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ABSTRACT

One question which has occupied mathematicians, engineers and scientists of this age is the problem of
Boolean satisfiability (SAT) which asks whether a given CNF formula has at least a satisfying assignment. The
goal of this work is to present a novel, efficient and general method of deciding SAT and finding all the satisfying
assignments of CNF formulas. This method is powerful as it employs resolution identities in transforming
clauses without a particular variable into clauses with that variable.
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1 INTRODUCTION

Suppose we are given the task of determining whether
the output variable f of the digital circuit shown below

evaluates to logic 1 for some assignments of logical
values 0 and 1 to the input variables A, B, and C of
the circuit. Now f is related to the input variables by

f = ABC.

*Corresponding author: Email: okohufuoma@yahoo.com;

J. Eng. Res. Rep., vol. 26, no. 3, pp. 91-103, 2024

https://www.sdiarticle5.com/review-history/110430


Ufuoma; J. Eng. Res. Rep., vol. 26, no. 3, pp. 91-103, 2024; Article no.JERR.110430

A

B

C
f

The question is: Is there a satisfying assignment of
logical values 0 and 1 to A, B and C, i.e an assignment
which makes f = ABC = 1?. This is what the
electronic engineer calls Circuit SAT.

What we commonly call SAT is by many termed Boolean
satisfiability problem which imports the question as to
whether a Boolean formula, e.g. f = ABC, has a
satisfying assignment [1]. Boolean satisfiability is a
propositional logic problem of interest in multiple fields,
e.g., physics, mathematics, engineering and computer
science.

It is well-known that the SAT problem requires efficient
solution methods in a variety of applications. It is
believed to require exponentially growing time for an
algorithm to solve for the worst-case instances. [2],[3]
[4].

The goal of this paper is to present a novel, efficient
and general method of solving SAT and finding all the
satisfying assignments of CNF formulas. I have found
beneath this emblem some of the richest and most
glowing properties of satisfiability of CNF formulas.

The rest of this work is divided into three sections.
Section 2 is concerned with the definitions and notations
required to understand this work. Section 3 concerns
various methods of deciding SAT. Section 4 deals
with the new method of solving SAT with ease as it
makes use of resolution identities. I sincerely hope
that this work may prove, as I intended, valuable to
engineers, computer scientists, mathematicians, and
those involved in the design of SAT solvers.

2 DEFINITIONS AND NOTATIONS

As there may be some of our readers who have little or
no knowledge of Boolean Satisfiability, we deem it well
to here call attention to the definitions and notations of
terms associated with satisfiability.

Boolean Algebra is the algebra of truth values 0
representing false and 1 representing true. It was

lauched by Boole and can be found in his work, the
Laws of Thought, a gem, that for beauty of style and
biilliancy of thought, has never been equalled on the
subject of the Algebra of Logic [5] - [10].

Boolean variables are variables that can have the two
possible truth values, 0 and 1. We use the capital
letters of the English alphabet to denote variables. Thus
the letters A,B,C . . . represent variables in this work.
The next term on board is literal. With the common
meaning which authors assigned this term, of course,
we have so much to do. Some remarks, however, on
the connection in which it stands, seem necessary for
a proper understanding of the term. The literals of a
variable L are its alternative forms, the unnegated L and
the negated L. They exhibit the properties LL = 0 and
L+ L = 1.

A clause is a logical sum of literals of different variables
or a single literal. For example, (A+B +C) is a clause
consisting of the literals A, B and C. In arranging the
literals in the clauses, we prefer the alphabetical order
on account of its simplicity and ease to the reader.
For instance, we shall write (A + D + F ) instead of
(A+F+D). A clause is termed a k-clause if its number
of literals is k. Thus, the clauses (A), (A + B), and
(A+ B + C) are respectively 1-clause, 2-clause and 3-
clause. A clause evaluates to logic 1 if at least one of
its literals has been assigned a logical value of 1. If it
evaluates to logic 0, it follows that each of its literals has
been assigned a logical value of 0. Thus, if the clause
(A + B) = 1, then A = 1 or B = 1 or both A = 1 and
B = 1. If the clause (A+B) = 0 then A = 0 and B = 0.

A Boolean formula is a logical expression defined over
Boolean variables. Such a formula is in conjunctive
normal form (CNF) if it is a logical product of clauses
or a single clause. For example, the formula f = (A +
B)(A+B + C)(D) is in CNF. A CNF formula is termed
k-CNF formula when it contains clauses consisting of at
most k literals.

To assist us in our reasoning, we shall invite the terms
native clauses and foreign clauses to a formula f to
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describe respectively clauses in f and clauses not in f .
Thus the native clauses of f = (A+B)(A+B+C)(D)
are (A+B), (A+B+C), and (D). The clause (A+B)
is a foreign clause to f because it is not in f .

A Boolean assignment to a set of Boolean variables
is the set of truth values assigned to the variables or
their literals in other to evaluate a Boolean formula.
A satisfying Boolean assignment for a Boolean
formula is an assignment such that the Boolean formula
evaluates to logic 1. If the Boolean variables associated
with a Boolean formula can be assigned logical values
such that the formula turns out to be logic 1, then we
say that the formula is satisfiable. If it is not possible
to assign such values, then we say that the formula is
unsatisfiable.

The above seem to be the most prominent terms,
though not covering entirely the whole ground. There
are however deeper terms of SAT that no language can
describe, no illustration can reach, and no pencil can
paint. And in endeavoring to bring out the valuable
features of SAT, I have frequently been made sensible
of the inadequacy of terms. For some good remarks on
terms associated with SAT, see the paper [1].

3 METHODS OF TESTING SAT

3.1 Truth Table Method
The truth table provides a simple means for testing the
satisfiability of a Boolean formula. To test or decide the
satisfiability of the Boolean formula, we construct a truth
table for the formula. There is one row for each possible
truth assignment. For each truth assignment, each of
the clauses in F0 is evaluated. If any clause evaluates to
0, then F0 = 0 implying F0 as a whole is not satisfied by
the truth assignment. If F0 = 1, that is F0 is satisfiable,
then a satisfying truth assignment has been found. If no
satisfying truth assignment is found, then F0 as a whole
is unsatisfiable.

As an instance, let us by the truth table method prove
that the Boolean formula

f = (A+B)(A+B)(A+B)

is satisfiable. We build a truth table for F0.

A B A+B A+B A+B F0

0 0 0 1 1 0
0 1 1 1 1 1
1 0 1 0 1 0
1 1 1 1 0 0

The third column in the truth table above represents the
clause (A + B) for the two variables A and B. The
fourth column represents the clause (A+B) and the fifth
column represents the clause (A+B). The last column
represents the CNF formula F . A 1 is placed in this
column when the third, fourth, and fifth columns have
a truth value of 1; otherwise 0 is placed in this column.
The given Boolean formula is satisfiable because in the
second row of truth values, F0 = 1.

Again, by the truth table method, let us decide the
satisfiability of the Boolean formula

f = (B)(C)(A+B)(A+B + C).

We build a truth table for F0.

A B C BC A+B A+B + C F0

0 0 0 0 1 1 0
0 0 1 1 1 0 0
0 1 0 0 1 1 0
0 1 1 0 1 1 0
1 0 0 0 0 1 0
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 1 0 1 1 0

The seventh column does not have logic 1. It follows
that the given Boolean formula F0 is unsatisfiable.

The truth table approach is said to be complete as
every truth assignment is verified. However, the method
is not practical for all problem instances. In our first
and second examples with 2 and 3 input variables
respectively, there are 22 = 4 and 23 = 8 rows
respectively. A problem instance with 10 input variables
requires 210 = 1024 rows; this is even too small for
a modern computer. But as the number of inputs
increases, the number of rows quickly overwhelms even
the fastest computers. A more efficient method is
therefore required.

3.2 Resolution Algorithm
The resolution algorithm, due to Alan Robinson
(1965), takes as input a CNF formula f and returns true
iff the formula is satisfiable. It does this by performing a
sequence of resolution steps, where each step consists
of identfying two clausesC1, C2 of the form C1 = A+X,
and c2 = B+X, and then appending to the CNF formula
the resolvent clause c = A + B, where A and B are
sums of literals, and X is a variable, called the resolved
variable.
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The resolution rule is applied to all possible pairs of
clauses of a CNF formula, that contain complementary
literals. After each aplplication of the resolution rule,
the resulting CNF expression is simplified by deleting
repeated literals. If a clause contains complementary
literals, it is removed because it is equal to logic 1.

The following theorems of resolution will be given
without proofs since the proofs can be found in many
works on resolution.

Theorem 3.1. Given a CNF formula f and a clause c
which is a resolvent of two clauses of f , then fc = f .

The resolution algorithm will play a paramount role in
the rest of this work. The reader who is not acquainted
with this algorithm is

Theorem 3.2. Given a CNF formula f and a clause
c which is a resolvent of two clauses of f , then f is
satisfiable iff fc is satisfiable.

This theorem is explained as follows. Any assignment
that satisfies the formula f will also satisfy the new
formula fc and vice versa.

3.3 DPLL Algorithm
Davis and Putnam (DP) algorithm for testing
satisfiability of Boolean formulas dates back to the
1960’s. Two years after this was published Davis,
Logemann and Loveland launched a modified version
of this algorithm, which is commonly known as DPLL
algorithm. Though this algorithm is popular, it has a
setback; it suffers mightly from exponential memory
use, because it builds up an exponential set of clauses
to verify satisfiability.

3.3.1 Rules of DPLL

We apply a given set of rules that preserve satisfiability.
The following four rules are applied until they can be
applied no more:

1. Unit clause rule

2. Pure-literal rule

3. Split rule

3.3.2 Unit-clause rule

The unit-clause rule states that unit clause containing a
particular literal is removed along with any other clause

containing this literal. The negation of this literal is then
removed from all clauses. This is also known as unit
propagation rule.

3.3.3 Pure-literal rule

The pure-literal rule states that If there is a pure literal L
in F , delete all clauses containing L.

3.3.4 Split rule

The split rule is stated as follows: From the CNF
Boolean formula F0 = f0(A,X) where A is a variable
and X = B,C, . . . is a sequence of the other variables
of F0, we choose the variable A and form two new CNF
formulas S1 and s1 obtained by setting A = 1 and A = 0
respectively. We then recurse on these.

We furnish an instance of the way in which DPLL
algorithm is used to solve SAT. Let it be required to test
the satisfiability of

F0 = (A+B+C)(A+B+C)(A+B+C)(A+B+C).

Unit propagation is not possible as there are no unit
clauses. Pure literal rule is not applicable as there are
no pure literals. We apply the splitting rule by selecting
some literal, say A. We put A = 0 and propagate. This
results in

FA=0 = (1+B+C)(0+B+C)(0+B+C)(0+B+C)

which becomes

FA=0 = (B + C)(B + C)(B + C).

Unit propagation and pure literal are still not applicable.
Apply splitting rule for the next literal B. Set B = 0 and
propagate:

FA=0,B=0 = (1 + C)(0 + C)(0 + C).

which becomes

FA=0,B=0 = (C)(C).

This formula consists of two unit clauses and so it is
possible to apply unit propagation, which results in

FA=0,B=0 = 0.

Since A=0,B=0 = 0, we backtrack, set B = 1 and
propagate:

FA=0,B=1 = (0 + C)(1 + C)(1 + C)

which results in

FA=0,B=1 = (C).
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We apply unit propagation or the pure literal rule
and conclude that this formula and hence the original
formula is satisfiable.

The DPLL algorithm depends on the choice of
branching literal, which is the literal considered in the
backtracking step. As a result, this is not exactly an
algorithm, but rather a family of algorithms, one for
each possible way of choosing the branching literal.
Efficiency is strongly affected by the choice of the
branching literal: there exist instances for which the

running time is constant or exponential depending on
the choice of the branching literals. In reality DPLL
is fast – the cases where a wrong choice of the
branching literal is the reason for exponential runtime
are uncommon. There are, however, formulas, where
every strategy for selecting the branching literal will lead
to an exponential runtime.

All known algorithms need exponential time to solve the
SAT problem for some formulas.

4 A NOVEL APPROACH FOR SOLVING SAT

It is our purpose to furnish a method for solving SAT, but before turning to the method, it will be necessary to
consider two theorems needed in the method.

4.1 Two Special Theorems
Let L be a literal and X1, X2, X3, . . . Xn be n clauses. Then

f = (L+X1)(L+X2)(L+X3) · · · (L+Xn) = L+X1X2X3, . . . Xn.

Proof.
f = (L+X1)(L+X2)(L+X3) · · · (L+Xn)

= (LL+ LX2 + LX1 +X1X2)(L+X3) · · · (L+Xn)

= (L+X1X2)(L+X3) · · · (L+Xn)

...

= L+X1X2X3, . . . Xn.

There is a beautiful transformation identity that throws its light on SAT. This identity goes thus:

Theorem 4.1. Let A, B and C be variables. Then

(A+B)(A+B)(B + C) = (A+B)(A+B)(A+ C).

Mark here the transformation of clauses from those of only variable B to those of only variable A. I searched
diligently in the most gigantic online libraries for a work on Boolean Satisfiability but I have never met with
one embracing the use of this transformation identity. Before we pass on to its application in finding satisfying
assignments of 2-CNF formulas, let us first seek the demonstration of its validity. A multitude of proofs might here
be presented, but one is sufficient.

Proof. We shall employ the illustrious resolution rule. If we apply this rule to the expression

(A+B)(A+B)(B + C)

we shall have
(A+B)(A+B)(B + C)(A+ C) (4.1)
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where the resulting clause (A+ C) is the resolvent of the parent clauses (A+B) and (B + C).

We turn now to the application of the resolution rule to the second member of the identity, namely

(A+B)(A+B)(A+ C).

The result is
(A+B)(A+B)(A+ C)(B + C) (4.2)

where the resulting daughter clause (B + C) is the resolvent of the parent clauses (A+B) and (A+ C).

Now the two expressions (4.1) and (4.2) are essentially the same. Hence we reach the conclusion that the
transformation identity proposed is valid.

A world of other identities can be derived from the above-mentioned identity. For if we set A = A in the identity we
shall obtain the new identity

(A+B)(A+B)(B + C) = (A+B)(A+B)(A+ C).

In this new identity, let us set B = B. We get

(A+B)(A+B)(B + C) = (A+B)(A+B)(A+ C).

The following two examples on the testing of satisfiability of 2-CNF formulas will be enriched using the transformation
identity.

Example 4.2. Test the satisfiability of

f = (A+B)(A+ C)(B + C).

We employ the resolution rule here. This introduced resolvents and f becomes

f = (A+B)(A+ C)(B + C)(B + C)(A+ C)(A+B).

The product (A + B)(A + B) is a transforming product. It transforms (B + C) into (A + C) and (B + C) into
(A+ C). Hence f is transformed into

f = (A+B)(A+ C)(A+ C)(A+ C)(A+B).

which, applying Theorem 4.4, becomes
f = (A+BC)(A+BC)

which in turn becomes
f = ABC +ABC.

Since f does not simplify to 0, we conclude that f is satisfiable and has the satisfying assignment of

{(A = 1, B = 1, C = 1), (A = 1, B = 1, C)}.

Let us take up the other instance.

Example 4.3. Decide the satisfiability of

f = (A+B)(A+B)(A+ C)(A+ C)(B + C)(B + C).

The product (A+B)(A+B) is a transforming product. By it we transform (B +C) into (A+C) and (B +C) into
(A+ C). Hence, we get

f = (A+B)(A+B)(A+ C)(A+ C)(A+ C)(A+ C)

= (A+BCC)(A+BCC)

= (A)(A)

= 0.

Since f is logic 0, we say that f is unsatisfiable.
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4.2 A General Method of Solving SAT
Our chief business now is to present a general method of deciding SAT and then finding all the satisfying assignments
of CNF formulas. Let f (0) be a given CNF formula comprising clauses with variable A and those without A. Also
let f (0)

a be a CNF formula consisting of native clauses of f (0) and foreign clauses of f (0) with variable A such that
f
(0)
a contains transforming products capable of transforming all the native clauses without A into clauses with A.

Let f (0)
i be the CNF expression consisting of all the introduced foreign clauses with A. Let f (1) be a new CNF

formula consisting of all the clauses derived from negating f
(0)
i and clauses of f (0). The following theorems will

help in deciding SAT and finding the satisfying assignments of f (0).

Theorem 4.4. Let f (0) be a given CNF formula and f
(0)
i a CNF formula of foreign clauses to f (0). If

f (0)
a = f

(0)
i f (0) (4.3)

and
f (1) = f

(0)
i f (0) (4.4)

then
f (0)
a + f

(0)
i = f (0) (4.5)

Proof. Adding (4.3) and (4.4) gives

f (0)
a + f (1) = f

(0)
i f (0) + f

(0)
i f (0)

= (f
(0)
i + f

(0)
i )f (0)

= f (0).

Theorem 4.5. Let f (0) be a given CNF formula and f
(0)
i a CNF formula of foreign clauses to f (0). If

f (0)
a = f

(0)
i f (0) (4.6)

and
f (1) = f

(0)
i f (0) (4.7)

then f (0) is satisfiable if either or both of f (0)
a and f (1) are satisfiable.

Proof. We start with the equation f
(0)
a + f

(0)
i = f (0) of Theorem 4.4. If f (0) is satisfiable, then there are

assignments to the variables of f (0) which make f (0)=1 and hence we get

f (0)
a + f

(0)
i = 1.

For this equation to be valid, these assignments must also make either or both f
(0)
a and f (1) equal to logic 1.

Theorem 4.6. Let f (0) be a given CNF formula and f
(0)
i a CNF formula of foreign clauses to f (0). If

f (0)
a = f

(0)
i f (0) (4.8)

and
f(1) = f

(0)
i f (0) (4.9)

then f (0) is unsatisfiable iff both f
(0)
a and f (1) are unsatisfiable.

Proof. We start with the equation f
(0)
a + f

(0)
i = f (0) of Theorem 4.4. If f (0) is unsatisfiable, then all assignments

to the variables of f (0) make f (0)=0 and hence we get

f (0)
a + f

(0)
i = 0.

For this equation to be valid, all these assignments must also make both f
(0)
a and f (1) equal to logic 0.
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To obtain all the satisfying assignments it may be necessary to extend the computation to

f (k) = f
(k−1)
i f (k−1)

where k = 2, 3, 4, . . . up to when one arrives at the results f
(k)
a = 0 and f (k+1) = 0 or at a new CNF formula f (k)

whose satisfying assignments can be found without introducing foreign clauses.

To render the work still more worthy of the public, I have presented few instances of its application.

4.2.1 Instances of 2-SAT

Example 4.7. Decide the satisfiability of f (0) = (A+B)(B+C)(C+D). If it is satifiable, then find all the satisfying
assignments.

To replace the native clause (B+C) with a clause of A, we append the foreign clause (A+B) to f (0). We employ
this foreign clause because it is the alternate clause to the native clause (A+B) and hence its multiplication with
the partial CNF expression (A+B)(B+C) furnishes the CNF expression (A+B)(A+B)(A+C). We thus have
the new formula with the appended foreign clause

f (0)
a = (A+B)(A+B)(A+ C)(C +D).

We turn to the replacement of the native clause (C + D) with a clause of A. To achieve this, we introduce the
foreign clause (A + C) which is the alternate of the native clause (A + C). Multiplying the foreign clause by the
partial CNF expression (A + C)(C +D) gives the CNF expression (A + C)(A + C)(A +D). Hence the formula
with an appended foreign clause is improved to

f (0)
a = (A+B)(A+B)(A+ C)(A+ C)(A+D).

This is simplified further to
f (0)
a = ABCD +ABC.

Since f
(0)
a is not equal to logic 0, we say that the original CNF formula f (0) is satisfiable. If we set f (0) = 1, we

obtain three of the satisfying assignments of f (0), namely

{(A = 1, B = 1, C = 1, D = {0, 1}), (A = 1, B = 1, C = 1, D = 1)}

To get more satisfying assignments, let us first determine the complement of the CNF formula consisting of the
foreign clauses of A used in obtaining f

(0)
a . The formula is

f
(0)
i = (A+B)(A+ C) = AC +AB.

So
f
(0)
i = (A+ C)(A+B).

Hence,
f (1) = (A+ C)(A+B)(A+B)(B + C)(C +D)

= (B)(A+ C)(C +D).

This is a new CNF formula and we recommence the entire process. Thus,

f (1)
a = (B)(A+ C)(A+ C)(A+D)

= ABCD +ABC.

Hence, we obtain the three satisfying assignments

{(A = 1, B = 1, C = 1, D = 1), (A = 1, B = 1, C = 1, D = {0, 1})}.
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For more satisfying assignments, we find the complement of the CNF formula consisting of only the foreign clauses
used:

f
(1)
i = (A+ C)

which becomes
f
(1)
i = (A)(C).

Appending this complement to f (1) furnishes the new CNF formula

f (2) = (A)(C)(B)(A+ C)(C +D)

which reduces to
f (2) = ABC.

We get two more satisfying assignments:

{(A = 1, B = 1, C = 1, D = {0, 1})}.

There are altogether eight satisfying assignments of f (0).

Example 4.8. Determine all the satisfying assignments of

f (0) = (A+ C)(B + C)(B +D)(C +D).

We begin with the CNF formula consisting of the native clauses of A, the foreign clauses of A and the derived
clauses of A obtained from the use of the transformation identities,

f (0)
a = (A+ C)(A+B)(A+B)(A+ C)(A+D)(A+D)

= (A+BCD)(A+BC D)

= ABC D +ABCD.

From this we obtain two satisfying assignments of f0:

{(A = 1, B = 1, C = 1, D = 1), (A = 1, B = 1, C = 1, D = 1)}.

We turn to the CNF formula of foreign clauses.

f
(0)
i = (A+B)(A+B) = AB +AB.

So
f (0)

i = (A+B)(A+B).

We append this to f (0) and get

f (1) = (A+B)(A+B)(A+ C)(B + C)(B +D)(C +D).

For this new CNF formula, we employ the entire procedure again. The CNF formula consisting of the native clauses
with A, foreign clauses of A and derived clauses obtained by using the transformation identities is as follows:

f (1)
a = (A+B)(A+B)(A+ C)(A+ C)(A+D)(A+ C)(A+D) = 0.

We get no satisfying assignment here. We go further to find the CNF formula consisting of the foreign clauses.
Thus we get

f
(1)
i = (A+ C)

which becomes
f (1)

i = (A)(C).

Hence we have the new CNF formula

f (2) = (A)(C)(A+B)(A+B)(A+ C)(B + C)(B +D)(C +D)

which simplifies to
f (2) = ABCD.

We therefore get the satisfying assignments

{(A = 1, B = 1, C = 1, D = 1)}.
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4.2.2 Instances of 3-SAT

That the reader may see the great beauty and force of this method, we present instances of 3-SAT.

Example 4.9. Decide the satisfiability of

f (0) = (A+B + E)(A+ C + E)(A+B +D)(A+D + E)(B + C +D)

(B + C +D)(C +D + E)(C +D + E)

We start with the formula consisting of the native clauses of A, the foreign clauses of A and the derived clauses
of A obtined by employing transformation identities:

f (0)
a = (A+B)(A+B)(A+ C)(A+ C)(A+B + E)(A+ C + E)(A+B +D)

(A+D + E)(A+ C +D)(A+ C +D)(A+D + E)(A+D + E)

= A(D + E)(B)(C +D)(C) + (A)(B + E)(C + E)(B +D)(B)(C +D)(C)

= ABCD +ABCD.

Since f
(0)
a is not equal to 0, we conclude that the original formula is satisfiable and has the satisfying assignments

of
{(A = 1, B = 1, C = 1, D = 1),

(A = 1, B = 1, C = 1, D = 1)}.
In the next instance, I shall throw some light on how all other instances may be handled.

Example 4.10. Find satisfying assignments of

f (0) = (A+B + F )(A+ C + F )(B + C +G)(B +D + E)(C +D +G)(D + E +G).

Those clauses without A begin with the variables B,C and D. Hence we introduce the CNF formula consisting of
the transforming foreign 2-clauses of A containing these variables, viz

f
(0)
i = (A+B)(A+B)(A+ C)(A+ C)(A+D)(A+D).

We append this formula to the original formula and get

f (0) = (A+B)(A+B)(A+ C)(A+ C)(A+D)(A+D)(A+B + F )(A+ C + F )

(B + C +G)(B +D + E)(C +D +G)(D + E +G).

Here we apply the resolution rule to transform clauses without A to those with A. Thus we get

f (0)
a = (A+B)(A+B)(A+ C)(A+ C)(A+D)(A+D)(A+B + F )(A+ C + F )

(A+ C +G)(A+D + E)(A+D +G)(A+ E +G).

which is simplified to

f (0)
a = ABCD(C + F )(C +G)(D +G) +ABCD(D + E)(D +G)(E +G)

which in turn reduces to
f (0)
a = ABCDE +ABCDG.

Since f
(0)
a is not equal to logic 0, we say that the original CNF formula f (0) is satisfiable. Satisfying assignments

of f (0) are as follows:
{(A = 1, B = 1, C = 1, D = 1, E = 1, F = 1, G = 1),

(A = 1, B = 1, C = 1, D = 1, E = 1, F = 1, G = 1)}.

100



Ufuoma; J. Eng. Res. Rep., vol. 26, no. 3, pp. 91-103, 2024; Article no.JERR.110430

We turn to the complement of the CNF formula of foreign clauses. It is

f
(0)
i = ABCD +ABCD = (A+B + C +D)(A+B + C +D).

We get a new CNF formula and then repeat the procedure:

f (1) = (A+B + C +D)(A+B + C +D)(A+B + F )(A+ C + F )(B + C +G)(B +D + E)

(C +D +G)(D + E +G)

We remove the complement of the CNF formula of foreign clauses

(A+B + C +D)(A+B + C +D)

by appending to f (1) the product (A + B)(A + B) which consists of the subclauses of the complement. Also, we
append pairs of clauses capable of transforming clauses without A to those with A. Hence we have

f (1)
a = (A+B)(A+B)(A+ C)(A+ C)(A+D)(A+D)(A+B + C +D)(A+B + C +D)

(A+B + F )(A+ C + F )(B + C +G)(B +D + E)(C +D +G)(D + E +G)

which is simplified to

f (1)
a = (A+B)(A+B)(A+ C)(A+ C)(A+D)(A+D)(A+B + F )(A+ C + F )

(B + C +G)(B +D + E)(C +D +G)(D + E +G)

which, employing resolution identity, becomes

f (1)
a = (A+B)(A+B)(A+ C)(A+ C)(A+D)(A+D)(A+B + F )

(A+ C + F )(A+ C +G)(A+D + E)(A+D +G)(A+ E +G).

This is simplified to
f (1)
a = ABC DEF G+ABCDEF +ABCDFG

which gives the satisfying assignments of f (0):

{(A = 1, B = 1, C = 1, D = 1, E = 1, F = 1, G = 1),

(A = 1, B = 1, C = 1, D = 1, E = 1, F = 1, G = {0, 1}),
(A = 1, B = 1, C = 1, D = 1, E = {0, 1}, F = 1, G = 1)}.

We append the complement of the product of the introduced foreign clauses to f (1) and get the new CNF formula

f (2) = (A+B + C +D)(A+B + C +D)(A+B + C +D)(A+B + C +D)(A+B + F )

(A+ C + F )(B + C +G)(B +D + E)(C +D +G)(D + E +G)

which is reduced to

f (2) = (A+ C +D)(A+ C +D)(A+B + F )(A+ C + F )(B + C +G)(B +D + E)(C +D +G)

(D + E +G).

We recommence the procedure. To remove the product of clauses

(A+ C +D)(A+ C +D)

from the formula, we append the product of their subclauses

(A+ C)(A+ C).
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We also append the pairs of clauses which can transform clauses without A to those with A. Thus we get the
formula

f (2)
a = (A+B)(A+B)(A+ C)(A+ C)(A+D)(A+D)(A+B + F )(A+ C + F )(B + C +G)

(B +D + E)(C +D +G)(D + E +G)

which, applying resolution identity, furnishes

f (2)
a = (A+B)(A+B)(A+ C)(A+ C)(A+D)(A+D)(A+B + F )(A+ C + F )(A+ C +G)

(A+D + E)(A+D +G)(A+ E +G).

This simplifies to
f (2)
a = ABCD +ABCDE +ABCDG.

which gives the satisfying assignments of f (0):

{(A = 1, B = 1, C = 1, D = 1, E = {0, 1}, F = {0, 1}, G = {0, 1}),
(A = 1, B = 1, C = 1, D = 1, E = 1, F = {0, 1}, G = {0, 1}),
(A = 1, B = 1, C = 1, D = 1, E = {0, 1}, F = {0, 1}, G = 1)}.

Other satisfying assignments can be found if we continue the computation following similar procedure.

What a glorious method is presented to our view! But we must stop here, for our limit reminds us that we must be
brief.

5 CONCLUSION

This paper presented a novel approach to solving SAT.
This was achieved by the introduction of foreign clauses
which could transform a given CNF formula into one with
clauses of a particular variable. Instances of the method
were provided.
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