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Abstract: This paper introduces a novel deep learning framework for robotic path planning that ad-
dresses two primary challenges: integrating mission specifications defined through Linear Temporal
Logic (LTL) and enhancing trajectory quality via cost function integration within the configuration
space. Our approach utilizes a Conditional Variational Autoencoder (CVAE) to efficiently encode
optimal trajectory distributions, which are subsequently processed by a Transformer network. This
network leverages mission-specific information from LTL formulas to generate control sequences,
ensuring adherence to LTL specifications and the generation of near-optimal trajectories. Addition-
ally, our framework incorporates an anchor control set—a curated collection of plausible control
values. At each timestep, the proposed method selects and refines a control from this set, enabling
precise adjustments to achieve desired outcomes. Comparative analysis and rigorous simulation
testing demonstrate that our method outperforms both traditional sampling-based and other deep-
learning-based path-planning techniques in terms of computational efficiency, trajectory optimality,
and mission success rates.

Keywords: deep-learning-based control synthesis; formal methods; mission-based path planning

1. Introduction

Path planning is a cornerstone of robotics, evolving from simple two-dimensional
navigation to addressing more complex systems such as robot manipulators [1–3] and
challenging scenarios [4–6]. This evolution underscores the necessity for sophisticated
path-planning algorithms capable of navigating both the physical aspects of environments
and the intricate requirements of diverse tasks.

Translating mission specifications, often articulated in human language, into computa-
tional models presents a significant challenge in path planning. Formal methods such as
Linear Temporal Logic (LTL), Computation Tree Logic (CTL), and µ-calculus are pivotal
in this area. LTL, in particular, is favored for its flexibility and expressive power in defin-
ing complex missions [7–9], offering a structured yet adaptable framework for encoding
mission objectives.

Additionally, the quest for trajectories that balance cost-effectiveness with computa-
tional efficiency is critical. For instance, in environments with variable communication
strengths, it is crucial to find low-cost paths that minimize exposure to areas with poor
connectivity. Traditional methods like Rapidly Exploring Random Tree Star (RRT∗) [10] are
effective but can be computationally demanding, especially under numerous constraints.

The integration of deep learning into path planning offers a promising alternative,
excelling in deriving optimal paths directly from data, thus mitigating the computational
drawbacks of conventional methods. These techniques have broadened their utility across
various domains, enhancing control strategies for robot manipulators [1] and addressing
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complex challenges in autonomous vehicle navigation [11,12]. The versatility and compu-
tational efficiency of deep learning approaches continue to propel advancements in the
field of robotics.

This paper introduces a novel deep learning framework for robotic path planning
that seamlessly integrates Linear Temporal Logic (LTL) formulas for mission specification
with advanced trajectory optimization techniques. Our model employs a Conditional
Variational Autoencoder (CVAE) and a Transformer network to innovatively generate
control sequences that adhere to LTL specifications while optimizing cost efficiency. This
integration marks a significant advancement in the fusion of deep learning with formal
methods for path planning.

Key contributions of our approach include:

1. Application of the Transformer Network:We utilize the Transformer network to inter-
pret LTL formulas and generate control sequences [13]. This allows for the effective
handling of complex mission specifications.

2. Conditional Variational Autoencoder (CVAE): The CVAE is employed to navigate
complex trajectory manifolds [14], providing the capability to generate diverse and
feasible paths that meet the mission requirements.

3. Anchor Control Set: Our framework includes an anchor control set—a curated col-
lection of plausible control values. At each timestep, the method selects and finely
adjusts a control from this set, ensuring precise trajectory modifications to achieve
desired objectives.

4. Incorporation of a Gaussian Mixture Model (GMM): The integration of a GMM to
refine outputs enhances our framework’s capacity to handle uncertainties, thereby
improving both the precision and reliability of path planning under LTL constraints.

These contributions collectively advance efficient robotic path planning by providing
near-optimal solutions that satisfy given LTL formulas.

As illustrated in Figure 1, our method synthesizes a control sequence distribu-
tion, enhanced by a GMM, for a given test scenario that adheres to the LTL formula
ϕ = ♢(a ∧♢(b ∧ (♢c))). This formula requires sequentially visiting regions a, b, and c.
The figure displays trajectories sampled from the output control sequence distribution
generated by the proposed approach. It is notable that these trajectories navigate through
low-cost areas (depicted in blue) while avoiding obstacles and fulfilling the specified
LTL requirements.

Figure 1. Illustrative example of trajectories generated using the proposed method in a test scenario.
The mission, specified by the Linear Temporal Logic (LTL) formula ϕ = ♢(a ∧♢(b ∧ (♢c))), requires
sequential visits to regions a, b, and c.

Our contributions establish new benchmarks for cost efficiency and computational
performance in robotic path planning. The effectiveness and superiority of our model
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compared to existing deep-learning-based strategies are demonstrated through rigorous
comparative simulations, showcasing its potential to significantly influence the field.

2. Related Work

Path planning is a foundational element of robotics, requiring a balance between low-
cost trajectories, complex dynamics, and precise mission specifications. The literature offers
a diverse range of strategies addressing these challenges with varying degrees of success.

Finite Deterministic Systems: Research in finite deterministic systems has explored
optimal controls with varied cost functions, such as minimax for bottleneck path prob-
lems [15] and weighted averages for cyclic paths [16]. However, these approaches often
struggle in continuous path-planning scenarios due to limitations in integrating robot
dynamics and the necessity for high-resolution discretization.

Sampling-based Motion Planning: Sampling-based methods, such as Rapidly Ex-
ploring Random Tree (RRT) [17], have addressed the integration of temporal logic and
complex dynamics. The Rapidly Exploring Random Graph (RRG) [18] and Rapidly Explor-
ing Random Tree Star (RRT∗) [19] demonstrate utility in optimizing motion planning but
face scalability and efficiency challenges as complexity increases.

Multi-layered Frameworks: Multi-layered frameworks that blend discrete abstrac-
tions with automata for co-safe LTL formulas [20–22] guide trajectory formation using
sampling-based methods. Despite advancements, these approaches often rely heavily on
geometric decomposition, which limits their computational efficiency.

Optimization Methods: Optimization techniques, especially those utilizing mixed-
integer programming, aim to achieve optimal paths under LTL constraints [23,24]. Al-
though effective, these methods encounter scalability issues when dealing with complex
LTL formulas and a growing number of obstacles. The cross-entropy-based planning
algorithm [25] enhances efficiency but also struggles with extensive LTL formulas.

Learning from Demonstration (LfD): LfD has increasingly integrated temporal logic
to enhance autonomous behaviors, employing strategies such as Monte Carlo Tree Search
(MCTS) adjusted with STL robustness values to enhance constraint satisfaction [26]. This
integration illustrates LfD’s potential in continuous control scenarios [27], with significant
developments in blending formal task specifications within LfD skills using STL and
black-box optimization for skill adaptation [28].

Trajectory Forecasting: Recent advances in trajectory forecasting have utilized deep
learning to predict future movements based on past data, aligning closely with LfD prin-
ciples. This research employs models such as Gaussian Mixture Models (GMMs) and
Variational Autoencoders with Transformer architectures to produce action-aware pre-
dictions [29,30]. These approaches push the envelope toward models that seamlessly
integrate global intentions with local movement strategies for improved adaptability and
accuracy [31].

3. Preliminaries

This section introduces the foundational concepts and notations critical for understand-
ing our approach to path planning under LTL specifications. Establishing a clear framework
is essential for a comprehensive presentation of the system model, dynamics, and temporal
logic that articulates the desired path properties. We will outline the mathematical for-
mulations that underpin our system’s model, explain the dynamics governing the system,
and detail the principles of LTL that are crucial for defining and evaluating trajectory
objectives. This groundwork is vital for understanding the complexities of autonomous
systems and their operational criteria, preparing the ground for a detailed exploration of
our proposed method.

3.1. System Model

To establish a foundation for our system model, we first introduce essential notations:

• X ⊂ Rn : The system’s state space.
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• Xobs ⊂ Rn : Space occupied by obstacles.
• X f ree = X \ Xobs : Free space not occupied by obstacles.
• U ⊂ Rm : Set of feasible controls.
• W ⊂ Rnw : Workspace in which the system operates.
• h : X → W : Mapping function from the state space to the workspace.

The system’s dynamics are described by the following equation:

ẋt = f (xt, ut), (1)

where xt ∈ X f ree represents the state of the system, ut ∈ U denotes the control input, and
f is a continuously differentiable function.

Given a control signal u over a time interval [0, T], the resulting trajectory x(x0, u)
starts from the initial state x0. The state of the system along this trajectory at any given time
t ∈ [0, T] is denoted by x(x0, u, t).

For discrete analysis, the trajectory x(x0, u) is sampled at time increments ∆t ∈ R+,
expressed as:

x∆t(x0, u) = {x(x0, u, i∆t)}i f
i=0, (2)

where i f ∈ N is the final time step, chosen based on the trajectory analysis requirements.
This sampling ensures that the discrete representation accurately captures the essential
dynamics of the trajectory over the analysis period, balancing computational efficiency
with simulation accuracy.

3.2. Linear Temporal Logic (LTL)

LTL is a formalism used to express properties over linear time [32]. It utilizes atomic
propositions (APs), Boolean operators, and temporal operators. An atomic proposition is
a simple statement that is either true or false. Essential LTL operators include ⃝ (next),
U (until), □ (always), ♢ (eventually), and ⇒ (implication). The structure of LTL formulas
adheres to a grammar outlined in [33].

In our framework, Π = {π0, π1, . . . πN} denotes the set of all atomic propositions. An
LTL trace, represented as σ, is a sequence of atomic propositions. LTL typically deals with
infinite traces, with Σω representing all possible infinite traces originating from Σ = 2Π. A
trace σ satisfies a formula ϕ if it is expressed as σ ⊨ ϕ.

For this study, we focus on finite-time path planning using syntactically co-safe LTL
(sc-LTL) formulas [34], which are particularly suited for finite scenarios. A sc-LTL formula
ϕ ensures that any infinite trace satisfying ϕ also has a finite prefix that satisfies ϕ. All
temporal logic formulas discussed in this paper adhere to the sc-LTL format.

3.2.1. Automaton Representation

Given a set of atomic propositions Π and a syntactically co-safe LTL formula ϕ, a non-
deterministic finite automaton (NFA) can be constructed [35]. For instance, for the formula
ϕ = ♢(a ∧♢(b ∧♢(c))), an example of the resulting NFA is depicted in Figure 2. This NFA
can be converted into a deterministic finite automaton (DFA), which is more suitable for
computational processes. A DFA is described by the tuple Aϕ = (Q, Σ, δ, qinit, Qacc), where:

• Q : Set of states
• Σ = 2Π : Alphabet, where each letter is a set of propositions
• δ : Q × Σ → Q : Transition function
• qinit ⊆ Q : Initial state(s)
• Qacc ⊆ Q : Accepting states

A trace σ from a DFA is accepted if, at any point, it leads to one of the accepting states
(i.e., σi ∩ Qacc ̸= ∅). Thus, a trace satisfies the sc-LTL formula ϕ (denoted as σ ⊨ ϕ) if it is
accepted by the DFA Aϕ.
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Figure 2. Example NFA for the sc-LTL formula ϕ = ♢(a ∧♢(b ∧♢(c))). The diagram illustrates four
states and the transitions based on the input alphabets.

3.2.2. LTL Semantics over Trajectories

In this work, we define regions of interest within the workspace, W , as P = {P1, . . . Pn}.
These regions of interest are specified by the user. Each atomic proposition, πj, from the
set Π, corresponds to a specific region of interest, Pj. We employ a labeling function,
L : W → 2Π, to map each point in the workspace to a set of atomic propositions that
are valid at that location. For any πi ∈ Π, the negation ¬πi holds true for all points
{w ∈ W |πi /∈ L(w)}. Notably, π0 remains true in all areas of the workspace except for the
defined regions of interest and obstacles.

For a discretized trajectory, represented as x∆t(x0, u) = x0, x1, . . . xm, which originates
from x0 and follows the control inputs u at each time step ∆t, the trajectory trace can be
defined as follows [20]:

trace(x∆t(x0, u)) = L(h(x0)), L(h(x1)), . . . L(h(xm)). (3)

This trace captures the sequence of atomic propositions valid at each point along the
trajectory, reflecting the dynamic interaction with the workspace.

Figure 3 illustrates an example of a trajectory and its associated trace. This visual
representation aids in understanding how the discrete segments of a trajectory map to
their corresponding traces. For a given trajectory trace trace(x∆t(x0, u)) = τ0, τ1, . . . τm,
we define the automaton state sequence Aϕ(trace(x∆t(x0, u))) = q0, q1, . . . qm with each qk
specified as:

qk =

{
δ(qinit, τ0) if k = 0
δ(qk−1, τk) if k > 0

. (4)

A trajectory x∆t(x0, u) complies with the LTL formula ϕ, denoted by x(x0, u)⊨∆tϕ, if the
automaton sequence reaches a subset of the accepting states Qacc.

Figure 3. A trace defined over a discretized trajectory: For given x∆t(x0, u) = x0, x1, . . . x5, its trace is
a sequence with 6 elements {π0 , ¬π1 , ¬π2}, {π0 , ¬π1 , ¬π2}, {¬π0 , π1 , ¬π2} , {π0 , ¬π1 , ¬π2},
{¬π0,¬π1, π2}, {π0,¬π1,¬π2}.

4. Proposed Method

Our approach primarily focuses on optimizing the accumulated cost J(x0, u), which is
the line integral of a cost function c over a trajectory, mathematically expressed as:

J(x0, u) =
1
T

∫ T

0
c(x(x0, u, t))dt, (5)
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where c : X → R+ is a bounded and continuous cost function, u represents the control
signal from t = 0 to t = T, and x0 is the initial state. Mission tasks are defined using a
syntactically co-safe LTL formula, with each atomic proposition associated with a specific
region of interest.

This paper introduces a novel deep learning framework for robotic path planning
that significantly advances the synthesis of near-optimal control sequences. Our method is
designed to meet specific mission requirements, adhere to system dynamics (as defined in
Equation (1)), and optimize cost efficiency (as outlined in Equation (5)).

At the core of our innovative approach is the integration of a Conditional Variational
Autoencoder (CVAE) with Transformer networks, creating an end-to-end solution that
represents a significant leap forward in path-planning research. The CVAE plays a crucial
role in learning the distribution within the latent space of optimal control sequences,
enabling the generation of sequences that satisfy LTL constraints while minimizing costs.

Our methodology leverages convolutional neural networks (CNNs) to transform envi-
ronmental inputs—such as cost maps, regions of interest, and obstacle configurations—into
an image-like format, thus optimizing the processing of spatial information.

A distinctive feature of our research is the introduction of an anchor control set. In-
stead of directly generating a control sequence, our method selects an appropriate control
from the anchor control set at each timestep. This selection and subsequent refinement are
facilitated by a Gaussian Mixture Model (GMM), which effectively accounts for environ-
mental uncertainties. This approach enables more precise control predictions and enhances
the system’s robustness against dynamic and unpredictable conditions.

The process begins with the Transformer’s decoder generating an initial anchor control
value, which is then refined by the GMM to incorporate minor uncertainties. This integra-
tion, bolstered by learning from the latent distribution, significantly improves the precision
and reliability of control sequence predictions. Our structured approach innovatively ad-
dresses uncertainties, thereby enhancing the robustness of our path-planning framework.

In summary, the proposed method offers several key advantages:

1. End-to-end approach: By employing a Transformer network to encode LTL formulas,
our method eliminates the need for the discretization processes and graph represen-
tations typically required in previous studies. This streamlined approach simplifies
the encoding and handling of complex specifications directly within the network
architecture.

2. Step-by-step uncertainty consideration: Our approach meticulously addresses uncer-
tainties within the path-planning process. The latent space is designed to account for
major uncertainties, while the selection of controls from the anchor control set and
their subsequent refinement through the GMM framework effectively manage minor
uncertainties, enhancing the robustness and reliability of the trajectory planning.

Subsequent sections will delve deeper into our methodology, particularly focusing
on the innovative implementation of anchor controls within the GMM framework and
its profound implications. Through this detailed exploration, we aim to provide a clear
understanding of the significant advancements our strategy introduces to the field of
path planning.

4.1. Data Components

This section outlines the input configurations employed in our deep learning frame-
work, designed to facilitate the interpretation of LTL formulas. To simplify the association
of LTL formulas with spatial regions, regions of interest within the operational environment
are denoted alphabetically, starting with a.

Our framework utilizes two primary data components: the state image X and the so-
lution control sequence U. The state image X consists of multiple layers, each representing
different environmental features in a format readily processed by the neural network. As il-
lustrated in Figure 4, these layers include the costmap, obstacles, regions of interest, and the
initial position, with each layer stacked to provide a comprehensive environmental context.
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Figure 4. Configuration of the state image X for regions of interest {a, b, c}. Layers are sequentially
arranged to depict the costmap, obstacles, regions of interest, and the initial state.

The generation of control sequences is guided by methodologies from our prior re-
search [36], which align with our system dynamics as defined in Equation (1) and the
specifications of co-safe temporal logic. Specifically, the adopted approach focuses on iden-
tifying low-cost trajectories that comply with given co-safe temporal logic specifications,
with LTL semantics evaluated against the trajectories to ensure adherence to necessary
specifications.

Our data generation strategy is specifically tailored to accommodate environmental
constraints and LTL objectives relevant to our study. This strategy is depicted in Figure 5,
illustrating how environmental parameters and LTL formulas are transformed into output
control sequences. When the length of generated sequences falls short of the maximum
designated length, dummy control values are utilized as placeholders to maintain uniform
sequence length, aiding in standardizing the training process across different scenarios.

Figure 5. Visual representation of the data generation methodology, highlighting the integration of
state images and control sequences derived from distinct LTL formulas.

4.2. Anchor Control Set

In our proposed model, we utilize an anchor control set A = {ak}K
k=1, consisting of a

predefined, fixed set of control sequences. Each anchor control, ak, is a sequence of control
inputs [uk

0, uk
1, . . . uk

HA−1] that spans a designated time horizon HA. It is important to note
that this time horizon HA is not necessarily equivalent to the time horizon of the final
solution’s control sequence.

The use of longer sequences for each anchor control, rather than single timestep
controls, is motivated by the difficulty of capturing significant behavioral trends with
overly granular, single-step data. In the control generation stage of our network, which
will be elaborated on in subsequent sections, controls are selected in bundles of HA rather
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than individually per timestep. This approach simplifies the decoder’s prediction tasks
compared to methods that operate on a per-timestep basis, thereby enhancing both the
efficiency and efficacy of our model.

To construct the anchor control set, we derived it from a dataset using the k-means
clustering algorithm. The distance between two anchor controls, necessary for the clustering
process, is calculated as follows [29]:

d(ai, aj) =
HA

∑
t=0

∥ui
t − uj

t∥
2
. (6)

This metric ensures that the controls within our set are optimally spaced to effectively cover
diverse potential scenarios.

4.3. Proposed Architecture

The architecture of our proposed deep learning network is depicted in Figure 6. This
comprehensive end-to-end system processes inputs from the environmental image and
LTL formula to the final generation of the control sequence.

• Data components (1st row): The input layer consists of the multi-channeled state
image X, the initial state x0, the LTL formula ϕ, and the solution control sequence U.
These components establish the context and objectives for path planning.

• Training phase (2nd row): During training, the network utilizes the solution control
sequence U from the dataset to train the Conditional Variational Autoencoder (CVAE).
This enables the network to effectively learn the latent distribution, facilitating accurate
prediction of the control sequence Û that adheres to the LTL specifications.

• Testing phase (3rd row): In the testing phase, the architecture demonstrates how latent
samples are converted into predicted control sequences, validating the trained model’s
efficacy in real-world scenarios.

Figure 6. Overview of the proposed end-to-end deep learning network, illustrating the flow from
input data components through the training and testing phases to the output control sequences.

This network not only streamlines the transition from input to output but also ensures
that all elements, from environmental conditions to control strategies, are integrated within
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a unified framework. By detailing each phase of the network, we provide a clear pathway
from data ingestion to practical application, highlighting the network’s capacity to adapt
and respond to complex path-planning demands.

In the encoding stage, the network processes the input data using specialized com-
ponents. A CNN encodes the state image, while Transformer encoders [13] handle the
encoding of control sequences and LTL formulas. The LTL formulas are encoded by trans-
forming each character into an embedded representation using a predefined set of alphabet
and operator symbols. The resulting encoded outputs—hX for the state image X and initial
state x0, hϕ for the LTL formula ϕ, and hU for the solution control sequence U—are then
integrated to facilitate the learning process.

A key feature of our network is the implementation of a CVAE, chosen for its efficacy
in handling high-dimensional spaces and versatility with various input configurations.
The CVAE is instrumental in generating output control sequences by exploring the latent
space. During training, it learns a probability distribution representing potential control
sequences, conditioned on the encoded state image hX and LTL formula features hϕ.

Our CVAE model includes three crucial parameterized functions:

• The recognition model qν(Z|hX, hϕ, hU) approximates the distribution of the latent
variable Z based on the input features and the control sequence. It is modeled as a
Gaussian distribution, N (µν(hX , hϕ, hU), Σν(hX , hϕ, hU)), where µν and Σν represent
the mean and covariance determined by the network.

• The prior model pθ(Z|hX, hϕ) assumes a standard Gaussian distribution, N (0, I),
simplifying the structure of the latent space.

• The generation model pθ(U|z, hX , hϕ) calculates the likelihood of each control sequence
element ui based on the latent sample z and the encoded inputs, computed as the
product of conditional probabilities over the sequence’s length NA × HA. This model
is implemented in the Control Generation Module depicted in Figure 7.

A sample z drawn from the recognition model is fed into the decoder, which then
generates the predicted control sequence. The length of this control sequence is NA × HA,
reflecting the selection of NA anchor controls, each with a time length of HA.

4.4. Control Generation Module

The architecture of our proposed control generation module is depicted in Figure 7.
This module efficiently synthesizes the entire control sequence distribution from the latent
sample z and encoded information hX, hϕ in a single step, utilizing a non-autoregressive
model to enhance efficiency and coherence. The GMM projection networks share parame-
ters across all calculations, ensuring consistency.

Figure 7. Schematic of the control decoder architecture, illustrating how the distribution of the output
control sequence is generated from the latent sample z and encoded information hX , hϕ.
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In this model, a Transformer decoder utilizes sinusoidal positional encodings to
integrate time information as the query, while the latent vector, combined with the encoded
state image and LTL formula features, acts as the key and value. This configuration, coupled
with a GMM mixture module, enables the Transformer decoder to generate the output
control sequence distribution as defined by the following equation:

pθ(U|z, hX , hϕ) =
NA

∏
t=0

K

∑
k=1

αk
tN

(
ũt|ak + µk

t , Σk
t
)
. (7)

In this formulation:

• αk
t , µk

t , and Σk
t are the mixture coefficients, means, and covariances of the GMM,

respectively, produced by the GMM projection network.
• ak represents the anchor control from the set A.
• K is the number of mixture components, equal to the number of anchor controls,

demonstrating the model’s capability to represent complex distributions of control
sequences.

• Each ũt spans the time horizon HA.

This approach uses the GMM to integrate the latent variable z, historical state image
data hX , and LTL formula features hϕ, creating a probabilistic space where potential control
sequences are distributed around the anchor control ak. This serves as a central reference
point, enabling the identification of feasible control sequences within the operational
domain. Unlike static models, ak and the GMM adapt predictions to varying conditions
and uncertainties inherent in dynamic environments, enhancing the model’s flexibility.

To maintain focus on the model’s predictive capability and avoid unnecessary complex-
ity, we present the GMM parameters directly without delving into the detailed functional
dependencies on θ. This straightforward presentation underscores the model’s utility
in forecasting control sequences that are both feasible and optimized according to the
computed probability distributions.

4.5. Loss Function for Training Phase

The training of our CVAE is governed by the Evidence Lower Bound (ELBO) loss
function, which is initially formulated as:

Eqν(Z|hX ,hϕ ,hU)[log pθ(U|z, hX , hϕ)]−DKL
(
qν(z|hX , hϕ, hU)||pθ(z|hX , hϕ)

)
. (8)

To better suit our application’s specific requirements, we adapt the ELBO function and
define the loss function as follows:

−∑NA
t=0 log

(
pθ(ũt|z, hX , hϕ)

)
+ λ · DKL

(
N

(
µν(hX , hϕ, hU), Σν(hX , hϕ, hU)

)
||N (0, I)

)
, (9)

where ũt represents an element of the control sequence U, NA is the number of anchor
controls, and λ is a scaling factor used to balance the terms. The Kullback-Leibler diver-
gence (DKL) measures how one probability distribution diverges from a second, reference
probability distribution. We set λ = 1, optimizing parameters ν and θ by minimizing this
loss function.

The first term of Equation (9), which leverages Equation (7), is detailed as follows:

log
(

pθ(ũt|z, hX , hϕ)
)
= ∑NA

t=0∑
K
k=11(k = k̂t)

[
log αk

t + logN
(
ũt|ak + µk

t , Σk
t
)]

. (10)

This expression represents a time-sequence extension of the standard GMM likelihood fit-
ting [37]. The notation 1(·) is the indicator function, and k̂t is the index of the anchor control
that most closely matches the ground-truth control, measured using the l2-norm distance.
This hard assignment of ground-truth anchor controls circumvents the intractability of
direct GMM likelihood fitting, avoids the need for an expectation-maximization procedure,
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and allows practitioners to precisely control the design of anchor controls as discussed
in [29]. This formulation underlines our methodology for estimating the probability distri-
bution of control sequences, essential for ensuring that the model effectively handles the
diversity of potential solutions and manages uncertainties.

4.6. Test Phase

During the test phase, the control decoder operates by processing a latent sample z,
drawn from the prior distribution. This sample is deterministically transformed into a
control sequence distribution as defined in Equation (7). From this distribution, the solution
control sequence is generated.

The generation of the control sequence is a continuous process that persists until one
of the following conditions is met: the sequence satisfies the specified LTL constraints, a
collision with an obstacle occurs, or the sequence moves beyond the boundaries set by the
cost map.

5. Experimental Results

This section details the outcomes from a series of simulations and experiments using
the Dubins car model, which adheres to the following kinematic equations:

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = ω, (11)

where (x, y) represents the car’s position, θ the heading angle, and v and ω the linear
and angular velocities, respectively. It is important to note that the symbol θ is used
elsewhere in this manuscript to denote different concepts unrelated to its usage here as the
vehicle’s heading.

We conducted three distinct sets of simulation experiments to comprehensively evalu-
ate the proposed method’s effectiveness and versatility. The first set involved generated
costmaps to test the method’s performance in controlled environments, focusing on its
ability to navigate based on cost efficiency. The second set utilized real-world data, in-
corporating a traffic accident density map from Helsinki, to demonstrate the method’s
applicability and performance in real scenarios. The third set involved autonomous driving
contexts, where the method demonstrated stable control sequence generation amidst the
dynamic movement of surrounding vehicles.

The datasets for learning, including costmaps, were created as follows:

• First and second experiments: Gaussian process regression was employed to generate
training costmaps, each containing no more than four regions of interest and no
more than eight obstacles. Using the dynamic model defined in Equation (1), near-
optimal control sequences were computed based on the method described in [36].
The resulting dataset comprised 800 costmaps, each facilitating the generation of
1500 control sequences, thereby capturing a wide range of environmental scenarios.
To enhance the robustness and generalizability of our model, variability was in-
troduced in the data generation phase by randomly varying the starting positions,
placements of regions of interest, obstacle configurations, and assignments of LTL
formulas for each dataset instance. This approach was designed to simulate a diverse
set of potential operational scenarios, thereby preparing the model to handle a wide
range of conditions effectively.

• Last experiment: In the final autonomous driving experiment, the costmap was
generated from the highD dataset [38]. High costs were assigned to areas where other
vehicles were present and to out-of-track areas. In this experiment, three types of LTL
formulas were used: lane change to the left, lane keeping, and lane change to the right.
Each data instance consists of a costmap, an LTL formula, and a control sequence.
The LTL formula was selected as the closest match from the dataset based on the
control sequence. For example, if the vehicle changes lanes to the left in the data, an
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LTL formula related to “lane change to the left” is selected. The dataset comprised
1,000,000 instances. Please refer to the relevant subsection for a detailed explanation.

For network input, images were standardized to 128 × 128 pixels to comply with
the memory capacity limitations of our GPU hardware. This resolution strikes a balance
between retaining essential environmental details and maintaining computational feasibil-
ity. The network was trained over 300 epochs to ensure adequate learning depth, with a
batch size of 32 to optimize the balance between memory usage and convergence stability.
An initial learning rate of 1 × 10−3 and a weight decay of 1 × 10−5 were empirically set
to provide an optimal compromise between training speed and minimizing the risk of
overfitting.

In the experimental setup, the number of anchor controls K was defined as 20, and the
anchor control set A was established using the entire training data.

Simulation experiments were conducted on an AMD R7-7700 processor with an RTX
4080 Super GPU, and the proposed network was implemented using PyTorch (version
2.2.1) [39].

The results for each experiment are described in the subsequent subsections.

5.1. The Generated Costmap

Figure 8 showcases the test costmap, synthesized using the same methods as those for
the training costmaps. The costmap features regions of interest, marked with red boxes
labeled with alphabetic identifiers, and obstacles are indicated by gray boxes.

In our experimental setup, we aimed to assess the robustness and effectiveness of
our system across various LTL missions. These missions were categorized into sequential
missions (ϕtoy1 and ϕtoy4) and coverage missions (ϕtoy2 and ϕtoy3). A mission was deemed
incomplete if the system either exceeded the maximum allowed sequence length or en-
countered a collision, thereby failing to meet the mission criteria. Each row in the figure
corresponds to a set of four subfigures, each varying by the initial position. Trajectories
generated from the output distribution (as defined in Equation (7)) are displayed as red
lines in each subfigure.

The proposed method strategically generates control sequences that traverse low-cost
areas, depicted in blue, to effectively complete the LTL missions. Notably, these sequences
successfully avoid collisions even in environments with obstacles. For coverage missions,
as shown in Figure 8b,c, the solution paths differ in the order they visit regions of interest,
which varies according to the starting position. For example, in Figure 8c, the sequences in
each subfigure visit the regions in various orders, such as “c->b->a”, “a->b->c”, “a->b->c”,
and “b->c->a”.

(a)ϕtoy1 = ♢(a ∧♢(b)), “Visit regions a and b sequentially.”

(b)ϕtoy2 = ♢(a) ∧♢(b), “Cover regions a and b.”

Figure 8. Cont.



Electronics 2024, 13, 2437 13 of 19

(c)ϕtoy3 = ♢(a) ∧♢(b) ∧♢(c), “Cover regions a, b and c.”

(d)ϕtoy4 = ♢(a ∧♢(b ∧ (♢c))), “Visit regions a, b and c sequentially.”

Figure 8. Solution trajectories generated by the proposed method for different LTL formulas, denoted
as ϕtoyi, shown in each subfigure.

Figure 9 presents solution trajectories generated by the proposed network for an LTL
mission specified by ϕ = ♢(a) ∧♢(b) ∧♢(c), which mandates visiting regions of interest a,
b, and c at least once. In this figure, trajectories colored identically originate from the same
latent sample value. The latent distribution governs the sequence in which the regions of
interest are visited, ensuring compliance with the LTL mission, while the GMM component
of the control decoder models the uncertainty within this sequence.

For example, in subfigure (b), the orange trajectories represent a sequence visiting a,
followed by b, then c. Conversely, the green trajectories depict a sequence visiting a, c, and
then b. This variability illustrates the network’s ability to generate diverse solutions that
not only adhere to the given LTL mission but also effectively account for uncertainties.

(a)

(b)

Figure 9. Solution trajectories for an LTL mission ϕ = ♢(a) ∧♢(b) ∧♢(c), requiring at least one visit
to each region of interest a, b, and c. Trajectories sharing the same color are derived from the same
latent sample value.

Performance evaluation of the developed path-planning approach was conducted
through comparative experiments. These experiments aimed to quantify trajectory cost
and mission success rates across various scenarios characterized by different lengths of
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sequential LTL formulas (|ϕ|) and obstacle counts (nobs). The length of a sequential LTL
formula corresponds to the number of specified regions of interest.

The experimental design included 250 trials per scenario, which featured varying
costmap configurations, region of interest placements, obstacle locations, initial positions,
and LTL formulas. To ensure a comprehensive evaluation of the approach’s robustness,
these elements were systematically varied within each trial. Trials lacking feasible solution
paths were excluded to maintain the integrity of the experiment.

The method’s performance was benchmarked against several established deep learn-
ing models:

• MLP: A basic Multilayer Perceptron architecture.
• Seq2Seq-LSTM: A sequence-to-sequence model using LSTM networks [40].
• TCN: A Temporal Convolutional Network [41].
• TFN: A Transformer network model [13].

These models were trained to map initial conditions and LTL formulas to control
sequences, with a CNN feature extractor handling image-like inputs. The LTL formula ϕ
was encoded as an input sequence using the same embedding technique employed in the
proposed method. Additionally, LBPP-LTL [36], a sampling-based path-planning algorithm
noted for its longer computation times but guaranteed asymptotic optimality, was included
as a benchmark for cost performance despite its computational intensity.

The results, summarized in Table 1, present the average trajectory cost and mission
success rate for each model in the evaluated scenarios. The LBPP-LTL method serves as
a baseline, with its trajectory cost normalized to 1, providing a standard for comparison
despite its computational demands.

Table 1. Comparative Performance of Path Planning Approaches on Scenarios with Sequential LTL
Missions. This table details trajectory costs and LTL mission success rates, categorized by the length
of the LTL missions (|ϕ|) and the number of obstacles (nobs). Metrics are normalized against the
LBPP-LTL benchmark, which is set with a normalized trajectory cost of 1 and a mission success rate
of 100%.

|ϕ| = 2, nobs = 1 |ϕ| = 2, nobs = 3 |ϕ| = 3, nobs = 2 |ϕ| = 3, nobs = 5

Trajectory cost (relative)
MLP 1.391 1.401 1.417 1.445
Seq2Seq-LSTM 1.180 1.186 1.190 1.209
TCN [41] 1.187 1.193 1.198 1.215
TFN [13] 1.075 1.097 1.102 1.114
Proposed 1.081 1.086 1.093 1.107
LBPP-LTL [36] 1.000 1.000 1.000 1.000

LTL mission success rate
MLP 92.4% 90.4% 88.8% 87.2%
Seq2Seq-LSTM 96.4% 94.4% 93.6% 92.8%
TCN [41] 96.0% 93.6% 92.8% 91.6%
TFN [13] 98.0% 95.6% 95.2% 94.0%
LBPP-LTL [36] 100% 100% 100% 100%

The experimental findings indicate that the proposed method outperforms other
deep-learning-based path-planning techniques in terms of cost efficiency and success rate
for missions defined by LTL. This superior performance can be primarily attributed to
two novel aspects of the proposed method: (1) the adoption of advanced transformer
networks for accurate sequence prediction, and (2) the effective incorporation of diversity
and uncertainty into the path-planning process through latent space modeling paired
with GMMs. Although the LBPP-LTL algorithm demonstrates superior trajectory cost and
LTL mission success rates, its practicality is moderated by the requirement for extensive
computational resources. These results highlight the capability of the proposed method to
reliably approximate optimal solutions with reduced computational demands.
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5.2. The Helsinki Traffic Accident Map

This section examines autonomous navigation for traffic surveillance within a desig-
nated area of Helsinki, as depicted in Figure 10. The map identifies four regions of interest
with alphabetic labels and obstacles as gray regions.

For path planning, a traffic accident density map was synthesized using Gaussian
process regression based on historical traffic accident data [42]. This map distinguishes
areas with higher accident density as high cost and those with lower density as low cost,
affecting the path-planning algorithm’s cost evaluations.

(a)Traffic accident locations in Helsinki. (b)Traffic accident density map.

Figure 10. Visual representation of Helsinki’s traffic landscape: (a) Traffic accidents marked with
red dots, regions of interest alphabetically labeled, and obstacles shown in gray. (b) Traffic accident
density map, where blue denotes low-density (low-cost) areas and red signifies high-density (high-
cost) zones.

The study outlines three distinct scenarios, each associated with a unique mission
profile defined by Linear Temporal Logic (LTL) formulas:

Scenario1 : ϕh1 = ♢(a ∧♢(b ∧ (♢c))).
Scenario2 : ϕh2 = ♢(b) ∧♢(c) ∧♢(d).
Scenario3 : ϕh3 = ♢(b ∧ ((w ∨ a)U(a ∧ ((w ∨ b)U(c))))).

ϕh1 and ϕh2 are designed for sequential and coverage missions across three distinct regions,
respectively. ϕh3 specifies a strict sequential mission where w represents the workspace
adjacent to the regions of interest.

These formulas define the autonomous agent’s mission objectives. Specifically, ϕh1
mandates the agent to sequentially visit regions a, b, and c. ϕh2 requires coverage of regions
b, c, and d, ensuring each is visited at least once. ϕh3 dictates a strict sequence for visiting
regions b, a, and then c, focusing on a precise navigational order.

Figure 11 illustrates the trajectories computed by the proposed algorithm for these sce-
narios within the Helsinki traffic framework. The proposed method successfully generates
low-cost paths that adhere to the specified LTL missions, demonstrating its effectiveness.

(a) ϕh1 (b) ϕh2 (c) ϕh3

Figure 11. Solution paths on the Helsinki traffic scenario map, demonstrating the successful comple-
tion of designated LTL missions.
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5.3. Application to an Autonomous Driving Environment

In the dynamic landscape of autonomous driving, reactive planning is paramount for
safe navigation. The solution of the proposed network was utilized as the output of the
reactive planner. During the evaluation, three Linear Temporal Logic (LTL) formulas were
employed (Figure 12):

• ϕle f t = ♢(Rle f t) ∧□(Rtrack) ∧□(¬Rother);
• ϕcenter = ♢(Rcenter) ∧□(Rtrack) ∧□(¬Rother);
• ϕright = ♢(Rright) ∧□(Rtrack) ∧□(¬Rother).

Here, Rle f t, Rcenter, and Rright denote temporal goal regions, Rtrack denotes the region
inside the track, and Rother denotes regions occupied by other vehicles. The formula
ϕle f t = ♢(Rle f t) ∧□(Rtrack) ∧□(¬Rother) signifies the goal to “reach the region Rle f t while
remaining within the track region (□(Rtrack)) and avoiding collisions with other vehicles
(□(¬Rother)).”

For each situation, one of the three LTL formulas was selected, and a control sequence
corresponding to the chosen LTL formula was generated. Generally, ϕcenter is selected, with
the lane-changing formulas (ϕle f t, ϕright) being chosen only in specific times.

Figure 12. Three LTL formulas for the autonomous driving experiment.

Figure 13 presents snapshots from the experiment conducted using the highD dataset [38].
The decision to change lanes was made at specific points in time, allowing up to two lane
changes per trial. In the figure, the ego vehicle is marked in blue, with its trajectory
indicated by a blue line. Each subfigure contains three snapshots from a single trial, with
lane change points indicated by arrows.

(a)

(b)

Figure 13. Cont.
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(c)

Figure 13. Snapshots of the autonomous driving experiment. The ego vehicle is marked in blue, with
its trajectory indicated by a blue line. Lane change points are highlighted by arrows.

Comparison experiments with other deep learning methods were conducted. We
selected a test dataset from the highD dataset, which includes 60 tracks. The test dataset
specifically included track IDs 10, 20, 30, 40, and 50, which were not used during the
training stage. For each track, 200 trials were conducted. Each trial involved controlling
a different vehicle, ensuring fairness by using the same vehicle for each method. The
success metric was defined as the controlled vehicle reaching the end of the lane without
incidents (collisions or going off track). Table 2 summarizes the results. The proposed
method exhibited superior safety compared to other deep learning methods.

Table 2. Success ratio (percentage) in the highD dataset.

Track ID: 10 Track ID: 20 Track ID: 30 Track ID: 40 Track ID: 50

MLP 90.0 89.5 86.5 85.5 88.0
Seq2Seq-LSTM 91.0 90.0 89.0 88.0 89.5
TCN [41] 90.5 89.5 87.5 86.5 88.5
TFN [13] 93.5 92.0 91.0 90.0 92.5
Proposed 94.5 92.5 91.5 91.0 93.0

6. Conclusions

This study presents a pioneering path-planning approach that effectively integrates
co-safe Linear Temporal Logic (LTL) specifications with an end-to-end deep learning archi-
tecture. Our method stands out for its ability to generate near-optimal control sequences
by combining a Transformer encoder, which is informed by LTL requirements, with a
Variational Autoencoder (VAE) enhanced by Gaussian Mixture Model (GMM) components.
This architecture adeptly handles the complexities of path planning by accommodating a
diverse range of tasks and managing inherent uncertainties within these processes.

Empirical evaluations demonstrate the significant advantages of our approach over
existing deep learning strategies. In our experiments, the proposed method consistently
outperformed other methods in terms of safety and efficiency, particularly in the context
of autonomous driving scenarios using the highD dataset. Our approach achieved higher
success rates in reaching the end of the lane without incidents, indicating its robustness
and reliability. Furthermore, the method’s adaptability and scalability were highlighted
through various test cases involving both synthetic and real-world data.

The results confirm the method’s suitability for a wide array of systems, significantly
enhancing path-planning processes. By effectively addressing the challenges posed by
complex environments and logical constraints, our approach offers a robust solution for
diverse robotic applications.

Looking ahead, we aim to apply our methodology to more challenging high-dimensional
path-planning problems, particularly those involving additional logical constraints and in-
tricate operational contexts, such as multi-joint robotic manipulations. Expanding our focus
to these areas is expected to yield further valuable insights into robotics and automation,
enhancing the sophistication and efficiency of path-planning techniques.
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The integration of deep learning with logical frameworks in our study represents a
significant advancement in robotic path planning, paving the way for more complex and
effective mission executions in the future.
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