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Abstract: In Japan, bridges are inspected via close visual examinations every five years. However, 
these inspections are labor intensive, and a shortage of engineers and budget constraints will restrict 
such inspections in the future. In recent years, efforts have been made to reduce the labor required 
for inspections by automating various aspects of the inspection process. In this study, we proposed 
and evaluated a method of applying super-resolution technology to obtain precise point cloud in-
formation to create distance information images to enable the use of tactile information (e.g., human 
touch) on the surface to be inspected. We measured the distance to the specimen using LiDAR, 
generated distance information images, performed super-resolution on the pseudo-created low-res-
olution images, and evaluated them in comparison with the existing magnification method. The 
evaluation results suggest that the adaptation of the super-resolution technique is effective in in-
creasing the resolution of the boundary of the distance change. 
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1. Introduction 
Japan contains nearly 730,000 bridges with a length of 2 m or more, most of which 

were constructed during a period of high economic growth. Therefore, the proportion of 
aged bridges is expected to increase at an accelerated pace in the future, and the strategic 
maintenance, management, and renewal of this simultaneously aging infrastructure will 
soon pose an imminent issue [1]. 

Currently, bridge maintenance and management involve preventive maintenance 
measures with periodic inspections to prevent minor damages. In 2014, road administra-
tors were obliged to conduct 100% of their surveillance tasks by close visual inspection 
once every five years, according to the uniform standard set by the government [2]. How-
ever, certain bridges could not be thoroughly inspected owing to the shortage of skilled 
labor and financial resources of the local governments that manage these bridges. In the 
foreseeable future, continuous maintenance of such infrastructure will be difficult, and, 
since 2019, inspections have been conducted by close visual inspection or a method that 
provides equivalent results. 

One of the major limitations pertains to the high cost of close visual inspections. De-
pending on the surrounding environment of the bridge, close visual inspection requires 
the construction of scaffolding and the use of expensive specialized vehicles, which in-
creases the cost of such inspections. Additionally, the traffic regulations prevailing during 
inspection can cause economic losses. Therefore, the development of a more economical 
and versatile inspection method is required. 

To develop alternative methods for close visual inspections, Minami et al. verified 
the feasibility of visual inspection of bridges using images captured by an ultrahigh-res-
olution camera [3]. An inspection method utilizing an ultrahigh-resolution camera can 

Citation: Fukuoka, T.; Minami, T.;  

Fujiu, M. Base Study of Bridge  

Inspection by Modeling Touch  

Information using Light Detection 

and Ranging. Appl. Sci. 2024, 14, 

1449. https://doi.org/ 

10.3390/app14041449 

Academic Editors: Adel Razek and 

Giuseppe Lacidogna 

Received: 28 December 2023 

Revised: 30 January 2024 

Accepted: 6 February 2024 

Published: 9 February 2024 

 

Copyright: © 2024 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Appl. Sci. 2024, 14, 1449 2 of 8 
 

acquire detailed images of the bridge sections from a long distance, even on bridges where 
close visual inspection is difficult. Moreover, this does not require a dedicated vehicle or 
traffic regulation, which can be expected to reduce inspection costs. In this related study, 
the results of crack diagnosis using only the obtained images were consistent with those 
derived from a close visual inspection. Research on crack detection by means of image 
processing has also been previously conducted [4,5]. In recent years, crack detection meth-
ods have been proposed based on deep learning, and their detection accuracy has im-
proved each year [6–8]. 

Close visual inspection is also conducted with information other than vision as well. 
For instance, while examining the presence or absence of concrete flaking, the inspector per-
forms a hammering test and assesses the presence or absence of concrete flaking using 
acoustic information. Thus, research is being conducted to improve the efficiency and accu-
racy of flaking detection, and certain approaches have been proposed to automate the re-
cording of hammering tests [9] and mounting a hammering mechanism on a drone [10]. 

This study focuses on touch information, which contains information other than the 
visual information used by inspectors during inspection. The inspector conducts tactile 
inspection as required and may examine the damage using tactile sensation. For example, 
tactile inspection is conducted for diagnosing concrete in bridge piers, using the texture 
of the concrete surface for these assessments. Thus, this research aimed to model the tactile 
sensation during bridge inspection by constructing a 3D model of the bridge and model-
ing the sensations perceived during a tactile inspection. This paper aims to generate a 
high-resolution 3D model as the basis of this study. Moreover, a 3D model of the target 
object was constructed to objectively perform the “subjectively conducted” tactile inspec-
tion as well as suppress the variations in the inspection results. This study aims to objectify 
the tactile inspection conducted by an engineer at the inspection site and improve inspec-
tion efficiency by creating a detailed 3D model of the target bridge and acquiring the pal-
pation results of the target bridge using the developed tactile sensation model that accu-
rately reproduces the surface conditions of the bridge. 

Human haptics can perceive diverse textures owing to the micrometer-level variations 
in roughness of a target surface [11,12]. Research on the effects of touch, such as attention 
training using tactile feedback, has also been conducted [13]. Thus, the point cloud density 
used for 3D model generation should preferably reflect the same order of roughness. How-
ever, the current laser surveying instruments record measurements from distances of sev-
eral tens of meters or more and provide point cloud information spaced in units of millime-
ters (Figure 1). Also, the smallest unit of coordinate information is generally millimeters. 
There are surveying instruments that can identify roughness in the order of microns, but 
these are for surveying very small areas or samples that can be placed on top of the instru-
ment and cannot be used to survey large structures (such as bridges). 
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Figure 1. Image of model of specimen reproduced with point cloud information (top) and partially 
enlarged image with a sparse point cloud (bottom). 

To solve this problem, we focused on a method to generate pseudo-dense point cloud 
information using sparse point cloud information in millimeter units. One such method 
is densification using distance images. There have been studies on methods to generate 
dense point cloud information from sparse point cloud information [14], but we consider 
these methods to be still in the process of research. We thought that there was a possibility 
to obtain dense point cloud information by converting the point cloud information into a 
distance image and then converting the result of the distance image into the point cloud 
information. In this paper, we propose a method of generating pseudo-dense information 
from sparse information using deep learning. Additionally, this paper describes a method 
for generating pseudo-information for shooting point distance information, which is in-
formation used for calculating point cloud information. Herein, distance information was 
acquired using Light Detection and Ranging (LiDAR). In principle, LiDAR conducts laser 
irradiation to calculate the distance between the measuring instrument and the target 
based on the time required by light to return from the target after reflection. 

Our proposed method utilized generative adversarial networks (GANs) [15], i.e., a 
generative model, to generate dense distance information from sparse distance infor-
mation. A generative model outputs data similar to those used when training a model.  

As shown in Figure 1, point cloud data acquired by LiDAR are sparse. When distance 
information is calculated from these, point cloud information is generated into an image, 
and a low-resolution image is generated. One of the existing GAN-based technologies is 
a super-resolution technology, which generates pseudo-high-resolution images based on 
low-resolution images. By generating a high-resolution distance information image from 
a low-resolution distance information image using super-resolution technology, it is con-
sidered possible to obtain pseudo-dense distance information (Figure 2). Based on the 
pseudo-distance information obtained by super-resolution, it is thought that dense point 
cloud information can be computed. In this paper, we propose and evaluate a method for 
generating dense distance images from sparse distance images by applying this super-
resolution technique. 

 
Figure 2. Example of super-resolution of the pair of images of a raw RGB image and its distance image. 

2. Related Research 
In recent years, many new inspection methods have been proposed to reduce eco-

nomic costs and simplify the process of inspections [16–20]. Especially, deep learning-
based methods have been studied well. For example, research is being conducted on the 
automatic diagnosis of buildings and the automatic generation of inspection results [21–23]. 
Several techniques have been proposed using 3D models for bridge inspection [24,25]. 
These existing methods utilize laser survey instruments either installed on the ground or 
mounted on a drone, conduct surveys from multiple measurement points, acquire point 
cloud information of a bridge, and create a 3D model of the entire bridge. The point cloud 
information acquired using these instruments can be used to create a 3D model with an 
accuracy that provides visual confirmation of concrete delamination and cracking. How-
ever, the density of the point cloud information may be inadequate for the quantitative 
evaluation of the texture. 
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The generated content cannot be easily controlled while generating image data with 
GAN because model training is conducted using only the authenticity judgment of the 
generated result as an evaluation index. In this regard, conditional GAN (cGAN) [26,27] 
has been proposed as a method for controlling images generated with GAN. In this 
method, the generated data are adjusted by adding information that controls the output 
result for the input data used in generating the pseudo-data. A type of cGAN called 
Pix2Pix [28] uses annotated images that are color-coded for each region as input signals 
for pseudo-image generation. Accordingly, the image generation process is controlled by 
the regions segmented by this annotation, thereby generating images with distinct features.  

As a super-resolution method using deep learning, SRCNN [29] was first proposed 
by Dong et al. Although this method was a simple model consisting of three convolution 
layers, it set a state-of-the-art record at the time of publication. Kim et al. proposed VDSR 
[30], which solves the problems of the training speed and the single resolution of gener-
ated images in SRCNN. Dong et al. also proposed FSRNN [31], which solves the compu-
tational cost and processing speed problems of SRCNN. As a GAN-based super-resolu-
tion method, Ledig et al. proposed SRGAN [32] using a ResNet-based generator, which 
can generate more precise images than previous methods. Wang et al. improved the gen-
erator, classifier, and loss function of SRGAN and proposed ESRGAN [33], which pro-
duces more precise images with smaller fluctuations. In this paper, we use Real-ESRGAN 
[34], which improves on ESRGAN’s dataset and model structure to better the generaliza-
tion performance. 

3. Overview of Proposed Method 
In this study, a high-resolution distance image is generated using a GAN-based su-

per-resolution method (Figure 3). This image is generated from a low-resolution distance 
image generated from sparse point cloud information. The accuracy of the generated im-
ages is evaluated by distance images generated at different resolutions for the test object. 

 
Figure 3. Architecture of the proposed method. 

3.1. Deep Learning Model 
In this study, Real-ESRGAN is used as the super-resolution method. As one of the 

well-known super-resolution models, it is a model that is easily adaptable to various types 
of images. The model is trained by fine-tuning the realesrgan-x4plus model, a generic 
model of super-resolution. For training the model, the optimization algorithm is adam, 
the learning rate is 0.0001, the beta parameter is 0.9 to 0.99, the batch size is 12, and the 
iterator is 20,000. As a comparison, distance images enlarged by bilinear interpolation, a 
commonly used conventional image enlargement method, are generated and evaluated. 

3.2. Dataset 
In this study, measurements were made at a distance of approximately 200 mm from 

the test specimen. An Intel L515 LiDAR camera was used for the measurements, and the 
measurement distance was an average of 50 acquisitions. As shown in Figure 4, the 
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specimens to be photographed had large differences in unevenness, with the closest dis-
tance measured at approximately 202 mm and the farthest distance at approximately 227 
mm. The minimum distance specified in the product specifications is 25 cm. However, in 
this paper, measurements were conducted at the actual measurable limit distance in order 
to obtain point cloud data with the highest possible density. In the evaluation, the distance 
image was a monochrome image, and the pixel values of the distance image represented 
the acquired distance information in mm. Figure 5 shows the distance image. To train the 
model, distance images were acquired at a resolution of 1280 pixels in height and 720 
pixels in width. Due to the effective range of LiDAR, the upper 160 pixels and the right-
most 30 pixels are where the background is reflected. These areas have a far distance and 
different features from the specimens and would usually be the noise used to train model. 
Thus, we deleted these areas from the image data in this paper. The upper 200 × 1250 
pixels were divided into an evaluation area and the lower 360 × 1250 pixels into a training 
area (Figure 6). The image of the training area was further divided into 100 square images 
of 256 pixels with an overlap of 10 pixels vertically and 100 pixels horizontally. Low-res-
olution images were generated from the segmented images at 0.75×, 0.5×, and 0.33× mag-
nifications, respectively, for a total of 400 images to be used as the training dataset. In 
addition, as data for evaluation, low-resolution images with 0.5× and 0.25× magnifications 
of the data divided into regions for evaluation were created. 

 
Figure 4. Image of the test specimen. 

 
Figure 5. The results of converting RGB images into distance images. 

 
Figure 6. The results of splitting the image dataset into a test image (upper) and a training image 
(lower). 

3.3. Evaluation Method 
This study evaluates the distance image data obtained by super-resolving the test 

data and the correct distance image data by calculating the root mean squared error 
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(RMSE) value per pixel. The lower the RMSE calculation result, the smaller the error in 
the distance information. In our study, the fine-tuned Read-ESRGAN model received test 
images 200 × 1250 pixels in size and output same-sized distance images. 

The result of super-resolving the input image, which was 0.5 times the size of the 
original evaluation image, two times using Real-ESRGAN was 𝑅𝑒𝑎𝑙 − 𝐸𝑆𝑅𝐺𝐴𝑁 , and the 
result of super-resolving the input image, which was 0.25 times the size of the original 
evaluation image, four times was 𝑅𝑒𝑎𝑙 − 𝐸𝑆𝑅𝐺𝐴𝑁 . As the baseline, the results of the 
bilinear interpolation method were denoted as 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  and 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , respectively, 
for the distance image generated in the same way using the enlarged result. Table 1 shows 
the results of calculating the RMSE values using the values for each pixel of each image. 
The images are also shown in Figure 7, in which the pixels which matched the correct 
distance to the generated distance image are painted in green, those which matched only 
the results generated by Real-ESRGAN are painted in blue, those which matched only the 
baseline results are painted in yellow, and those which did not match the results of both 
methods are painted in gray. Figure 7 also shows an image in which the tones of the dis-
tance image are changed with emphasis. 

Table 1. Comparison of the delamination detection results. 

 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆𝒙𝟐 𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆𝒙𝟒 𝑹𝒆𝒂𝒍 − 𝑬𝑺𝑹𝑮𝑨𝑵𝒙𝟐 𝑹𝒆𝒂𝒍 − 𝑬𝑺𝑹𝑮𝑨𝑵𝒙𝟒 
RMSE 0.215 0.263 2.085 2.651 

 
Figure 7. Images of the evaluation. (a) Input color image; (b) input distance image; (c) result of ×2; 
and (d) result of ×4. 

The results in Table 1 show that the distance image super-resolved using Real-
ESRGAN has a larger error than the magnified image using the conventional method. For 
both the super-resolution and conventional methods, the RMSE value increases with the 
magnification factor, and the accuracy of the generated distance image decreases. The re-
sults in Figure 7 show scattered gray pixels, indicating that the baseline method makes 
errors at boundaries with varying distances. On the other hand, blue pixels are more prev-
alent at the boundaries of the distance change, and the distance image generated by Real-
ESRGAN is more accurate than the baseline at the boundary pixels where the distance 
changes. This tendency becomes stronger as the magnification factor increases. The Real-
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ESRGAN results also show results that are correct for a coherent range of the same dis-
tance, failing to generate certain distances. This may be due to a bias in the number of 
training data per distance in the model’s training data. These results suggest that the su-
per-resolution of distance images using Real-ESRGAN can obtain more accurate distances 
at the boundaries than conventional methods of enlargement. Even if the model is trained 
with a small number of training data (about 100 original images), it is possible to obtain a 
specific distance, suggesting the possibility of highly accurate image generation by ex-
panding the training data. 

4. Conclusions 
In recent years, the demand for alternative methods of close visual inspections of 

bridges has increased, and extensive research has been conducted on damage detection 
methods using image processing. However, only a few studies focused on the tactile in-
spections used by inspectors. Thus, this study aimed to model the touch information of 
an inspector and construct a 3D model of the target object to automate and improve the 
efficiency of tactile inspections. Accordingly, we applied a GAN-based super-resolution 
method to improve the accuracy of the coordinate point density and the distance infor-
mation obtained using LiDAR for developing a high-definition 3D model. We performed 
the evaluation of the accuracy of a super-resolution image generated from a low-resolu-
tion input image. The evaluation results show that the super-resolution images are supe-
rior in estimating the boundary areas as well as in the performance and limitations of a 
small-scale learning database. 

In future work, we will train the super-resolution model with various kinds of sur-
face condition images to evaluate its generalization performance. 
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