal lines, and (h) drag and lift coeffi-
cients, for 1Re =  e 0.5Ri = . 
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Figure 11. (i) Temperature, (j) pressure, (k) isothermal lines, and (l) drag and lift 
coefficients, for 1Re =  e 1Ri = . 
 
the length for [ ]0.5,1.0Ri∈ . Although there is no vortex shedding, which 
would be something common in simulations involving moderate and high Rey-
nolds numbers, the damping function used in this work also acts for low Rey-
nolds numbers, for different of Richardson. 

Regarding the pressure fields, they were obtained for the same dimensionless 
time in all the simulations performed, and upstream of the isothermal body, at 
the point of stagnation the velocity is zero and the static pressure is maximum. 
Regarding the aerodynamic coefficients (drag coefficients ( dC ) and lift ( lC )), 
observed in Figure 9(d), Figure 10(h) and Figure 11(l), those refer to changes 
with respect to Re and Ri numbers. Concerning the simulated interval under 
certain conditions, it appears that the value of the drag coefficient ( dC ) is quite 
insensitive to the value of Ri values, while the lift coefficient ( lC ) is sensitive to 
Ri. These cases coexist for low values of Prandtl number (Pr), presumably due to 
the boundary layer being thicker in this case. 

What is found, is that the value of the lift coefficient ( lC ) in the different si-
mulations is zero, even considering the permanent flow. This occurs because the 
Richardson number is different from zero, which results in the increase of the 
so-called shear and pressure forces. About the pattern of the isothermal lines 
presented for 0Ri =  up to 1.0Ri =  for different Reynolds values, see Figure 
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9(c) up to Figure 11(l), we observe that the temperature field not only becomes 
asymmetrical with the introduction of buoyancy (Ri), but its asymmetry in-
creases with the increase of the Richardson number (Ri). 

It was also observed that buoyancy is more present downstream of the iso-
thermal bluff body (isothermal square cylinder) than in relation to the other 
parts of its surface. In addition, it was verified that the Nusselt number presents 
a higher value. This is due to the accumulation of the so-called isothermal lines, 
when compared to the other parts of the immersed body surface. Indeed, in 
Figure 12, the difference is subtle, since the number of Richardson goes from 0 
to 0.5, but it is possible to notice the narrowing of the current lines in the upper 
and lower parts of the cylinder, i.e. they approach the isothermal body, this is 
due to the variation of both dimensionless numbers, that is, Reynolds and Rich-
ardson numbers. 

Other studies using different numerical methodologies have presented a simi-
lar situation; e.g. Chatterjee [26], who carried out a study for a pair of square cy-
linders in a vertical channel configuration in tandem (cylinders in line position) 
for low Reynolds numbers. The author concluded that the beginning of the flow 
separation occurs for [ ]1,2Re∈ , [ ]2,3Re∈  and [ ]3,4Re∈ , for 0Ri = , 

0.5Ri =  and 1.0Ri = , respectively. Then, he observes that, if Reynolds num-
ber is gradually increased, the flow separation occurs at the trailing edge of the 
isothermal blunt body and the two (symmetrical) vortices of the recirculation 
bubble begin to be formed downstream of the obstacle, even in permanent flow 
regime. However, the opposite trend is observed with the increase of Richardson 
number at a fixed Reynolds number. This is probably due to the fact that, as the 
fluctuation (Ri) increases, the velocity gradient on the cylinder surface increases, 
resulting in reduced pressure on the surface of the immersed body. This beha-
viour is similar to the flow patterns, with respect to the Reynolds number and 
the Richardson number, around a circular cylinder under the influence of 
buoyancy, which is also observed in the works of Badr [2] and Patnaik et al. [27]. 
 

 
Figure 12. Streamlines around a square cylinder for (a) 1, 0Re Ri= = , and (b) 

2, 0.5Re Ri= = . 
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In other works, Singh [28] and Moulay [29], in addition to presenting similar 
issues, there is a critical value for Ri, that is, the authors take into account the 
beginning of the detachment of vortices, and begin to analyse the influence of 
this number with the increase of Re, considering the influence of buoyancy in an 
unstable flow regime. Next, the contour lines with respect to the vorticity are 
presented, which provide useful information about the flow behaviour, especially 
close to the square cylinder for the interval considered in Figure 13. 

It is observed that the recirculation increases downstream of the immersed 
body, as the Reynolds number increases for the Richardson number fixed, and 
decreases when Richardson number increases, keeping the Reynolds number 
constant. The separation points are located with the help of the vorticity lines. 
Therefore, it is concluded that as the number of Reynolds or the number of 
Richardson increases, there is an elongation of the so-called vorticity lines. The 
standard isotherm lines involving the parameters Re and Ri near the immersed 
obstacle in the flow are shown in Figure 14, following to the Prandtl number 
equal to 0.7. 
 

 
Figure 13. Vorticity fields for (a) 1, 0Re Ri= = , and (b) 1, 0.5Re Ri= = . 
 

 
Figure 14. Isothermal fields for (a) 40, 0.5Re Ri= = , and (b) 40, 1Re Ri= = . 
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5.2.1. Validation of Average Drag Coefficient and Nusselt Number 
In Table 1, it is presented a comparison of our mean values (time averages) of 
the drag coefficients, for 0Ri =  and 0.7Pr = , versus different Reynolds 
numbers, with the numerical results of other authors, for the case of one iso-
thermal bluff body ([4] [5] [6]). 

In Anjaiah et al. [4], the authors use a numerical scheme, called SMAC-Implicit, 
implemented in a staggered mesh to solve the Navier-Stokes and heat equations. 
Their scheme is implicit in the diffusion terms and explicit in the convective 
terms. 

In Dhiman et al. [5] the researchers use the numerical method of finite vo-
lumes for a non-scaled mesh. In summary, a semi-explicit method is used to 
solve the Navier-Stokes equations, in which the momentum equation is explicit-
ly discretized, excepted for the pressure gradient term that is treated implicitly. 
Consequently, the pressure-velocity coupling is reduced to a Poisson equation 
for the pressure correction (to prevent oscillations due to the pressure-velocity 
decoupling in the mesh, they use the interpolation scheme of Rhie and Chow 
[30]). 

Sharma et al. [6], based on the work of Dhiman [5], use a non-uniform com-
putational mesh, developed in Matlab. The semi-explicit finite volume method 
is implemented in the staggered mesh arrangement, used to solve the equations 
laws, where the momentum equation is explicitly discretized, while the pressure 
gradient term is treated implicitly. 

Considering these three previous works, the algorithm we propose, and cor-
responding numerical convergence, is valid in view of the corresponding nu-
merical values we found (they agree within 2% - 3% margin). 
 
Table 1. Comparison of the average values of the drag coefficients and the Nusselt 
number, for 0Ri =  and 0.7Pr = , with different values of Re. 

Source Re Cd Nu 

Present work 1 4.8500 0.5917 

Anjaiah (2006) 1 4.8600 0.6916 

Dhiman (2007) 1 4.8714 0.6916 

Sharma (2012) 1 4.8714 0.6928 

Present work 10 0.9300 1.3232 

Anjaiah (2006) 10 0.9437 1.5624 

Dhiman (2007) 10 0.9437 1.5624 

Sharma (2012) 10 0.9343 1.5573 

Present work 40 0.2497 2.4702 

Anjaiah (2006) 40 0.2538 2.6969 

Dhiman (2007) 40 0.2538 2.6969 

Sharma (2012) 40 0.2493 2.6012 
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5.2.2. Two-Dimensional Flow Fields for Re = 5000 with Ri = 0 
In this section, Figure 15 and Figure 16 are discussed. Figure 15(c) and Figure 
16(i) present the effective viscosity. It was necessary to adjust the original Sma-
gorinsky model, because in this model there is no damping of the turbulent vis-
cosity close to the walls, which is not physically consistent, because in the re-
gions of the boundary layer, the turbulence models must have relatively low ve-
locities and, consequently, must not have high values for effective viscosity, 
which can result in premature displacement of the boundary layer. 
 

 
Figure 15. Smagorinsky model for (a) temperature, (b) pressure, (c) effective viscosity, 
(d) vorticity, (e) isothermal lines, and (f) drag and lift coefficients ( 5000, 0Re Ri= = ). 
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Figure 16. Spalart-Allmaras model for (g) temperature, (h) pressure, (i) effective viscosity, 
(j) vorticity, (k) isothermal lines, and (l) drag and lift coefficients ( 5000, 0Re Ri= = ). 
 

The Figure 15(c), Figure 15(d) and Figure 16(i), Figure 16(j) show the ef-
fective viscosity and the vorticity fields for 5000Re = . The effective viscosity 
close to the wall is calculated by the models DNS and URANS, respectively, and 
has the same approximate magnitude as the effective viscosity for the regions 
downstream of the immersed body. In the wake regions, the effective viscosity 
can assume high values, inhibiting the release of vortices as can be observed in 
Figure 16(j). Regarding the aerodynamic coefficients, presented by Figure 15(f) 
and Figure 16(l), sharper oscillations are observed in the drag coefficient ( dC ). 
In other words, this means that the process of generation and release of vortices 
is totally swirling in the flow. The same happens with the support coefficient 
( lC ). 

5.2.3. Frequency of Vortex Shedding for the Isothermal Square Cylinder 
The frequency of vortex shedding is measured by the Strouhal number, St. In 
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Table 2, some numerical values for St are presented, as well the value obtained 
by Sohankar [31] for the isothermal square cylinder. Note that the results pre-
sented in Table 2, corresponding to 500Re = , have a good numerical agree-
ment. The URANS model is more suitable for the study involving the mean flow 
behaviour. Therefore, this model captures less information related to transient 
physical phenomena. In contrast, the LES models have greater resolution in 
capturing the phenomena associated with large-scales. Therefore, this class of 
turbulence models is characterized by calculation of lower levels of turbulent 
viscosity. For this reason, the detachment frequency is slightly higher in LES 
model, when compared with URANS model. 

5.3. Forced and Natural Convection around Isothermal Cylinders  
in Tandem 

In this section, the flow around a pair of heated circular cylinders with different 
configurations is studied, where the heat transfer process around obstacles has 
its importance and relevance in engineering problems. Here, two cylinder con-
figurations will be considered, where, in both cases, the two cylinders have equal 
diameters and the same centre-to-centre distance ( ccL ). In the first case, the an-
gle formed by the segment joining the centres of the two cylinders and the x-axis 
is zero. 

5.3.1. Description of the Problem and Boundary Conditions 
In Figures 17-19, the two cylinders are identical and with the same diameter, 
maintained in tandem configuration, and with angulation (or angular inclina-
tion) for the cylinder B. In both cases, the cylinders are confined to a channel 
with free flow, with uniform velocity (U∞ ) and constant temperature ( )cT T∞> . 
The horizontal and vertical spacing between the cylinders are fixed to 

16.5uL d=  and 19.5dL d= , respectively. These values are chosen to reduce the 
effect of boundary conditions on the inlet and outlet due to the flow pattern at 
the cylinder boundary. Moreover, these choices are also consistent with existing 
works available in the literature, e.g. Santos [8], Santos et al. [12], Mahir and Al-
taç [32], Sohankar and Etminan [33], Laidoudi and Bouzit [34]. The drag ( dC ) 
and lift ( lC ) coefficients, for the calculation of each cylinder, are evaluated  
 
Table 2. Strouhal number for different Re and Ri values. 

 
Present work  

URANS DNS Sohankar (1999) (DNS) 

Ri = 0    

Re = 500 0.0910 0.0922 0.174 

Re = 5000 0.1537 0.1540 - 

Ri = 1    

Re = 500 0.1227 0.1230 - 

Re = 5000 0.1535 0.1537 - 
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Figure 17. Illustration of a two-cylinder configuration: (a) cylinders in tandem ( 0mϕ =  ), 

and (b) cylinders in angulation ( 0 90mϕ< <  ). 
 

 
Figure 18. Computational domain with two cylinders in tandem configuration. 
 

 
Figure 19. Computational domain with two cylinders in angular configuration. 
 
by:  

2

2
,d

d dp dv
F

C C C
U dρ ∞

= + =                     (29) 

2

2
,l

l lp lv
F

C C C
U Dρ ∞

= + =                     (30) 

where lpC  and lvC  represent the lift coefficients due to pressure and viscous 
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forces, respectively. Similarly, dpC  and dvC  represent the drag coefficients 
due to the pressure and viscous forces. dF  and lF  are forces of drag and lift 
acting on the surface of the cylinder, respectively. Thus, the drag and lift coeffi-
cients can be obtained from the expressions:  

( )1

0

1

0

2 d

2 d d

dp f r

dv
f rs i

C p p y

u u u uC x y
Re y y x x

 = −

    ∂ ∂ ∂ ∂

= + + +        ∂ ∂ ∂ ∂     

∫

∫
          (31) 

( )1

0

1

0

2 d

2 d d

lp i s

lv
f b s i

C p p y

v v v vC x y
Re x x y y

 = −

     ∂ ∂ ∂ ∂

= + + +        ∂ ∂ ∂ ∂    

∫

∫
          (32) 

The subscripts f, b, i and s refer to “front”, “back”, “bottom” and “top” surfac-
es of the cylinders, respectively. 

5.3.2. Flow Fields for Re = 500 and Ri = 0 in Cylinders in Tandem with  
=m 0ϕ  by Forced Convection 

The Figure 20 and Figure 21 present the temperature, pressure, effective viscos-
ity, vorticity, isothermal lines, and aerodynamical drag ( dC ) and lift ( lC ) coeffi-
cients, for the flow around tandem cylinders, for 500Re =  and 0Ri = . The 
Table 3 represents the distribution of the Nusselt and Strouhal numbers, setting 
the value of the spacing ratio ( 3ccL d = ) between the cylinders with mounting 
angles equal to 65˚. In general, it is observed that the average Nusselt number on 
cylinder A increases more rapidly compared to cylinder B. This is due to the 
thinning of the boundary-layers around the surface of the cylinder. 

5.3.3. Flow Fields for Re = 500 and Ri = 5.0 in Cylinder in Tandem with  
=m 65ϕ   by Mixed Convection  

Concerning Figure 21 and Figure 22, the simulations are based on the work  
 

 
Figure 20. Smagorinsky model for (a) temperature, and (b) pressure (cylinders A and B, 

500, 0Re Ri= = ). 
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Figure 21. Smagorinsky model for (c) effective viscosity, (d) vorticity, (e) isotherms lines, 
and (f) drag and lift coefficients (cylinders A and B, 500, 0Re Ri= = ). 
 
of Zdravkovich [37], where the author relates three flow regimes for tandem cy-
linders [38]. The author endorses several values for the spacing between the cy-
linders. The vortex structures and isothermal lines are described for 500Re = , 

0Ri =  and 3ccL d = . For 500Re =  and 0Ri = , the formation of vortices 
between the two cylinders is not observed; however, the oscillation propagates 
further downstream of the second cylinder, forming a vortex wake in the down-
stream region. As both vorticity and thermal energy are transported through the 
flow field, the vorticity and isothermal contours exhibit similar characteristics. 
The spacing between the centres is still below the critical value. The shear layer 
separated from the upstream cylinder forms a vortex behind the downstream cy-
linder. The heat is similarly carried by the flow to the downstream region. Then, 
what is observed is the vortex wake being established; however, interactions 
within the vortex wake with the shear layer separated from the downstream cy-
linder create two separated vortices near the downstream cylinder. The magni-
tude of the vortices increases due to the faster movement of the fluid and the 
vortex detachment. The main results for the simulations can be summarized in 
1) a wake forms upstream of the second cylinder, but it needs to be checked 
whether it can be decreased or suppressed with the increase of the distance be-
tween the cylinders; 2) the isothermal lines reflect the same behaviour of the 
pattern of the streamlines (current lines); 3) the average Nusselt number in-
creases with 500Re =  and for different values of Ri, even keeping the distance  
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Figure 22. Spalart-Allmaras model for (a) temperature, (b) pressure, (c) effective 
viscosity, (d) vorticity, (e) isotherms lines, and (f) drag and lift coefficients (cylinders A 
and B, 500, 5Re Ri= = ). 
 
Table 3. Flow parameters: in this work, { }100,200,500Re∈  (ca: cylinder A, cb: cylinder 

B); aMittal and Laccarino [1], bMeneghini [35], cSlaouti and Sansby [36]. 

Re ccL d  ,d caC  ,l caC  Stm ,d cbC  ,l cbC  

100 2 1.222 0.0072 - 0.0008 0.0255 

 2.5 1.386a 0.37 0.169 −0.075 0 

 3 1.202 0 - −0.045 0.0011 

 4 1.342 0.475 0.153 0.761 1.452 

200 2 1.03 0.031 - −0.18 0.14 

  0.89b 0.20 0.130 −0.21 - 

  1.03c - 0.130 −0.17 - 

 3 1.048 0.026 0.130 −0.53 0.266 

500 3 0.8041 1.343 0.216 −0.357 −4.715 
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between the cylinders; 4) the thermal buoyancy is suppressed in the recirculation 
zones of the tandem cylinders, even with a mounting angle; and 5) the thermal 
buoyancy tends to increase the drag coefficient and the average Nusselt number 
of the first cylinder more than the second one. 

5.3.4. Variations of the Nusselt Number 
One of the main purposes of the heat transfer calculations involving cylinders is 
to determine the local and total transfer around isothermal cylinders. The effect 
of the flow, especially with respect to the heat transfer, can be better observed by 
analysing the local heat transfer coefficient, the Nusselt local number. In the 
Figure 23, for different Richardson numbers, the distribution of the Nusselt 
number along the perimeter of the upstream and downstream cylinders are pro-
vided. For 3ccL d = , 100Re = , 200Re =  and 500Re = , for different Rich-
ardson numbers, the local distributions of the Nusselt number along the peri-
meter of the upstream and downstream cylinders is provided. For 3ccL d = , 
although the local profile of the Nusselt number of the upstream cylinder is sim-
ilar to that of an isolated cylinder, the downstream cylinder has completely dif-
ferent characteristics. As the heat transfer rate is closely related to the flow, the 
local minimum rates of heat transfer appear at the front and back stagnation 
points of the downstream cylinder, where the magnitudes of velocities are rela-
tively small. 

Thus, in Figure 23(a), the maximum heat transfer from the downstream cy-
linder is exhibited with a double protuberance occurring at 57θ ≈   and 

265θ ≈   from the cylinder wall, where thermal layers (also known as thermal 
plumes) become thinner. The formation of vortices in the downstream region of 
the cylinder coincides with the oscillation of the average Nusselt number, from 
large amplitude to low amplitude, during a vortex release period for 3ccL d =  
and 500Re =  for different values of Ri, as observed in Figure 23(b). It is im-
portant to note that, although the Nusselt’s local distribution of the downstream 
cylinder resembles that of the upstream cylinder, typified as a large protuberance, 
 

 
Figure 23. Local variation of Nusselt number: (a) { }100,200,500Re∈  and 0Ri =  

(forced convection), and (b) 500Re =  and { }1,2,5Ri∈  (natural convection). 
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its magnitude is smaller than of the upstream cylinder, indicating smaller 
heat-to-cylinder transfer to downstream areas. 

6. Conclusions 

This work was devoted to the study of two-dimensional incompressible Newto-
nian fluids subject to heat transfer processes by mixed convection (natural and 
forced) at moderate Reynolds ( [ ]1,5000Re∈ ) and Richardson numbers 
( { }0,0.5,1,5Ri∈ ), with the Smagorinsky and Spalart-Allmaras models of tur-
bulence. Our goal was to continue exploring the potential of the immersed 
boundary method coupled with the virtual physical model for the analysis of 
turbulent flows, around cylinders, combined with heat transfer processes by 
mixed convection in stationary/mobile boundary problems without elasticity. In 
this context, different results were obtained throughout this work. In general, the 
methodology used here is applied to the Navier-Stokes equations with a force 
term that performs the modelling of the immersed interface. 

The discretization was performed by finite differences and the boundary con-
ditions were properly imposed on the fluid domain and on the immersed body. 
The updating of the different numerical fields (velocity, temperature, etc.) to the 
current time is carried out through the information of previous times. For the 
first iteration, the first order Euler method was used. For time advancing, the 
second-order Adams-Bashforth scheme was used, with a second-order spatial 
centred method, intended to contribute to the application of this methodology 
to flow problems, around complex bodies, with heat transfer by mixed convec-
tion. Without this numerical procedure, the kinetic energy of the so-called 
physical instabilities would accumulate, resulting in a numerical divergence. 

Flow simulations were also carried out around an isothermal square cylinder 
(with constant temperature on its surface), and around tandem isothermal cir-
cular cylinders. It was found that the simulations showed numerical conver-
gence, when compared with other works available in the literature. This paper 
presents an algorithm whose computational implementation has low processing 
time (even in mixed convection and turbulence). 

Flow parameters, such as Strouhal numbers, lift and drag coefficients, are ob-
tained and compared with the available literature, thus verifying the robustness 
of the results obtained by our code. The temperature, pressure, turbulence, vor-
ticity and isothermal lines were obtained to understand and interpret the flow 
and heat transport. In addition to the average Nusselt numbers, the local Nusselt 
numbers along the perimeter of the cylinders, the upstream and downstream 
were obtained. It was observed that, for moderate Reynolds numbers, the local 
Nusselt numbers of the downstream of the cylinder exhibit a generation of 
thermal plumes that move upwards, which is related to the increase in the num-
ber of Richardson. 
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