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Abstract 
Electric vibrators find wide applications in reliability testing, waveform gen-
eration, and vibration simulation, making their noise characteristics a topic of 
significant interest. While Variational Mode Decomposition (VMD) and Em-
pirical Wavelet Transform (EWT) offer valuable support for studying signal 
components, they also present certain limitations. This article integrates the 
strengths of both methods and proposes an enhanced approach that inte-
grates VMD into the frequency band division principle of EWT. Initially, the 
method decomposes the signal using VMD, determining the mode count 
based on residuals, and subsequently employs EWT decomposition based on 
this information. This addresses mode aliasing issues in the original method 
while capitalizing on VMD’s adaptability. Feasibility was confirmed through 
simulation signals and ultimately applied to noise signals from vibrators. Ex-
perimental results demonstrate that the improved method not only resolves 
EWT frequency band division challenges but also effectively decomposes sig-
nal components compared to the VMD method. 
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1. Introduction 

The electric vibrator serves as a crucial tool for mechanical environment testing, 
enabling the generation of controllable waveforms. As the noise signal encapsu-
lates substantial information concerning the operational characteristics of the 
vibrator, often exhibiting a chaotic nature [1] [2], accurate extraction of signal 
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features is imperative for analyzing the mechanism and characteristics of noise 
generation [3]. 

In recent years, numerous non-stationary signal analysis methods have been 
introduced. For instance, Potter introduced the short-time Fourier transform in 
1947, which elucidates the evolutionary characteristics of signal spectra [4]. 
Mallat proposed a matching pursuit algorithm based on the projection tracking 
algorithm, offering considerable flexibility for specific application scenarios [5]. 
While time-frequency analysis methods have significantly advanced signal de-
composition, they predominantly rely on Fourier transform as the foundational 
theory. Consequently, it often results in contradictory phenomena such as false 
signals and frequencies. For a more intuitive analysis of non-stationary signals, 
fundamental quantities and functions with locality are preferred. To address this 
need, Huang et al. introduced the Hilbert Huang transform [6], which, based on 
the concept of instantaneous frequency, led to the development of the Empirical 
Mode Decomposition (EMD) method by decomposing any signal into Intrinsic 
Mode Functions (IMFs) [7]. EMD, being both adaptive and localized, has found 
wide application despite its inherent drawbacks, such as modal aliasing and 
endpoint effects. 

To optimize EMD, two typical methods have emerged: Variational Mode De-
composition (VMD) and Empirical Wavelet Transform (EWT). VMD, proposed 
by Dragomiretskiy in 2014, formulates signal decomposition as a variational prob-
lem, offering a more solid mathematical foundation [8]. On the other hand, EWT, 
introduced by Gilles in 2013, integrates the adaptive decomposition concept of 
EMD with the tightly supported framework of wavelet transform theory, pre-
senting a novel adaptive time-frequency analysis approach for signal processing 
[9]. While VMD and EWT have been widely applied in various fields, such as 
earthquake prediction and fault diagnosis, they each possess unique characteris-
tics and limitations [10]-[12]. VMD’s mode decomposition is influenced by pa-
rameter settings, while EWT requires determination of the number of frequency 
band division. VMD and EWT are enhanced versions of the EMD algorithm. 
They can adaptively extract IMFs from non-stationary signals without the need 
to construct basis functions, making them suitable for decomposing various sig-
nals. Due to these capabilities, VMD and EWT share certain similarities, offering 
theoretical potential for their complementary use. Previous studies have attempted 
to integrate these two methods [13], yet the high adaptability of VMD mode se-
lection and EWT’s effective separation of harmonics with different frequencies 
in chaotic signals have not been fully exploited. Current research on the integra-
tion of these two algorithms lacks a clear framework for optimizing parameter 
settings. Besides, most approaches rely on empirical and heuristic methods, with-
out systematic theoretical support. 

Therefore, this article addresses the similarities and respective shortcomings 
of the VMD and EWT algorithms by proposing an enhanced approach that in-
tegrates VMD into the frequency band division principle of EWT. The validity 
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of this method is confirmed through simulations and experimental data obtained 
from the noise signals of an electric vibrator. Consequently, leveraging VMD’s 
adaptability to address EWT’s mode number selection problem presents a prom-
ising solution. 

The method proposed in this article effectively addresses issues such as the 
lack of adaptive mode selection and mode aliasing during feature extraction 
from non-stationary signals, as exemplified by electric vibrator noise. This im-
provement enhances both the efficiency and efficacy of signal decomposition, 
rendering it of significant application value and engineering importance. 

2. Algorithm Derivation 
2.1. Variational Mode Decomposition 

VMD is a non-recursive decomposition method capable of breaking down a 
signal into several finite bandwidth components. Assuming the noise signal f, its 
constrained variational model is depicted in Equation (1). 
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where, ( )tδ  represents the impulse function, ku  stands for the k-th compo-
nent obtained through decomposition, and kω  denotes the center frequency 
corresponding to ku . The optimal solution of Equation (1) can be obtained us-
ing the augmented Lagrange function, as follows: 
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where, α  represents the quadratic penalty factor, λ  denotes the Lagrange 
parameter. Employing the alternating direction multiplier method to derive the 
optimal solution of Equation (2), the decomposition component ku  and its 
corresponding center frequency kω  are obtained as 
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2.2. Empirical Wavelet Transform 

EWT automatically segments the frequency spectrum of signal f, subsequently 
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constructing an orthogonal filter bank to decompose f into several components. 
The detail coefficients of EWT decomposition are calculated as 

 1 ˆ ˆ( , ) ( )nW n t F f ψ−= ⋅  (5) 

where, n denotes the n-th frequency band after spectrum segmentation, f̂  
represents the Fourier transform of f; 1F −  denotes the inverse Fourier trans-
form; ˆnψ  stands for the conjugate of the Fourier transform of wavelet nψ . 

The approximate coefficients for EWT decomposition is as follows: 

 1
1

ˆ ˆ(0, ) ( )W t F f ϕ−= ⋅  (6) 

where, 1̂ϕ  is the conjugate of the Fourier transform of scaling function 1ϕ . 
The signal reconstruction equation for EWT is 
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where, * represents the convolution operator. The expression for the decomposi-
tion component is as 

 ( ) ( )0 10,f t W t ϕ= ∗  (8) 

 ( ) ( ),k kf t W k t ψ= ∗  (9) 

2.3. Enhanced Approach 

The recursive algorithms like EMD can introduce modal aliasing and endpoint 
effects, distorting the obtained physical information, while VMD offers improve-
ments in these aspects. However, the preset parameters can significantly impact 
the center frequency and narrow bandwidth of each mode. Moreover, if both the 
penalty factor and sampling frequency are incorrectly set, detecting parameter 
errors becomes challenging due to VMD’s high adaptability, despite resulting in 
problematic decomposition outcomes. Similarly, when using EWT for decom-
posing noisy signals, reasonable division of signal spectrum boundaries becomes 
imperative. Only through such division can effective components be separated 
from noise interference. Essentially, the center frequency and bandwidth of the 
modes after VMD are influenced by parameter settings. Although EWT can adap-
tively select bandwidth, determining the number of pattern decompositions re-
mains necessary. 

Hence, leveraging VMD’s capability to determine the number of modal de-
compositions based on actual conditions can address the challenge of selecting 
the number of EWT modes. To tackle these issues, this article proposes an en-
hanced approach that integrates VMD into the frequency band division prin-
ciple of EWT, referred to hereinafter as the Enhanced Approach. 

Implementation Steps of the Enhanced Approach: 
Step 1: Employ VMD to decompose the noise signals and vary the number of 

modal decompositions. Monitor the residuals, and upon stabilization with a 
sudden decrease, record the number of modal decompositions at stability as Ns. 
The EWT frequency band division number is then N = Ns − 1. 
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Step 2: Reconstruct the noise signal decomposed by VMD with a modal 
number of N, denoted as S.  

Step 3: Set the number of frequency bands to N, and utilize EWT to decom-
pose the reconstructed signal S. 

3. Approach Performance Analysis 

In this section, we will utilize the enhanced approach to analyze harmonic su-
perposition signals, comparing them with VMD to illustrate the superiority of it. 

To construct the ( )sigf t , we can use the following expression: 

 ( ) ( ) ( )( ) cos 8 1/ 3cos 32 1/ 9cos 96 ( )sigf t t t t n tπ π π= + + +  (10) 

The simulated signal comprises three cosine signals with frequencies of 4 Hz, 
16 Hz, and 48 Hz, respectively, alongside white noise with an amplitude of 1/50 
and a power of -20 dB. Sampling points are set to N = 2000, and the sampling 
frequency to fs = 1000 Hz. The waveform of the simulated signal is depicted in 
the following Figure 1. 

 

 
Figure 1. Simulated signal and its components. 

 
Utilizing VMD for signal decomposition, following the principles outlined in 

section 2.3, we observe that with a modal number set to 4, the peak residual val-
ue is 0.0049. Increasing the modal number to 5 yields a peak residual value of 
0.0048, while further raising it to 6 results in a sharp drop to 0.0037. Conse-
quently, the mode decomposition number indicating stability is 5. For EWT, the 
determined mode number by VMD is 4, with the corresponding frequency band 
division number set to 4. 
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The decomposition outcomes of the analog signal using VMD and EWT are 
presented in Figure 2 and Figure 3, respectively. The waveform of each mode 
component is evident and distinct, allowing clear differentiation of the ampli-
tude and frequency of each mode. This underscores the significance of modal 
number selection. 

 

 
Figure 2. VMD of simulated signals: (a) time-domain decomposition of signals, and (b) spectra of decomposed components. 
 

 
Figure 3. EWT decomposition of simulated signals: (a) time-domain decomposition of signals, and (b) spectra of decomposed 
components. 
 

In general, predicting the number of modes N for a signal segment without 
prior information can be challenging. Hence, Gilles proposed a straightforward 
N-value estimation method: detecting M maximum points in the Fourier spec-
trum of the signal and assembling them into a set {Mi}. These Mi values are then 
arranged in descending order within the set, yielding M1 > M2 > M3 > ... > MM. 
Setting a threshold at MM + β (M1 − MM), where β represents the relative ampli-
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tude ratio, the number of extreme points surpassing this threshold plus 1 cor-
responds to the value of N. 

 

 
Figure 4. Gilles principle for determining frequency band division numbers. 

 
Following this principle, the spectrum and the calculated threshold are de-

picted in Figure 4 (where β is 1/50). It is evident that the maximum value ob-
tained by Gilles’s method is 3, corresponding to a frequency band division of 4, 
which aligns with the frequency band division derived from the method dis-
cussed in this article. 

4. Experimental Analysis 

The structure of the EDM-3200 electric vibration system depicted in Figure 5(a) 
is illustrated in Figure 5(b). The electric vibrator primarily comprises a magnet-
ic circuit system and a motion system. The setup at the measurement site is illu-
strated in Figure 6, where microphone was positioned at each measurement 
point and connected to the MI-7008 signal processing unit. This unit was then 
linked to a computer for the collection and storage of noise signals at a sampling 
frequency of 51,200 Hz. This arrangement facilitated the capture of noise signals, 
enabling the determination of noise Sound Pressure Level (SPL) distribution 
based on the gathered data. To enhance the coherence, the research focuses on 
the noise signal generated by an electric vibrator operating at 1000 Hz with a 
magnitude of 5 g. 
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Figure 5. EDM-3200 electric vibrator: (a) the EDM-3200 electric vibration system, and (b) the structure of the vibrator. 
 

 
Figure 6. The setup at the measurement site. 

 
The time-domain signal of the noise is depicted in Figure 7. Clearly, the sig-

nal comprises fundamental waves around 50 Hz and a series of high-frequency 
harmonics. Despite the chaotic nature, they exhibit certain periodicity and regu-
larity. 

The octave frequency spectrum of the noise at a specific measuring point on 
the electric vibrator is illustrated in Figure 8. Upon analysis of the octave fre-
quency spectrum, it becomes apparent that the noise energy predominantly clus-
ters around the 1000 Hz frequency range. 

Similarly, Figure 9 represent time-frequency map generated from the short- 
time Fourier transform. The map reveals that the most prominent noise occurs 
in the low-frequency range and around 1000 Hz at the onset of signal collec-
tion. 

The VMD algorithm was utilized to decompose the noise signal, resulting in 
the extraction of IMFs and their corresponding frequency spectra, as illustrated 
in Figure 10. Based on the earlier mentioned judgment principle, when the 
modal number is set to 9, the residual of VMD decomposition is 0.057728. In-
creasing the modal number to 10 yields a residual of 0.056784, while further 
raising it to 11 results in a sharp drop to 0.042278. Consequently, the mode de-
composition number indicating stability is 10. For EWT, the mode number  
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Figure 7. The signal of noise under the working condition: sinusoidal 1000 Hz at 5 g. 

 

 
Figure 8. The octave spectra of noise under the working condition: sinusoidal 1000 Hz at 5 g. 
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Figure 9. Time-frequency characteristics of noise under the working condition: sinusoidal 1000 Hz at 5 g. 
 

 
Figure 10. VMD of noise signals: (a) time-domain decomposition of signals, and (b) spectra of decomposed components. 
 

determined by VMD is 9, with the corresponding frequency band division number 
set to 9. Among these decomposed components, low-frequency signals exhibit 
the largest proportion and pertain to the fundamental frequency signal. Howev-
er, the second largest proportion occurs near 250 Hz. The obtained result is not 
in line with the conclusions drawn from the preceding analysis. 

Hence, we utilize the EWT with a frequency band division of 9 to decompose 
the reconstructed signal after VMD, resulting in the extraction of Multi-resolution 
Analyses (MRAs) and their corresponding frequency spectrum, as illustrated in 
Figure 11. From the figure, it is evident that EWT can not only decompose low- 
frequency signals but also effectively separate the intermediate frequency signals 
(1000 Hz) corresponding to the signal octave spectrum and time-frequency 
map. This demonstrates both the advantages of EWT in alleviating mode alias-
ing and the result of EWT processing signals reconstructed after VMD decom-
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position, thereby additionally preventing the generation of interference terms. 
 

 
Figure 11. EWT decomposition of noise signals: (a) time-domain decomposition of signals, and (b) spectra of decomposed com-
ponents. 
 

 
Figure 12. Spectra of the two MRAs with the smallest amplitudes: when the number of frequency band division is set to 8, and (b) 
when the number of frequency band division is set to 10. 
 

Moreover, to validate the significance of frequency band division for the EWT 
method, we processed the signal using EWT algorithms with N = 8 and N = 10, 
respectively. Figure 12(a) and Figure 12(b) show the spectra of the two MRAs 
with the smallest amplitudes for N = 8 and N = 10, respectively. Based on the 
decomposition outcomes, it is evident that if the frequency band division of the 
EWT method is less than the correct division, it fails to completely separate the 
signals of all components. Conversely, when the number of frequency bands ex-
ceeds the correct number, it generates extra sub-signals, reducing the singularity 
of signal decomposition mode. 

5. Conclusion 

This article tackles the challenges posed by VMD mode aliasing and EWT’s li-
mited adaptability in partitioning frequency bands during signal decomposition. 
Building upon these two algorithms, an enhanced approach that integrates VMD 
into the frequency band division principle of EWT was proposed. This method 
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initially decomposes the signal through VMD, determines the number of modes 
based on residuals, and subsequently reconstructs the signal after VMD decom-
position using EWT decomposition. The results demonstrate that the proposed 
method effectively leverages the advantages of both VMD and EWT, enabling 
efficient decomposition of the noise signal generated by the electric vibrator. 
Furthermore, this method mitigates the drawback of the EWT method’s lack of a 
basis for frequency band division. In comparison to the VMD method, this ap-
proach accurately decomposes noise signals into corresponding frequency com-
ponents. 
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