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Abstract: Extracellular vesicles (EVs), especially exosomes, have shown great therapeutic potential
in the treatment of diseases, as they can target cells or tissues. However, the therapeutic effect of
EVs is limited due to the susceptibility of EVs to immune system clearance during transport in vivo.
Hydrogels have become an ideal delivery platform for EVs due to their good biocompatibility and
porous structure. This article reviews the preparation and application of EVs-loaded hydrogels as a
cell-free therapy strategy in the treatment of diseases. The article also discusses the challenges and
future outlook of EVs-loaded hydrogels.
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1. Introduction

Traditional cell therapies like stem cell transplantation hold tremendous potential for
treating diseases such as myocardial infarction [1,2]. However, these cell therapies may
encounter various limitations, including low stability in the storage and transportation
of living cells, potential risks of tumorigenicity and immunogenicity, and high cost of
treatment [3–6]. To overcome these limitations, cell-free therapy (CFT) provides an alternate
exciting approach [7–11] in which bioactive molecules such as protein, mRNA, and miRNA
can perform the primary functions of cells [12,13].

The bioactive molecules for CFT can be extracted from cell culture media [14,15].
During the cell cultivation process, cells release extracellular vesicles (EVs) into the sur-
rounding environment. EVs are sub-micron-sized particles with a phospholipid membrane
and contain molecules from cells, including proteins, nucleic acids, and soluble small
molecules [16,17]. EVs play a crucial role in CFT [18]. The three main types of EVs are exo-
somes (40–160 nm), microvesicles (100–1000 nm), and apoptotic bodies (50–5000 nm) [19,20].
Researchers have discovered that mesenchymal stem cells (MSCs) secrete a form of EVs
containing miRNA associated with tumors [21]. These EVs can influence the behavior of
tumor cells [22] and have potential applications in cancer treatment [23].

However, EVs are subject to rapid clearance, which presents an obstacle for the
application of the therapeutic EVs in CFT. For example, EVs isolated from melanoma cells
(B16BL6) are rapidly cleared within approximately 2 min after intravenous injection in
mice [24]. During the transportation process in the bloodstream, EVs are easily cleared by
macrophages [25] and tend to accumulate in the liver, spleen, and lungs, rather than at the
lesion sites [26]. To solve this problem, researchers have used hydrogels to protect EVs from
the clearance of immune cells [25], successfully deliver EVs and persistently keep them
at lesion sites [27]. EVs-loaded hydrogel offers several advantages in disease treatment,
including a high loading rate of EVs, sustained release of EVs, and cryopreservation
stability [28].

In this work, we review the production and applications of EVs-loaded hydrogels
in disease therapy. We will describe the detailed process of synthesizing EVs-loaded hy-
drogels, the critical biomolecules that contribute to their therapeutic efficacy, and their
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specific applications in treating various diseases, such as myocardial infarction, interver-
tebral disc degeneration, osteoarthritis, bone deficiency, diabetic ulcers, and nerve injury.
Additionally, we critically assess the significance and potential limitations of using these
hydrogels in disease therapy, offering an insightful evaluation of their role in advancing
medical treatments.

2. Synthesis of EVs-Based Hydrogels

The synthesis of EVs-based hydrogels is shown in Figure 1. First, EVs are isolated,
typically by ultracentrifugation from cell culture medium supernatants. Then, the isolated
EVs are assembled into injectable hydrogels or hydrogel patches by in situ polymerization
or adsorption.
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2.1. Acquisition of EVs

EVs can be classified into native EVs, engineered cell EVs, and post-modified EVs
based on the source of their components [29]. There are three major pre-treatment methods
for the acquisition of therapeutic EVs. The most primitive method is the isolation of
EVs directly from the source cells without any means of intervention [30]. For example,
MSCs are able to differentiate into a variety of cell types, including bone, cartilage, fat,
etc. [1,31,32]. The therapeutic effect of EVs isolated from MSCs is similar to that from MSCs
transplantation [30]. Xia et al. [33] isolated EVs derived from umbilical cord mesenchymal
stem cells (UCMSCs) for bone repair. Sun et al. [34] isolated EVs from bone marrow
mesenchymal stem cells (BMSCs) to promote epiphyseal plate damage restoration.

Another common approach is to induce parental cells by hypoxia to obtain engineered
cell EVs enriched with specific biomolecules [35]. Researchers have shown that the gene
regulation patterns of cells are significantly different under hypoxia induction [36], and
there are hypoxia activation and repression genes [37–39]. Bai et al. [40] used hypoxia-
induced BMSCs to isolate EVs for the treatment of myocardial infarction. Zuo et al. [41]
isolated EVs from hypoxia-induced BMSCs for cartilage regeneration. The isolation of
EVs after lentiviral transfection of cells is also a method of interest to researchers [42].
Zhao et al. [43] incubated BMSCs with retroviruses, and the resulting EVs overexpressed
miR-29b-3p, reducing scarring during wound healing. Li et al. [44] transfected UCMSCs
with pCDH virus, up-regulated the expression of 5′-nucleotidase (CD73) in EVs, and
attenuated inflammation after spinal injury.

In addition, the unique protein- and carbohydrate-decorated surface of EVs makes EVs
a promising natural nanocarrier [45,46]. Exogenous RNA, proteins, and small molecules
can be packaged in EVs by methods such as co-incubation, electroporation, freeze-thawing,
ultrasound, extrusion, etc. [47–49]. As a nanocarrier, EVs can protect the molecules of
interest from immune clearance, facilitate the molecules to cross biological barriers, and
enhance the binding specificity of the molecules to the target tissues [50].
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2.2. Package of EVs on Hydrogels

EVs can be loaded into hydrogels through in situ polymerization or adsorption. The
interactions between the polymer backbone of hydrogels and EVs include van der Waals
forces, hydrogen bonding, and electrostatic interaction, which enhance the stability of the
EVs in the hydrogel and thus prolong the residence time of the EVs in vivo [51]. The in situ
polymerization method involves the co-mixing of a gel precursor solution and an EVs solu-
tion. The polymerization conditions must be mild, e.g., 365 nm UV irradiation for 1 min [52],
and polymerization at room temperature [53] or 37 ◦C [54]. Alternatively, hydrogels can
also be prepared first, and then mixed with the EVs solution to allow the adsorption of EVs
into hydrogels [55]. The most often used hydrogel materials for EVs delivery include cal-
cium alginate (Ca-Alg) [53,56], arginine-glycine-aspartate (RGD) [57–59], hyaluronic acid
(HA) [55,60–62], chitosan (CS) [54,63–66], and gelatin methacrylate (GelMA) [34,52,67,68].
The synthesis of the hydrogel has been well documented in many reviews [69–79], and is
not described in the current work.

Compared with the interaction between EVs and the polymer backbone of hydrogels
in the common physical encapsulation, the integrin present on the surface of the EVs’
membrane [80] has much stronger binding affinity with RGD peptides [81], which can
increase the stability of EVs in the hydrogels presenting RGD in the polymer backbone. As
a result, the functional lifetime of the EVs can be increased [59]. In addition, the dynamic
hydrogen bonding between the DA of the dopamine-grafted gelatin (GelDA) gel and the
surface amines of EVs can promote the attachment of EVs to the hydrogel network, leading
to the development of heat-sensitive or ROS-sensitive composite gels for precise EVs release
in therapy [82].

3. Bioactive Molecules in EVs Used for Disease Treatment
3.1. Protein

In EVs, most proteins are secreted by parent cells in a soluble form and embedded
in the surface phospholipid bilayer [83], and applied to intercellular communication [84].
The lack of relevant proteins may lead to unregulated intercellular signal transduction or
obstacles in transportation, thereby triggering numerous diseases. Treatment of related
diseases often requires restoring protein function [85]. Biological functional enzymes or
therapeutic proteins are susceptible to protein degradation and poor cellular uptake during
transport, and EVs are ideal delivery vehicles for proteins [86].

3.2. mRNA

The safety and conversion efficiency of mRNA through chemical modification in vitro
synthesis were demonstrated in the widespread use of mRNA as a vaccine in the 2019
Novel Coronavirus Disease (COVID-19) pandemic [87,88]. This successful case has sparked
widespread interest in using mRNA in both the application of vaccines and other medical
needs [89,90]. mRNA can be encapsulated into isolated EVs and then endocytosed into
recipient cells to express targeted proteins [91].

3.3. miRNA

A key active ingredient in achieving therapeutic effects in EVs is miRNA [92]. miRNA
is a 19–24 nucleotide long non-coding RNA that regulates gene expression by targeting
the 3′-untranslated region (3′-UTR) of mRNA [93]. Various distinct cellular expression
processes can be regulated by a single type of miRNA [94]. In different forms of EVs
secreted by various cells, or even one type of cells, there may be different carried miRNAs,
exerting distinct regulatory effects. Compared to drugs that act on a single gene, miRNA
possesses a stronger biomolecule capability to selectively regulate multiple genes [95].
Importantly, researchers have found that, to enhance its therapeutic effects, it is possible
to engineer the enrichment or design modifications of miRNAs contained in EVs through
interventions on parent cells such as lentiviral transduction [29,43,96].
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3.4. circRNA

In some situations, miRNAs may be degraded by RNA exonucleases. In contrast,
circular RNA (circRNA), a covalently closed, single-stranded, circular RNA [97], exhibits
excellent environmental resistance and stability [98,99]. In the absence of coding for
proteins, circRNA regulates the behaviors of cells by modulating the expression of miRNAs
or downstream proteins [100]. CircRNA has been shown to play an important role in a
variety of cancers [101]. CircRNAs are predominantly located in the nucleus and can be
packaged in EVs for transport in circulation [102].

3.5. Antagomir

Antagomirs, sometimes referred to as anti-miRNA [103], are microRNA inhibitors
with a chemical modification of homologous miRNA. The modification makes antagomirs
more resistant to degradation and more effective in inhibiting miRNA expression [104,105].
The difference between antagomir and normal RNA is the complete 2′-O-methylation of
three parts, namely the ribose part, the thiosulfate bond part, and the 3′-end cholesterol
part [105–107]. Antagomir has shown cutting-edge promise in treating fluorescent tumors,
as it does not act on tumor cells in a cell-by-cell toxic manner, but rather prevents them
from initiating metastasis [108].

4. The Application of EVs-Loaded Hydrogels in Disease Treatment
4.1. Myocadial Infarction

The non-proliferative nature of adult cardiomyocytes leads to the fibrosis of damaged
myocardium [109]. Researchers have pointed out that EVs secreted by mesenchymal stem
cells (MSCs) [110], cardiac progenitor cells (CPCs) [111], and induced pluripotent stem
cells (iPSCs) [112,113] carry important molecules in heart-specific processes, which can pro-
mote angiogenesis, inhibit apoptosis and fibrosis, reduce cardiac ischemic injury [114,115],
and protect the cardiac function of ischemic heart disease [116] while avoiding the tu-
morigenicity and high tendency of arrhythmia brought about by stem cell therapy or
cardiomyocyte therapy.

Gordana et al. [117] assembled EVs secreted by induced cardiomyocytes (iCMs) into
the hydrogel patches to form cardiac patches, and this process was achieved by the in
situ polymerization of collagen within a gelfoam mesh at 37 ◦C. The patches can contin-
uously release iCM-EVs for up to 21 days in vitro and rat myocardial infarction models,
and iCM-EVs are enriched with numerous heart-specific miRNAs, including miR-1 and
miR133a, which can inhibit the rational hypertrophy of heart disease and reduce the size of
myocardial infarction (Figure 2).

Ji et al. [57] encapsulated RGD hydrogels enriched in hypoxia-inducible factor-1α
(HIF-1α)-overexpressing UCMSCs-derived engineered EVs (HIF-1α-EVs). The hydrogels
inhibited the elevation of interleukin-6 (IL-6) and connexin 43 (conx43) in the region of
myocardial infarction, which accelerated the recovery of cardiac function, reduced infarct
size, and inhibited cardiomyocyte apoptosis.

Mehdi et al. [53] loaded two synthetic miRNA mimics, miR-126 and miR-146a, into
the EVs secreted by adipose-derived mesenchymal stem cells (ADSCs) and assembled the
EVs into injectable Ca-Alg hydrogels by in situ polymerization. miR-126 regulates the
PI3K/AKT signaling pathway by upregulating vascular endothelial growth factor receptor
2 (VEGFR2), Protein kinase B (AKT), and the mechanistic target of rapamycin (mTOR),
and inhibiting the expression of Sprouty-related EVH1 domain containing 1 (SPRED-1),
thereby promoting cell migration and proliferation. miR-146a plays an anti-inflammatory
role by inhibiting the expression of Interleukin-1 receptor-associated kinases (Irak-1) and
tumor necrosis factor receptor-associated factor 6 (Traf6) genes, reducing pro-inflammatory
cytokines. The composite hydrogel has been shown to reduce the size of myocardial
infarction and fibrosis and promote angiogenesis in cardiac tissue.
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Figure 2. iCM-EVs-collagen gelfoam patches reduced infarct size and pathological hypertrophy.
(a) Transverse cardiac sections after treatment with patches. Scale bars: 1 mm; (b) high-power images
of the infarct border zone. Scale bars: 100 µm; (c) infarct size as a percentage of the total area of the
left ventricle (LV). * p < 0.05 by two-tailed t-test; (d) sections were stained with wheat-germ agglutinin
(red), troponin (green), and DAPI (blue). Scale bars: 50 µm; (e) relative cardiomyocyte area quantified.
* p < 0.05 by two-tailed t-test. [117].

4.2. Intervertebral Disc Degeneration

Intervertebral disc degeneration (IDD) is usually caused by the aging of intervertebral
disc nucleus pulposus stem cells (NPSCs) [118]. In degenerated tissues, there is dysfunction
in the surviving NPSCs [119], so it is difficult to achieve satisfactory therapeutic results
by intervening in cell death or using stem cell therapy alone. Mesenchymal stem cell
(MSCs)-based tissue engineering has the potential to treat cartilage defects [120], and
MSCs secrete EVs rich in miRNAs associated with cartilage regeneration, demonstrating
great therapeutic potentials due to their high stability, readily available, and abundant
sources [121].

Shao et al. [58] isolated miR-3594-5p-enriched EVs from the medium of BMSCs, and
combined them with RGD complex decellularized nucleus pulposus hydrogel (RGD-
DNP) through the integrin expressed on the EVs membrane. The gel exhibited excellent
cell-integration ability, and this study demonstrated for the first time that miR-3954-5p
can effectively slow down cellular aging by targeting the 3′-UTR of the homeodomain-
interacting protein kinase 2 (HIPK2) mRNA to reduce its expression.

Ye et al. [55] demonstrated, for the first time, the role of M2c-type macrophages (M2c)
in the immune regulation of IDD tissues. After the lyophilization of the HA hydrogel,
the EVs enriched with miR-124-3p released by M2c were loaded into a hydrogel through
adsorption. The gel was implanted into the degenerative site of the tail vertebral disc in
rats, and EVs were continuously released in vivo for 28 days. miR-124-3p down-regulated
cartilage intermediate layer protein 2 (CILP-2) in NPCs, indirectly promoted the expression
of extracellular matrix (ECM) protein (collagen type II (ColII) and aggrecan), and inhibited
the expression of metalloproteinases (matrix metalloproteinase 13 (MMP13) and ADAM
metallopeptidase with thrombospondin type 1 motif 5 (ADAMTS5)), while enhancing the
conduction of the TGF-β pathway. The hydrogel improved the metabolism of the NPCs
matrix, which was conducive to the long-term treatment of IDD.
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In addition, more and more research has shown that abnormal intracellular reactive
oxygen species (ROS) levels are associated with NPSCs aging and are also a significant
cause of IDD [122–124]. IDD can be slowed down by controlling the source ROS levels.
Wang et al. [82] isolated the EVs with high expression of glutaredoxin3 (GLRX3) by treating
BMSCs with hypoxia, and developed an injectable dopamine-grafted gelatin (GelDA)
and aldehyde-functionalized chondroitin sulfate (ACS) composite hydrogel (GDC) for
the delivery of EVs. GLRX3 inhibited the expression of P16INK4a, P21Cip1, and various
cytosenescence-related factors including MMP13, interleukin-1β (IL-1β), and IL-6. The
hydrogel has been shown to slow down mitochondrial damage in the rat IDD model to
alleviate the aging of NPSCs, thereby slowing down IDD (Figure 3).
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the degenerative intervertebral disc; (b–d) representative images of X-ray, MRI, and Micro-CT of the
discs at postoperative weeks 8 and 12 [82].

4.3. Osteoarthritis

Osteoarthritis (OA) is caused by changes in the composition or structure of any
component of the joint, including cartilage fissures, chondrocyte apoptosis, etc. [125]. In
addition, the articular cartilage cannot repair itself, and once damaged, it will continue
to deteriorate [126]. OA is the leading cause of disability worldwide [127,128]. The role
and mechanism of articular chondrocytes (ACs) and BMSCs in cartilage repair have been
extensively studied [129–131], and their mechanisms of action typically involve EVs.

Cui et al. [61] isolated EVs secreted by subcutaneous adipose tissue-derived stem
cells (ScASCs), and prepared injectable composite hydrogels of hydroxyacrylate polyethy-
lene glycol diacrylate (HB-PEGDA) and mercaptoylated hyaluronic acid (SH-HA) (HB-
PEGDA/SH-HA) in droplet-based microfluidic devices as an effective sustained-release car-
rier for EVs. miR-99a-3p is overexpressed in the EVs to inhibit the expression of ADAMTS4
and promote ECM repair. The composite hydrogel can be used for long-term treatment
of OA.

Sun et al. [62] obtained EVs enriched with engineered miR-445 from transforming
growth factor β3 (TGFβ3) pretreated BMSCs. The EVs were loaded into the gelatin–
fibrinogen–HA–glycerol composite hydrogels by in situ polymerization, which were in-
jected into rat knee joints. miR-445 regulates chondrogenesis and treats OA by targeting
the SOX11/FOXO signaling pathway, reducing the expression of SRY-related HMG-box
transcription factor 11 (SOX11), further enhancing the transcription of Forkhead box protein
O1 (FOXO1), and upregulating the expression of SRY-related HMG-box transcription factor
9 (SOX9).

Sleep is beneficial for cartilage repair [132], and circRNAs are involved in the patho-
genesis of OA [133]. Guo et al. [134] successfully isolated circRNA3503-loaded EVs us-
ing melatonin (MT)-induced synovium mesenchymal stem cells (SMSCs). In this work,
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poly(D,L-lactide)-b-poly(ethylene glycol)-b-poly(D,L-lactide) (PDLLA-PEG-PDLLA) tri-
block copolymer gel (PLEL) was synthesized by in situ polymerization and used as the EV
carrier for the first time. By inhibiting the expression of hsa-miR-181c-3p and hsa-let-7b-3p,
circRNA3503 indirectly promotes the expression of peroxisome proliferator-activated re-
ceptor γ coactivator-1α (PGC-1α) and SOX9, thereby promoting chondrocyte renewal and
treating OA (Figure 4).
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4.4. Bone Deficiency

Bones could self-repair and regenerate after damage, and scar-free healing is achieved
through the synergistic action of stem cells, progenitor cells, macrophages, etc. [135,136].
Despite this, the nonunion of fractures remains numerous and requires therapeutic inter-
ventions to promote bone repair and regeneration [137–139]. However, some growth factors
such as recombinant human bone-forming proteins (rhBMPs) and platelet-derived growth
factors (PDGFs) have been disappointing in their clinical and preclinical efficacy [140]. A
growing body of research suggests that BMSCs play a crucial role in bone remodeling by
secreting EVs [141,142].

Liu et al. [143] found that the EVs secreted by hypoxic pretreated BMSCs contained
a large number of biglycans (Bgn). Liu and coworkers developed an injectable hydro-
gel composed of polyethylene glycol/polypeptide (PEG/PP) copolymer and mixed with
EVs. The hydrogel could continuously release EVs for up to 3 weeks in a rat skull defect
model. Bgn upregulates a variety of osteogenic properties-related genes including bone
morphogenetic protein-2 (Bmp2), alkaline phosphatase (Alp), osteocalcin (Opn), Osteo-
calcin (Ocn), etc. Bgn also activates the PI3K/AKT signaling pathway and significantly
promotes osteoblast differentiation.

Lee et al. [144] reported a cellular nanoelectroporation technique for the delivery of
plasmids of Bmp2 and vascular endothelial growth factor A (VEGF-A) to human adipose-
derived mesenchymal stem cells (hAdMSCs) and a large amount of mRNA was loaded in
EVs secreted by plasmid-transfected hAdMSCs. By in situ polymerization, an EVs-loaded
PEGylated poly (glycerol sebacate) acrylate (PEGS-A) injectable hydrogel was synthesized
and the EVs were delivered locally in a controlled manner. In a rat model of a femoral defect,
mRNA was efficiently expressed to achieve efficient angiogenesis and bone regeneration
with less accumulation in other organs (Figure 5).
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treatment in rats with a critical-size femoral defect; (b) Fluorescence imaging of PKH26-labeled EVs
delivered by gelatin sponge (GS) and PEGS-A in vivo; (c) Micro-CT images of new bone and vessel
formation at weeks 4 and 8 [144].

Based on the clinical evidence of traumatic brain injury (TBI) and accelerated bone
healing, Bai et al. [145] proposed that EVs released by the damaged neurons were rich in
miR-328a-3p and miR-150-5p, associated with bone formation, directly targeting the 3′UTR
of forkhead box protein O4 (FOXO4) or calcineurin B-like protein (CBL) to promote bone
formation. The skull defects were almost completely repaired after 3 months of injection
of methacrylated glycol chitosan (MeGC) hydrogel carrying these EVs into a rat model of
skull defects.

4.5. Diabetic Ulcer

About 20% of patients with diabetes have diabetic ulcers (DU) [146], the most common
chronic wounds worldwide [147–149]. Incurable ulcers can seriously affect the patient’s
quality of life, causing significant physical and psychological suffering. This refractory
wound is caused by a range of therapeutic mechanisms, such as recurrent infections, de-
layed angiogenesis, impaired leukocyte function, and obstructed migration of keratinocytes,
fibroblasts, and endothelial progenitor cells [150,151].

Zhou et al. [67] loaded EVs from BMSCs into a dopamine-modified GelMA hydrogel
with tissue adhesion by in situ polymerization. The hydrogel increased the expression of
IL-6, the cluster of differentiation 31 (CD31), and TGF-β in a diabetic rat skin wound model,
significantly accelerating the wound closure rate and promoting healing.

Cui et al. [52] pretreated ADSCs with hypoxia, and separated and embedded their EVs
on GelMA hydrogels by in situ polymerization. The EVs were rich in circ-Snhg11, which
played a key role in wound healing, and by downregulating the expression of miR-144-3p,
enhanced the expression of downstream nuclear factor erythroid 2-like 2 (NFE2L2) and
HIF1α, enhancing the migration, proliferation, and revascularization of vascular endothelial
cells (ECs) for the treatment of diabetic wounds.
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Based on the pathological features of abnormal hyperplasia of vascular endothelial
cells in infantile hemangioma (IH) [152], Sha et al. [54] isolated CD133-positive Heman-
gioma stem cells (HemSCs) from IH and obtained the EVs from culture supernatants. They
modified CS with hyaluronic oligosaccharides (oHA) to synthesize a thermosensitive hy-
drogel that served as a carrier for the EVs. In the EVs, the miR-7 family is highly expressed
to promote angiogenesis, and miR-21 as well as miR-221 are highly expressed to promote
endothelial cell proliferation. As a result, the composite hydrogel promoted wound healing
(Figure 6).
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4.6. Nerve Injury

Peripheral nerve injury (PNI), a disruption of bioelectrical communication between
the spinal cord and the innervated body, can lead to chronic pain, muscle wasting, dis-
ability, and paralysis [153–155] and is a significant clinical challenge. Autologous nerve
transplantation is currently a common strategy for the repair of PNI, but there are still short-
comings such as defects in donor tissue and cumbersome surgery [156]. Spinal cord injury
(SCI) within the central nervous system is also one of the most devastating neurological
diseases, with an estimated 180,000 new cases of SCI occurring each year worldwide [157]
leading to long-term disability and complications such as neuroinflammation and oxidative
damage [158,159]. Effective SCI remediation methods are still a huge challenge. Methods
that utilize natural or synthetic materials as implantable nerve catheters or nerve scaffolds
are promising in promoting nerve cell growth [160,161].

Han et al. [56] isolated NT-3 mRNA-rich EVs by transfecting ADSCs with lentivirus
and encapsulated them in Ca-Alg hydrogels by in situ polymerization. The gel stably
delivered NT-3 mRNA to targeted cellular SCs, effectively expressing neurotrophic factor
3 (NT-3) protein, and promoting peripheral nerve regeneration and functional recovery.

Qi et al. [162] used a commercially available injectable polyethylene glycol ether
and polyethylene glycol triblock copolymer hydrogel (PLGA-PEG-PLGA) as a carrier for
miR-138-5p modified UCMSCs EVs. The hydrogel was formed by dissolving PLGA-PEG-
PLGA in a PBS solution containing EVs. In the SCI rat model, miR-138-5p decreased
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neuronal apoptosis by increasing the expression of nuclear factor erythrocyte 2-related
factor 2 (Nrf2) protein thereby decreasing the expression of Kelch-like ECH-associated
protein 1 (keap1), and it also played an anti-inflammatory role by decreasing the expres-
sion of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), thereby
downregulating caspase-1. As a result, the EV-loaded hydrogel promoted the recovery of
neurological function.

Ning et al. [163] developed a double network gel of gelatin methacrylate and polypyr-
role cross-linked tannins (GMP), loaded with EVs from BMSCs by adsorption. The EVs
highly expressed miRNAs associated with axonal regeneration, myelination, and anti-
inflammatory effects, and inhibited the expression of the proteins p-IKKα/β, p-IκBα,
and p-P65, promoted the polarization of M2 microglia, increased the expression of axon-
associated protein neurofilament (NF) and growth-associated protein-43 (GAP43), and
promoted axon growth and the formation of synaptic networks (Figure 7).
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4.7. Others

Malignancies are associated with high morbidity and mortality worldwide, and im-
munotherapy is an effective strategy for the treatment of malignant cancers [164], including
adoptive cell immunotherapy, cancer vaccines, small molecule inhibitors, etc. [165]. Efforts
have been underway for decades in the development of therapeutic cancer vaccines [166],
and vaccines work primarily by activating systemic anti-tumor responses, whether hemato-
logic or solid [167]. Yang et al. [168] developed a nano-clay GelMA hydrogel vaccine. The
hydrogel was loaded with chemokine 21 (CCL21a) and tumor cell-derived EVs, which con-
tained granulocyte-macrophage colony-stimulating factor (GM-CSF) mRNA and surface-
modified sonosensitizer chlorin e6 (Ce6). CCL21a was responsible for recruiting tumor
cells into the hydrogel, leading to EVs-induced immunogenic cell death (ICD) in cancer
cells. Ce6-enhanced tumor cell phagocytosis of tumor cells in sonodynamic therapy. The
hydrogel vaccine was shown to elicit effective anti-tumor immunity in colon and breast
cancer mice.

Muscle wasting affects about 15% of people over the age of 65 [169] and is characterized
by a decline in muscle function and mass [170]. Muscle wasting is usually caused by a
loss of the self-renewal capacity of Schwann cells (SCs). Some miRNAs, such as miR-
1 [171] and miR-133 [172], have been shown to play an important role in promoting muscle
regeneration, while other miRNAs are pathogenic to muscle wasting, such as miR-29b [173]
and miR-628 [174]. Xu et al. [175] showed that miR-467a-3p and miR-874-5p inhibited the
differentiation of SCs and the formation of muscle tissue, respectively. They overexpressed
TSG101 to target SCs on the BMSCs-EVs surface, and transported antagomiR-467a-3p and
antagomiR-874-5p, respectively, to construct two engineered EVs. Sodium alginate (SA)
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and Pluronic F-127 (PF127) were used to form a layered injectable hydrogel. With the EV
loaded in the hydrogel, the EVs containing two antagomirs were released in vivo for the
treatment of muscle atrophy (MA).

Postoperative pericardial adhesion (PPA) is a fibrous connection between the epi-
cardium and the thoracic cavity [176,177]. PPA reduces the surgical field of view and
prolongs the operative time during cardiac surgical reoperation [178]. PPA also limits left
ventricular diastolic filling, leading to myocardial infarction and, in severe cases, sudden
death [179]. The molecular mechanism of PPA has not been fully elucidated, and effec-
tive methods to prevent PPA are urgently needed. Wu et al. [180] encapsulated the EVs
from iCMs in a hyaluronic acid–g-(2-aminoethyl methacrylate hydrochloride–dopamine)
(HAD) hydrogel by in situ polymerization under 365 nm of UV irradiation (7 mW/cm2)
for 10 s. The EVs-loaded hydrogel inhibited Nrf2, alleviating oxidative stress in primary
cardiomyocytes, and downregulated interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-
α), and IL-6, exerting anti-inflammatory effects. In addition, HAD hydrogel acted as a
polyanion trap to prevent PPA by neutralizing MSR-1 scavenger receptors and inhibiting
the recruitment of GATA6+ macrophages to adhesion sites [181].

Acute kidney injury (AKI) occurs in approximately 32% of patients admitted to the
intensive care unit (ICU) and 24% of patients undergoing cardiac surgery [182], and there
is currently no effective treatment to prevent AKI, so there is an urgent need for new
renal-protective therapies [183]. Chen et al. [59] developed an RGD hydrogel as a scaffold
for the EVs of human placenta-derived mesenchymal stem cells (hP-MSCs) by in situ
polymerization. miR-let-7a-5p in EVs was key to reducing renal apoptosis and enhance
autophagy in AKI by targeting inhibition of caspase-3 (CASP3) mRNA and ras-related GTP
binding D (RragD) mRNA, thereby exerting renal protective effects.

With the improvement of life quality, EVs have also attracted increasing interest from
the beauty industry. Dermatologists and cosmetologists are committed to skin renewal and
repair, and anti-wrinkle is one of the top research priorities [184,185]. HA-based hydrogels
are used to develop new fillers that are highly effective in repairing the damaged dermal
microenvironment [186]. Park et al. [187] extracted EVs from ADSCs and conjugated them
to HA hydrogels by adsorption. miRNA-let-7b-5p and miR-24-3p in the EVs induced
overexpression of CD301b in macrophages and promoted the proliferation of fibroblasts,
demonstrating the anti-aging potential of the EV-loaded HA hydrogel.

5. Implications, Limitations and Future

In recent years, EVs have attracted a lot of attention for CFTs [188], which can be
isolated from human cells, body fluids, milk, bacteria, etc. [189–191]. Hydrogels have a
good biocompatibility, excellent biodegradability, and a high loading capacity, and can be
designed as tissue patches or intravenous and subcutaneous injectable agents [192,193]. Not
surprisingly, hydrogels have become an excellent EVs delivery platform, which can control
the release of EVs through swelling [194] or degradation [195] and solves the problems of
short intravenous half-life of EVs, rapid immune clearance, and liver accumulation [196].
Composite hydrogels containing EVs derived from different cells can be used as an effective
CFT in many diseases such as myocardial infarction and osteoarthritis (Table 1).
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Table 1. Applications of EV-loaded hydrogel in the treatment of diseases.

Origins of EVs Preprocessing Method Biological Molecules Hydrogels Target Disease Therapeutic Effect Reference

iCMs
miR-1, miR133a collagen MI

Inhibit the rational hypertrophy of
heart disease and reduce the size of

myocardial infarction
[117]

N/A HAD PPA Prevent PPA [180]

UCMSCs

Cells transduced with an
HIF-1α-overexpressing

lentivirus
HIF-1α RGD MI

Accelerate the recovery of cardiac
function, reduce infarct size, and
inhibit cardiomyocyte apoptosis

[57]

EVs loaded with miRNA
mimics miR-138-5p PLGA-PEG-PLGA SCI Promote the recovery of neurological

function [162]

ADSCs

EVs loaded with miRNA
mimics miR-126, miR-146a Ca-Alg MI

Reduce the size of myocardial
infarction and fibrosis and promote

angiogenesis in cardiac tissue
[53]

miR-99b-3p HB-PEGDA/SH-HA OA Accelerate cartilage repair [61]

Cells transduced with
plasmids of Bmp2 and

VEGF-A

Bmp2 mRNA and VEGF-A
mRNA PEGS-A BD 1 Achieve efficient angiogenesis and

bone regeneration [144]

Cells treated with
hypoxia circ-Snhg11 GelMA DU Promote

wound healing in diabetes [52]

Cells transduced with
NT-3 plasmid NT-3 mRNA Ca-Alg PNI Promote peripheral nerve

regeneration and functional recovery [56]

miRNA-let-7b-5p and
miR-24-3p HA wrinkles Reduce wrinkles [187]
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Table 1. Cont.

Origins of EVs Preprocessing Method Biological Molecules Hydrogels Target Disease Therapeutic Effect Reference

BMSCs

miR-3594-5p RGD-DNP IDD Slow down IDD [58]

Cells treated with
hypoxia GLRX3 GDC IDD Slow down IDD [82]

Cells treated with TGFβ3 miR-445 GFHG 2 OA Accelerate cartilage repair [62]

Cells treated with
hypoxia Bgn PEG-PP BD Accelerate bone regeneration [143]

N/A GelMA DU Accelerate the wound closure rate
and promote healing. [67]

miRNAs GM-PPy-TA SCI Promote axon growth and the
formation of synaptic networks [163]

EVs loaded with
antagomirs

antagomiR-467a-3p and
antagomiR-874-5p Alg-PF127 MA Promote the formation of muscle

tissue [175]

BMDMs Cells induced M2c
Polarization by IL-10 miR-124-3p HA IDD Slow down IDD [55]

SMSCs Cells treated with MT circRNA3503 PDLLA-PEG-PDLLA OA Promote cartilage repair [134]

TBI miR-328a-3p and
miR-150-5p MeGC BD Accelerate bone re-generation [145]

HemSCs miR-7, miR-21 and miR-221 oHA- CS DU Promote wound healing [54]

tumor cells
Cells transfected with
pcDNA3.1(-)-GM-CSF

plasmid
GM-CSF mRNA Nano clay-GelMA Malignancies Achieve effective anti-tumor

immunity [168]

hP-MSCs miR-let-7a-5p RGD AKI Prevent AKI [59]
1 Bone deficiency. 2 Gelatin-fibrinogen-hyaluronic acid-glycerol composite hydrogel.
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However, there are still significant challenges before the hydrogels loaded with EVs
can be translated into clinical practice. The first group of challenges are associated with
the hydrogels. The stability and EV-release characteristics of hydrogels are affected by
the hydrogels’ synthesis conditions and in vivo tissue temperature [197]. The hydrogels
based on natural biomaterials often have low mechanical strength [198,199]. The residual
monomers or crosslinkers in the hydrogels may present biosafety issues [200]. Therefore,
new hydrogel materials need to be designed and synthesized. In addition, the large-
scale production of some hydrogels is needed [201]. The second group of challenges are
associated with EVs. The purity of the EVs, commonly isolated by ultracentrifugation,
needs to be improved [30,202]. The heterogeneity in the source of EVs will lead to different
therapeutic effects [203]. EVs are stored at –80 ◦C, and repeated freeze–thaw processes may
lead to the deterioration of bioactive molecules [204]. Finally, in the preparation of EVs-
loaded hydrogels by in situ polymerization method, in order not to affect the activity of EVs,
the optimal reaction conditions of the in situ polymerization still need to be explored [205].

As the field of hydrogel materials continues to advance, challenges associated with
EVs-loaded hydrogels are progressively being addressed [206]. For example, by selecting
suitable hydrogel materials that cater to specific release characteristics, the controlled release
of EVs can be finely tuned. This includes options for short-term and long-term release, as
well as tailored approaches like continuous or pulsatile release modes, thereby expanding
the versatility and applicability of these systems in therapeutic scenarios [74]. Hydrogels
with higher ester bonds such as 8-Arm-Poly(ethylene glycol)-mono(2-acryloyloxyethyl)
succinate (8-Arm-PEG-MAES) exhibit faster swelling and degradation [207], resulting in
a faster release of EVs. Additionally, by modifying the ratio of hydrophobic networks,
the hydrophilicity of the hydrogel network can be adjusted, enabling control over the
swelling rate, and thereby realizing a time-regulated release of EVs [208]. The passively
controlled release of EVs can be achieved through stimuli-responsive hydrogels, such
as isoguanosine-phenylboronic acid-guanosine (isoGPBG) pH-responsive hydrogels that
rely on Schiff base bonds [209] and hydrazine or aldehyde-modified hyaluronic acid (HA)
enzyme-sensitive hydrogels containing enzyme-sensitive peptides [210]. Furthermore,
the separation and purification of EVs can be efficiently accomplished using microfluidic
technology, which allows for the effective segregation of EVs from small sample volumes
and their classification and extraction based on size [211–213]. In the preparation of
EVs-loaded hydrogels, the adsorption in pre-formed hydrogels is more advantageous
over in situ polymerization, because it is much easier to remove the residual monomers,
cross-linked agents, initiators, toxic metal ions and other impurities from the pre-formed
hydrogels [163,214–216].

In addition to accurate drug release and targeted treatment in disease treatment,
EVs-loaded hydrogels are also useful in the fundamental research in life science, such as
intercellular interactions, signal transmission, molecular communication, etc. [217,218].

For future preclinical studies, two important directions include identifying the optimal
cell source of the EVs and developing new composite hydrogel materials. It is also crucial
to evaluate the benefit–risk ratio of each EVs-loaded hydrogel, including production cost,
potential contamination in the production, long-term safety and efficacy, etc. Overall,
EVs-loaded hydrogels hold tremendous promise in cell-free therapy strategies.
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