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Abstract: The Warburg effect, characterized by the preferential conversion of glucose to lactate even
in the presence of oxygen and functional mitochondria, is a prominent metabolic hallmark of cancer
cells and has emerged as a promising therapeutic target for cancer therapy. Elevated lactate levels
and acidic pH within the tumor microenvironment (TME) resulting from glycolytic profoundly
impact various cellular populations, including macrophage reprogramming and impairment of
T-cell functionality. Altogether, the Warburg effect has been shown to promote tumor progression
and immunosuppression through multiple mechanisms. This review provides an overview of
the current understanding of the Warburg effect in cancer and its implications. We summarize
recent pharmacological strategies aimed at targeting glycolytic enzymes, highlighting the challenges
encountered in achieving therapeutic efficacy. Additionally, we examine the utility of the Warburg
effect as an early diagnostic tool. Finally, we discuss the multifaceted roles of lactate within the TME,
emphasizing its potential as a therapeutic target to disrupt metabolic interactions between tumor and
immune cells, thereby enhancing anti-tumor immunity.

Keywords: tumor metabolism; tumor microenvironment; Warburg effect; aerobic glycolysis;
immunomodulation

1. Introduction

Almost a century ago, Otto Warburg described that tumors undergo the oxidation
of glucose into lactic acid, even in the presence of oxygen [1]. This phenomenon, now
known as the Warburg effect or aerobic glycolysis, involves the conversion of glucose into
pyruvate and subsequently into lactate, despite cancer cells possessing a fully functional
mitochondrial respiratory chain and complete biochemical competence to utilize this
pathway for ATP production.

The metabolic shift towards the oxidation of glucose into lactate stands out as a distinctive
feature across various tumor types. What is more, altered cellular metabolism has been
identified as one of the characteristic hallmarks of cancer [2]. Thus, the prevalence of a high
rate of glucose catabolism into lactate is the most widespread metabolic phenotype observed
in cancer cells [3]. The presence of the Warburg effect has been described in most tumor types,
including, but not limited to, glioblastoma [4], pancreas [5], breast [6,7], and cervix [8].

2. Glycolysis

Glucose enters the cell via glucose transporters (GLUT), a group of transmembrane
proteins that allow glucose entrance by facilitated diffusion (Figure 1). Once within the cell,
glucose undergoes phosphorylation to form glucose-6-phosphate, catalyzed by hexokinase
(HK). This reaction consumes one ATP molecule, rendering the glucose molecule charged
and effectively trapped inside the cell. Glucose-6-phosphate can go into the pentose phos-
phate pathway (PPP) or enter glycolysis, where it undergoes a series of conversions through
hexose phosphates, ultimately producing fructose 1,6-bisphosphate. This transformation
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requires an additional ATP molecule and is catalyzed by phosphofructokinase (PFK). HK
and PFK serve as key regulatory enzymes in glycolysis.
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Figure 1. Schematic representation of the metabolic fate of glucose in a tumoral cell. Warburg effect
or aerobic glycolysis involves the conversion of glucose into pyruvate and subsequently into lactate,
despite cancer cells possessing a fully functional respiratory chain. Enhanced glycolytic pathway not
only results in increased lactate and proton secretion to the extracellular compartment but also in-
creases the availability of glycolysis intermediates. This fact allows the increased flow of substrates to
the pentose phosphate pathway (PPP) and one-carbon cycle, promoting nucleotide and lipid synthesis
and maintaining redox homeostasis. (1,3-biPG: 1,3-biphosphoglycerate; 2-PG: 2-phosphoglicerate;
3-PG: 3-phosphoglicerate; ADP: adenosine diphosphate; aKG: alpha-ketoglutarate; ALDO: aldolase;
ATP: adenosine triphosphate; DHAP: dihydroxyacetone phosphate; ENO: enolase; FAD+: flavin ade-
nine dinucleotide; G6PD: glucose-6-phosphate dehydrogenase; GA3P: glyceraldehyde 3-phosphate;
GAPDH: glyceraldehyde 3-phosphate; GDP: Guanosine diphosphate; GLUT1: glucose transporter 1;
GSH: glutathione; GTP: Guanosine triphosphate; HCy: homocysteine; HK: hexokinase, LDH: lac-
tate dehydrogenase; MCT4: monocarboxylate transporter 4; Met: methionine; NAD+: nicotinamide
adenine dinucleotide; NADP: nicotinamide adenine dinucleotide phosphate; OAA: oxaloacetic acid;
PEP: phosphoenolpyruvate; PFK: phosphofructokinase; PGAM: phosphoglycerate mutase; PGI: phos-
phoglucoisomerase; PGK: phosphoglycerate kinase; PK: pyruvate kinase; SucCoa: succinyl-coA;
THF: Tetrahydrofolate).

Fructose 1,6-bisphosphate is then cleaved into two 3-carbon sugars, dihydroxyacetone
phosphate and glyceraldehyde 3-phosphate, which are biochemically interconvertible.
Glyceraldehyde 3-phosphate undergoes phosphorylation with inorganic phosphate to yield
1,3-bisphosphoglycerate. The subsequent oxidation of this molecule to pyruvate results in
the generation of two ATP and one NADH molecule. However, since two glyceraldehyde
3-phosphate molecules are produced for each glucose molecule, the net yield of the glucose-
to-pyruvate oxidation is two ATP and two NADH.
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In cells with fully functional mitochondria, NADH fuels the electron transport chain.
However, cancer cells must decrease their NADH pool through alternative means, as it acts
as an allosteric inhibitor of, among others, PFK, potentially limiting the glycolytic rate at high
levels. In this context, NADH is utilized to reduce pyruvate to lactate, a reaction catalyzed
by lactate dehydrogenase (LDH). Excess lactate is then exported to the extracellular tumor
microenvironment (TME) via monocarboxylate transporters (MCT), where it can accumulate
up to a concentration of 40 mMol/L and reduce the pH to between 6 and 7 [9].

3. Why Warburg Effect?—Mechanism and Advantages for Cancer Cells

At the time of its discovery, tumoral metabolic reprogramming was thought to be the
driving force behind tumor transformation [1]. Later, it was assumed that metabolic alterations
are not the cause but rather a consequence of the tumorigenic process, while contemporary
understanding asserts that there is an interconnection between genes and metabolism. Several
oncogenes, including MYC, KRAS, Wnt, and others, are implicated in inducing metabolic
changes [10–13]. This view is supported by the fact that therapeutic approaches targeting
oncogenic cellular signaling may impact tumor metabolism, as exemplified by c-Myc inhibition
leading to the concurrent activation of Peroxisome Proliferator-Activated Receptor Alpha
signaling [14]. However, it has also been suggested that mitochondria can sense metabolic
changes and send information to the nucleus, a process known as mitochondrial reverse
signaling or mitochondrial retrograde signaling [15]. Mitochondrial genetic stress induced
by depletion of mtDNA is associated with increased markers of tumor invasion, activation
of ERK kinases, and increased levels of Bcl2 in a lung carcinoma cell line [16]. Cancer cells
can activate the mitochondrial reverse signaling in response to mitochondrial dysfunction,
such as diminishing ATP levels or reduced membrane potential; these signal pathways
subsequently promote tumor growth and progression [17].

While the oxidation of glucose to pyruvate yields a modest amount of two ATP
molecules, the complete oxidation of glucose to CO2 and the generation of energy through
oxidative phosphorylation (OXPHOS) can yield between 31 and 38 ATP molecules, de-
pending on the NADH shuttle employed [18] and whether the yield of NADH/FADH2 is
considered as an integral or non-integral number [19]. Despite the inefficiency of aerobic
glycolysis compared to oxidative phosphorylation, tumors and other fast-dividing cells that
use the Warburg effect for ATP production maintain intracellular ATP levels comparable to
non-tumoral cells [1].

To elucidate why cancer cells adopt the Warburg effect despite its apparent energetic
disadvantage, it has been hypothesized that “the metabolism of cancer cells, and indeed all
proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the
biomass needed to produce a new cell” [20]. In this context, aerobic glycolysis serves to furnish
cells with essential biosynthetic intermediates, such as ribose for nucleotide synthesis and
glycerol and citrate for lipid synthesis, as well as nonessential amino acids. Notably, the
PPP assumes significance, providing precursors for nucleotide, amino acids, and vitamin
B6 biosynthesis while also playing a key role in the regulation of oxidative stress through
NADPH-mediated reduction of glutathione [21,22]. Recent in vivo evidence supports the
activation of the PPP in highly glycolytic tumors where the Warburg effect is prominent [23].

Cachexia manifests as a multiorgan disorder characterized by energy imbalance and
involuntary loss of lean body mass with or without reduction of adipose tissue. It affects
nearly half of cancer patients and is strongly correlated with poor prognosis. One important
mechanism underlying cachexia involves the heightened resting energy expenditure driven
by the increased activation of futile metabolic cycles, like the Cori cycle. This process
facilitates the conversion of lactate to pyruvate and subsequently to glucose in the liver,
resulting in elevated energy expenditure. The glucose is then transported into circulation
and back to tumor tissues, where it sustains high glucose consumption and is converted
back into lactate. The Cori cycle has been described to account for 50% of glucose turnover
in cachectic cancer patients, compared to 20% in cancer patients without this condition [24].
In a study involving pancreaticobiliary adenocarcinoma patients, researchers demonstrated



Int. J. Mol. Sci. 2024, 25, 3142 4 of 17

a correlation between cachexia and a high glycolytic index as measured by the expression
levels of various glycolytic enzymes [5]. Furthermore, the same authors also show in a
nude mice model that inhibiting the Warburg effect does attenuate cachexia [25], suggesting
a potential causal link between the Warburg effect and cancer-induced cachexia. However,
other factors involved in cancer-associated cachexia, such as systemic inflammation or
anorexia, have also been reported to play a significant role in this complex pathology and
are extensively reviewed elsewhere [26,27].

Warburg Effect Impact on the Tumor Microenvironment

The TME constitutes a complex and dynamic system that comprises cancer cells,
stromal tissue (immune cells, fibroblasts, and vascular tissue), signaling molecules (cy-
tokines), and the extracellular matrix [28]. TME can actively promote cancer progression
and weak tumor immunosurveillance [29]. Importantly, TME has a significant impact on
immunotherapy response [30] and modulates the response to chemo and radiotherapy [31].

One of the main characteristics of the TME is an increase of lactate and acidification of
the TME to pH between 6.0 and 6.5 as a result of the Warburg effect [32]. Notably, MCT4, a
lactate exporter, remains functional even in highly acidic, high-lactate environments [33],
ensuring uninterrupted glycolysis even in such challenging conditions. Metastatic tumors
exhibit higher lactate levels in the TME compared to non-metastatic ones, with lactate levels
correlating with decreased survival rates in cervix and head and neck tumors [34].

Both lactate and acidification exert profound effects on the phenotype and functionality
of the diverse populations within the TME and on the tumoral cell capacities (Figure 2).
Lactate, apart from being one of the most abundant metabolites in the TME, can act as
a signaling molecule through multiple receptors [35]. It has been reported to promote
tumor metastasis through the activation of the NF-κβ pathway in tumor cells [36] or the
PI3K-AKT-CREB pathway [37]. Acidosis can also induce a cancer-specific signaling cascade,
including NF-κβ, facilitating cell invasion [38]. Furthermore, the elevated lactate levels and
acidic pH play a crucial role in the interaction between tumor and non-tumor cells within
TME [39], promoting immunosuppressive phenotypes in both innate immune cells [40]
and adaptive immune cells [41].

Metabolic characteristics in the microenvironment control macrophage phenotypes and
functions [42]. Tumor-derived lactic acid is able to polarize tumor-associated macrophages
(TAMs) towards an anti-inflammatory/immune-suppressive phenotype, thereby promot-
ing tumor maintenance and growth [43]. Conversely, macrophage polarization can trig-
ger metabolic shifts in the macrophages [42]. In oral squamous cell carcinoma, a posi-
tive feedback loop between tumoral cells and macrophages has been observed in which
tumor-derived lactic acid induces the synthesis of glycoprotein non-metastatic protein B in
macrophages and that, in turn, acts as a paracrine molecule facilitating tumor migration
and invasion [44]. Macrophages also possess the ability to suppress T-cell recruitment and
regulate other aspects of tumor immunity [45]. High lactate levels also prevent monocytes
from differentiating into mature dendritic cells and promote a tolerogenic phenotype,
leading to the secretion of immunosuppressive cytokines [46]. Additionally, T-cells and
natural killer (NK) cell functionality is impaired by lactic acidosis. Activated T-cells, which
heavily rely on glycolytic metabolism, are adversely affected in the TME due to low glucose
and high lactate concentrations, compromising their anti-tumor activity. Furthermore,
extracellular acidification suppresses CD8+ T-cell functionality through p38/JNK pathway
inhibition and reduces INFy production and secretion [47]. Lactic acidosis also suppresses
the anti-tumoral activity of NK cells through the mTOR pathway inhibition [48]. How-
ever, regulatory T-cells have been shown to be highly resistant to increased extracellular
lactate levels and low pH, maintaining their survival and immunosuppressive role by
upregulating the expression of FOXP3 [49]. Lactic acidification of the TME diminishes
immunosurveillance and promotes a favorable environment for tumor progression.
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Figure 2. The impact of the Warburg effect on the tumor microenvironment. Tumor microenvironment
(TME) is composed of different cell types, including tumor, stromal, and immune cells. Increased
lactate secretion and acidification remodel these TME populations in favor of tumor progression,
angiogenesis, and immunosuppression. Tumor cells and cancer-associated fibroblasts (CAFs) secrete
lactate into the media, which in turn can be used by the tumor to meet energy and intermediate
product requirements. This phenomenon is known as the reverse Warburg effect. Lactate and
acidosis have been described to modulate the phenotype and functionality of several components
of the innate and adaptative immune system, inhibiting the proliferation and cytotoxic activity of
T-cells and natural killer (NK) cells as well as reducing the differentiation of dendritic cells. In
contrast, regulatory T-cells (Tregs) are less sensitive to high lactate concentrations and can maintain
their immunosuppressive role. Furthermore, lactate promotes the polarization of tumor-associated
macrophages (TAMs) towards a pro-tumoral phenotype, thereby promoting tumor growth and
invasion. (GLUT: glucose transporter; IL6: interleukine-6; INF-y: interferon-gamma; MCT1/4:
monocarboxylate transporter 1/4; PD1: programmed cell death protein 1).

Cancer-associated fibroblasts (CAFs) exhibit increased glycolysis and enhanced export
of lactate to the microenvironment, a process known as the reverse Warburg effect [50].
Evidence of a lactate shuttle between CAFs and cancer cells has been demonstrated
in prostate cancer [51], allowing the use of CAFs to produce lactate to fuel the tumor
through the tricarboxylic acid cycle in order to maintain the high energetic demand. More-
over, CAFs secreted lactate exerts immunosuppressive activity in the TME of pancreatic
cancer [52]. This dual role of lactate as an energy source and signaling molecule highlights
the complexity of cellular and metabolic interactions within the TME.

4. Therapeutic Strategies Targeting the Warburg Effect

Therapeutic strategies targeting the Warburg effect have gained attention in the scien-
tific community in recent times [53–55] Table 1. Significantly, fasting blood glucose levels
have been correlated with prognosis, suggesting that glucose availability to the tumor may
influence survival [56]. Furthermore, a ketogenic diet, coupled with calorie restriction, has
demonstrated efficacy in impairing tumor growth in animal models of brain tumors [57].
Phase I clinical trials have been conducted with a ketogenic diet in cancer patients, but
definitive evidence of its effectiveness is still lacking. Nevertheless, these trials have in-
dicated that a ketogenic diet can be implemented in clinical settings with minimal side
effects [58], paving the way for larger trials aimed at establishing its efficacy.
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Table 1. Selected drugs affecting glycolytic enzymes are directly associated with the Warburg effect.

Target Drug Phase Reference

GLUT
Glutor Cells [59]

BAY-876 Pre-clinical (mice) [60]

KL-11743 Pre-clinical (mice) [61]

HK
3-Bromopyruvate Case reports [62,63]

2-Deoxyglucose * Humans ** [64]

GAPDH Koningic acid Pre-clinical (mice) [65]

TPI Rabeprazole Pre-clinical (mice) [66]

PGMA1
PGMI-004A Pre-clinical (mice) [67]

HKB99 Pre-clinical (mice) [68]

PFK

3PO Pre-clinical (mice) [69]

PFK15 Pre-clinical (mice) [70]

PFK158
Pre-clinical (mice) [71]

Phase I [72]

LDH
FX11 Pre-clinical (mice) [73]

NHI-Glc-2 Pre-clinical (mice) [74]

NCI-006 Pre-clinical (mice) [75]

MCTs
AZD3965 Phase I [76]

VB124 Pre-clinical (mice) [77]
* 2-Deoxyglucose inhibits HK due to the accumulation of the reaction product 2-Deoxyglucose-phosphate.
** This very early clinical trial was conducted on 5 patients, equivalent to a phase I clinical trial today. GAPDH: glycer-
aldehyde 3-phosphate dehydrogenase; GLUT: glucose transporter 1; HK: hexokinase, LDH: lactate dehydrogenase;
MCT: monocarboxylate transporter; PGMA1: phosphoglycerate mutase; PFK: phosphofructokinase; TPI: triose
phosphate isomerase.

4.1. GLUT Transporters

The GLUT transporters, a family of transmembrane proteins facilitating glucose trans-
portation across the cellular membrane, mediate the initial step in cellular glucose uti-
lization. High expression of glucose transporters GLUT1 and/or GLUT3 is commonly
associated with poor prognosis in several cancer types, including papillary thyroid car-
cinoma and colorectal cancer [78,79]. Notably, GLUT2 is overexpressed in hepatocellular
carcinoma [78]. Regardless of the specific transporter involved, it is crucial to recognize
that glucose uptake serves as a rate-limiting step for hyperproliferation, as highlighted
already by Warburg in 1956 [1].

Considering these observations, GLUT transporter inhibition has been proposed as a
crucial therapeutic target of aerobic glycolysis [80,81]. Blocking glucose uptake also impacts the
PPP and hinders NADPH production, thereby limiting the tumor’s antioxidant defense [61].

Recent studies have reported new small molecules targeting GLUTs, such as KL-11743,
which has demonstrated the ability to inhibit glucose uptake in vivo [61]. Other GLUT
inhibitors, such as BAY-876, exhibit the capacity to impede the growth of triple-negative
breast cancer in patient-derived xenograft models [82]. Additionally, Glutor, a pan-GLUT
inhibitor, has also been reported to exert antineoplastic effects [59]. Notably, the inhibition
of GLUT1 induces cell death, overcoming resistance to chemotherapeutic agents in cultured
gastrointestinal cell lines [83] and sensitizing radio-resistant breast cancer cells [84].

4.2. Hexokinase

Upon entry into the cell, glucose undergoes phosphorylation catalyzed by HK, a key
enzyme that irreversibly transfers a phosphate group from ATP to the glucose molecule
(except in some specialized cells of the liver and kidneys that have glucose-6-phosphatase
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activity). This phosphorylation renders glucose charged and confines it within the cell,
committing it to either glycolysis or the PPP. Thus, HK plays a pivotal role as a regulator in
the fate of glucose metabolism. The expression of HKII isoform is linked to the proliferation
of hepatoma cells [85], and its overexpression correlates with poor prognosis in various
tumor types, including tumors of the digestive system [82], brain metastases of breast
cancer [86], and is indicative of a poor therapeutic response in circulating lung tumor cells
expressing high levels of HKII [87].

A classic inhibitor of HK is 3-bromopyruvate (3BP), which has shown promising
results in pre-clinical studies either as a single therapeutic agent or in combination with
other anti-tumoral drugs such as tamoxifen [88]. Different encapsulation strategies for drug
delivery aimed at reducing side effects have also demonstrated success in a pancreatic
cancer model [89]. However, the use of 3BP in humans is limited, with only two case
reports published to date [62,63]. A comprehensive review of 3BP as an anticancer agent is
available in the work by Fan and colleagues [90].

2-Deoxyglucose (DOG), a glucose analog, enters the cell through GLUT transporters
and is also phosphorylated by HK. However, the resultant DOG-phosphate accumulates
in the cell since it cannot be used for further steps of the glycolytic pathway and cannot
be excreted due to its electrically charged nature. Thus, it effectively inhibits the phospho-
rylation of new glucose molecules by HK. Despite early anti-tumoral promising effects
in human studies, clinical trials were discontinued due to side effects compatible with
hypoglycemia symptoms among participants, even though they had normal blood glucose
levels [64]. This observation can be explained by the inability of circulating glucose to enter
the cells due to the accumulation of DOG-phosphate. Despite these early setbacks, the use
of DOG in combination with chemotherapy [91] or radiotherapy [92] has continued into
the 21st century, proving feasible with doses of 68 and 200 mg/kg, respectively, without
serious side effects.

Moreover, a novel orally available HK inhibitor, Benitrobenrazide, has demonstrated
the ability to block glycolysis and inhibit cancer cell growth in a mouse xenograft model
without apparent side effects [93].

4.3. Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH)

GAPDH catalyzes the simultaneous phosphorylation and oxidation of
glycerol-3-phosphate to 1,3-biphosphoglycerate, utilizing NAD+ as the electron accep-
tor, in a reaction that is reversible under physiological conditions. However, emerging
evidence suggests that GAPDH is a multifunctional protein with a significant role in regulating
cell death [94]. Recent research has implicated GAPDH in the regulation of glycolysis within
the Warburg effect [95].

The selective inhibition of GAPDH with koningic acid, a fungal metabolite also known
as heptelidic acid, has demonstrated the ability to reduce glycolysis and inhibit tumor
growth in sensitive animals [65]. Orally administered koningic acid has been shown to
effectively inhibit GAPDH in transplanted skin cancer cells in mice [96]. However, despite
these promising findings, the use of GAPDH inhibitors has not yet reached clinical trials.

4.4. Triose Phosphate Isomerase

The primary role of triose phosphate isomerase (TPI) is to catalyze the reversible
interconversion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate
(G3P). This reaction is close to the equilibrium and has not traditionally been consid-
ered a major therapeutic target. However, TPI has been found to accumulate in var-
ious cancer types [97] and has the capability to activate signaling pathways such as
PI3K/AKT/mTOR [98] and MAPK/ERK [99]. Of particular interest is the observation that
deamidated TPI accumulates in breast cancer cells but not in healthy cells [66]. Deamidation
is a spontaneous post-transcriptional spontaneous modification of proteins consisting of
asparagine deamidation into aspartic acid and isoaspartate. The pharmacological inhibi-
tion of deamidated TPI, while sparing unmodified TPI, is an effective way of selectively
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targeting tumoral cells, and this approach has been shown to result in tumor size reduction
in an in vivo mice model [66].

4.5. Phosphofructokinase

The allosteric regulation of glycolysis by PFK enables cancer cells to modulate their
glycolytic flux precisely, addressing both bioenergetic and biosynthetic demands [100].
Often referred to as the gatekeeper of glycolysis [101], PFK is highly expressed in many
tumor types, exerting regulatory control over cancer cell growth and metabolism [102–104].
In recent years, the development of new PFK inhibitors, including 3PO [69], PFK15 [70],
and PFK158 [71], has shown promising results in pre-clinical models

Despite the potential, a phase I clinical trial using PFK158 was discontinued due to
limited success [72]. The challenges may arise from the multifunctional role of PFK in
various cellular processes [100], possibly inducing side effects upon targeting. Also, PFK has
been found to be a driver of bevacizumab resistance through non-metabolic processes [105].
Nevertheless, new structural insights provide hope for the rational development of novel
PFK glycolytic inhibitors [101].

4.6. Phosphoglycerate Mutase

Phosphoglycerate mutase (PGAM1) catalyzes the internal transfer of a phosphate
group from C-3 to C-2, which results in the conversion of 3-phosphoglycerate to
2-phosphoglycerate through a 2,3-bisphosphoglycerate intermediate. PGAM1 was found
to promote tumor growth through the coordination of glycolysis and biosynthesis [67].
Additionally, PGAM1 exhibits non-metabolic functions; for instance, it has been observed to fa-
cilitate actin filament assembly, cell motility, and cancer cell migration [106]. The small molecule
HKB99 allosterically blocks PGAM1 and has demonstrated the ability to reduce tumor growth
and metastatic potential in a mice model of non-small cell lung cancer by ROS-dependent
activation of JNK/c-Jun signaling and abrogation of PGAM1 and ACTA2 interaction [68].

4.7. Lactate Dehydrogenase

Pyruvate serves as the end product of aerobic glycolysis. However, for the Warburg
effect to persist, the two NADH molecules produced during glucose oxidation to pyruvate
must be oxidized, as they act as allosteric inhibitors of PFK and obstruct glycolysis. LDH
plays a crucial role by reducing pyruvate to lactate, coupled with the oxidation of NADH
to NAD. The excess lactate is then transported out of the cell via MCTs.

LDH, like other glycolytic enzymes, is overexpressed in various tumor types, where
high levels of LDH expression are associated with a poorer prognosis [107]. Additionally,
the downregulation of LDHA expression correlates with decreased tumorigenicity [108].
Pharmacological inhibition of LDH with the small molecule FX11 reduces ATP levels and
increases oxidative stress, resulting in the inhibition of tumor xerograph progression [73].
Other inhibitors, such as NHI-Glc-2, exhibit anti-tumor activity alone and have synergetic
effects with gemcitabine in mice bearing tumors [74]. NCI-006, another LDH inhibitor, is
also able to block tumor growth in mice, and the inhibition increases when it is used in
combination with metformin [75]. Consequently, LDH inhibition is considered a promising
target against breast cancer [109].

4.8. Monocarboxylate Transporters

In the context of the Warburg effect, the continual removal of the end product lactate
from the intracellular space is crucial for the progression of biochemical reactions. Its
secretion is facilitated by the MCT family of proteins [110,111]. Among the most relevant
members for lactate transport are MCT1 (Slc16a1) and MCT4 (Slc16a3), associated with lac-
tate import and export from the cell, respectively [110]. MCT4, functioning as a symporter
with H+, not only exports lactate but also lowers extracellular pH [112]. Importantly, MCT4
maintains its ability to export lactate/H+ even in the challenging conditions of high lactate
and low pH found in the TME [33].
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Similar to other enzymes and transporters involved in the Warburg effect, MCTs are
overexpressed in tumors as compared to normal tissue [113]. Inhibition of MCTs has been
shown to induce cancer cell death [114]. Notably, the inhibition of MCT1 with AZD3965
has progressed to phase I clinical trials, where it was shown to be well tolerated at doses
that effectively inhibit MCTs [76]. Furthermore, recent research has revealed that VB124, a
specific MCT4 Inhibitor, demonstrates effectiveness in animal models [77].

5. Warburg Effect Targeting Resistance Mechanisms

Unfortunately, even after many years of research, advanced drug development, and
success at the pre-clinical stage, therapies targeting glycolysis enzymes responsible for
the Warburg effect have not yet reached widespread clinical practice. Several reasons can
explain this lack of translation to the clinic. First, the extensive use of glycolysis by multiple
tissues in the human body, not just tumoral or fast-growing cells, introduces the challenge
of potential side effects. For instance, the clinical trial involving DOG was abandoned
due to hypoglycemia-like symptoms despite normal blood glucose levels, highlighting the
intricate impact of disrupting glycolysis on cellular function [64]. However, recent findings
show that post-transcriptionally modified TPI tends to accumulate in cancer cells and can
be selectively targeted [66], which may open up the possibility of disrupting cancer cell
metabolism without severe side effects.

Targeting LDH and MCTs, while potentially having less impact on non-tumoral cells,
still presents challenges. In principle, non-tumoral cells should be able to channel excess
NADH to the mitochondria, allowing for a functional PPP to balance their redox stress
while ATP production would continue through their functional mitochondria. However,
the full blockade of LDH activity in a genetic model resulted in anemia after a few weeks
of LDH knock-out induction [115]. Erythrocytes rely solely on aerobic glycolysis as they
lack mitochondria; even though their metabolic requirements are low, a full blockade of
LDH activity in time is clearly deleterious.

The main regulatory steps of glycolysis, including HK [116], PFK [100], and LDH [117],
are also controlled by enzymes that present different isoforms that have non-metabolic
functions on top of catalyzing reactions of the glycolytic pathway [118]. For example,
HKII is being proposed as an enzyme linking metabolic and survival pathways [119]. The
C-terminal domain of PFKFB3 variant 5 localizes the enzyme to the nucleus, where fructose-2,6-
bisphosphate increases the expression and activity of cyclin-dependent kinase-1, promoting
cell proliferation [120]. Consequently, the possibility of inducing side effects associated
with the inhibition of glycolytic enzymes cannot be discarded.

Additionally, the existence of redundant enzymes and transporters, such as various
members of the GLUT family and MCTs, makes the complete inhibition of the glycolytic
pathway difficult. Blocking a single isoform or transporter, as demonstrated with GLUT1
inhibition using BAY-876, may reduce the rate of lactate production but does not entirely
halt glycolysis due to compensatory mechanisms [60]. Moreover, it has been seen that
intracellular lactate increases only if both MCT4 and MCT1 are blocked [77]. Similarly,
genetic disruption of both LDH A and B is required to ablate aerobic glycolysis [121].

Oshima and colleagues showed that cancer cells had the ability to shift from aerobic
glycolysis to oxidative phosphorylation (OXPHOS) upon LDH inhibition; consequently, the
combination of LDH and respiratory transport chain complex I inhibition prolonged the
therapeutic benefits [75]. The identification of alternative energy/building block sources,
such as acetate metabolism in some tumors [122,123], emphasizes the complexity and
heterogeneity of cancer metabolism.

As with other aspects of tumor biology, the metabolic landscape is dynamic and
context-specific, playing a crucial role in cancer progression. Metabolic heterogeneity adds
an additional layer of complexity, influencing differences in metastatic potential [124]. This
evolving understanding is essential for refining therapeutic approaches and overcoming
the challenges associated with targeting glycolysis in cancer treatment.
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6. Cancer Detection through the Warburg Effect

Although targeting the Warburg effect has not become standard clinical practice,
the heightened glucose oxidation observed in many tumors has found utility in cancer
detection and assessing therapeutic response through positron emission tomography (PET)
scanning [125,126]. PET scanning, often coupled with computed tomography, is widely
employed in oncology [127] and it is invaluable in cancer staging, therapeutic planning,
and response assessment [128].

The primary PET imaging tracer, 18F-FDG, incorporates a positron emitter (18F) bound
to a DOG molecule. Once inside cells, DOG is phosphorylated by HK, trapping the tracer.
A strong PET signal, historically linked to the Warburg effect, reflects elevated glucose uptake
but not necessarily its conversion to lactate [129]. However, highly metabolic tissues like
the brain may appear hyperintense in PET scans, and not all tumors are detectable through
this imaging technique. Also, pathologies other than cancer, such as inflammation, may also
manifest in PET scans [127]. Despite these limitations, a positive correlation between GLUT1
expression and 18F-DOG signal has been described in various tumor types [80].

The Warburg effect can also be visualized in vivo using hyperpolarized 13C MRI [130].
Rodrigues and colleagues [23] followed the fate of hyperpolarized [U-2H, U-13C]glucose in
tumor-bearing mice and observed labeled lactate only in tumors. Metabolic changes detected as
early as 24 h after treatment initiation precede alterations in tumor volume assessed by standard
imaging techniques [131]. Hyperpolarized 13C MRI presents some advantages in comparison
to PET. It is a non-radioactive and highly sensitive technique. However, the short half-life
of hyperpolarized compounds used in 13C MRI poses a challenge for widespread clinical
adoption. Despite this limitation, successful applications in prostate cancer [132] and breast
cancer patients [133] underscore its clinical feasibility. Metabolism holds significant potential
for diagnosis and response to treatment evaluation [134]. The ability of hyperpolarized 13C
MRI to capture metabolic changes upon treatment process positions it as a valuable tool for
assessing therapeutic effectiveness early in time.

7. Future Perspectives

In recent years, various small molecule inhibitors targeting glycolysis enzymes have
emerged, showing promising results in both pre-clinical [69–71,77] and clinical trials [76],
highlighting the therapeutic interest of the Warburg effect. The acidification of the extracel-
lular medium and relative basification of the cellular cytoplasm induces chemoresistance
by neutralizing weakly basic drugs such as paclitaxel, making it difficult for them to
cross the membrane [31]. Furthermore, multi-drug resistance mediated by the export of
drugs through P-glycoprotein could also be influenced by pH alterations [135]. There-
fore, targeting the Warburg effect could offer significant benefits by reducing chemo- and
radio-resistance. In this regard, clinical trials involving the use of DOG in combination
with radiotherapy [92] or chemotherapy [91] have shown good tolerance to the combined
treatment in the relatively low number of patients included in both trials.

Numerous authors have highlighted the potential of inhibiting glycolytic enzymes
involved in the Warburg effect in enhancing the effects of immunotherapy [136]. For in-
stance, inhibition of HK with clotrimazole reduces extracellular lactate, thereby potentiating
anti-tumor immunity [137]. Similarly, Wegiel’s group demonstrated that LDH deletion
triggers anti-tumor immunity, proposing LDH-A inhibitors as a strategy to enhance check-
point inhibitor efficacy [138]. Moreover, genetic blockade of LDH has shown an additive
effect on anti-PD1 therapy, suggesting modulation of LDH/lactate as a means to improve
anti-PD1 treatments [139]. Additionally, blocking lactate export through MCT1, using
AZD3965 [140], or inhibiting both MCT1 and MCT4 with diclofenac [141] preserves T-cell
function and enhances immunotherapy response.

Lactate, the Warburg effect’s end-product, plays a role as an immunosuppressor in
the TME [43], influencing immunotherapy resistance through metabolic crosstalk between
tumor and immune cells [142,143]. In this regard, it has been described that rewiring
glucose metabolism in macrophages allows anti-tumor activity, including engulfment of
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CD47+ cancer cells. Thus, carbon metabolism has been proposed as a potential therapeutic
target for stimulating anti-tumor activity by macrophages [144]. Furthermore, tuning
tumor-associated macrophages (TAMs) into immunostimulatory macrophages also pro-
motes T-cell response and has been described as a promising therapeutic strategy [145].
Consequently, the efficacy of treatments targeting the Warburg effect may be attributed,
at least in part, to their impact on the TME. However, activated macrophages rely on
aerobic glycolysis and it has been shown that the inhibition of GAPDH by 4-octyl itaconate
downregulates aerobic glycolysis in activated macrophages, shifting its phenotype towards
anti-inflammatory [146]. Thus, while inhibiting the Warburg effect does facilitate immune
activation against tumors by modulating the TME, it may also have a direct negative effect
when acting on macrophages.

8. Conclusions

The Warburg effect, a distinctive feature of cancer metabolism, not only provides
valuable insights into cancer diagnostics through advanced imaging techniques but also
stands out as a promising target for therapeutic interventions. The development of small
molecule inhibitors targeting cancer-specific mutations in key glycolytic enzymes demon-
strated promising results in pre-clinical studies and early clinical trials, although they have
not yet reached extensive clinical use. However, new insights into the understanding of
the Warburg effect microenvironment open new avenues for combinatory approaches,
including those aimed at reducing the amount of lactate in the TME in order to enhance
the effectiveness of immunotherapy.
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