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Abstract: Data classification storage has emerged as an effective strategy, harnessing the diverse
performance attributes of storage devices to orchestrate a harmonious equilibrium between energy
consumption, cost considerations, and user accessibility. The traditional strategy of solely relying on
access frequency for data classification is no longer suitable for today’s complex storage environment.
Diverging from conventional methods, we explore from the perspective of text semantics to address
this issue and propose an effective data classification storage method using text semantic similarity to
extract seasonal features. First, we adopt a dual-layer strategy based on semantic similarity to extract
seasonal features. Second, we put forward a cost-effective data classification storage framework based
on text seasonal features. We compare our work with the data classification approach AS-H, which
runs at full high performance. In addition, we also compare it with K-ear, which adopts K-means as
the classification algorithm. The experimental results show that compared with AS-H and K-ear, our
method reduces energy consumption by 9.51–13.35% and operating costs by 13.20–22.17%.

Keywords: data classification storage; semantic similarity; reducing energy consumption; saving
operating cost

1. Introduction

The exponential growth of data in recent times has given rise to a significant conun-
drum concerning the balance between storage performance and costs. In addressing this
challenge, hybrid storage solutions have emerged as a promising compromise for con-
sumers, adept at striking a delicate equilibrium among factors such as energy efficiency,
cost-effectiveness, and performance optimization [1–5]. Recent statistical data underscore
the urgency of this matter, revealing that 1.5% of world energy consumption is contributed
by data centers, with storage systems accounting for a substantial 40% of this total [6]. The
imperative to curtail energy consumption and operating costs has become a paramount
concern for storage systems.

Data classification storage is proven to save storage energy consumption and costs.
The existing literature features extensive research on the identification of hot data [7–10]
and the optimization of data placement strategies [11,12]. Hot data identification involves
intricate analyses of factors like access frequency, recency, and other relevant features. Data
placement strategies [13–16] involve both horizontal placement, addressing the distribution
of data within a storage layer, and vertical placement, managing the distribution of data
across various storage layers. These strategies aim to enhance the efficient organization of
data. It is worth noting that most current classification methods primarily rely on access
frequency for data. However, as the scale of the data increases, the cost associated with
collecting frequency information over time becomes non-negligible. Moreover, in the
context of the massive data era characterized by continuous data growth, diverse data
types, and intricate user access patterns, classification methods that solely hinge on access
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frequency gradually lose their efficacy. In response to these challenges, this paper advocates
for a more holistic approach to data classification storage.

Unlike traditional data classification storage methods, which rely solely on access fre-
quency, we propose an effective data classification storage method using text semantic similar-
ity to extract seasonal features. First, we adopt an approach based on text semantic similarity
to extract data textual seasonal features for classification. More specifically, we realize data
classification from coarse to fine by setting two text semantic similarity thresholds in a dual-
layer strategy. In the first layer, by setting a low threshold, we ensure that the filtered data are
all without seasonal features. In the second layer, by setting a high threshold, the data without
seasonal features are further screened and the category of seasonal feature data is determined.
Second, we propose a framework for data classification storage based on text seasonal features.
We classify the data into “hot data” (i.e., data with current seasonal characteristics) and cold
data (i.e., data with other seasonal characteristics) based on its seasonal characteristics. We
achieve classified storage of the data by placing the data on different performance disks.
This storage framework uses text semantic similarity as the basis for data classification, fill-
ing the gap of relying solely on access frequency to partition data. At the same time, this
method achieves regular adjustment of the storage system with seasonal changes by mining
the seasonal feature attributes contained in the semantics of data texts. The experimental
validation of our method demonstrates its superiority in achieving not only reduced energy
consumption but also cost-effectiveness in comparison to conventional methods, thus offering
a forward-looking solution for the evolving demands of data storage systems. In brief, this
paper makes the following contributions:

• We explore a dual-layer strategy for mining seasonal features of data texts to classify
them based on text semantic similarity.

• We propose a cost-effective data classification storage framework based on text sea-
sonal features.

• The experimental results demonstrate that the energy consumption and operating cost
can be saved by more than 9.51–13.35% and 13.20–22.17%, respectively.

The rest of paper is organized as follows: the related work and motivation are depicted
in Section 2. Section 3 presents the data classification storage framework based on season.
In Section 4, we elaborate on the energy and cost models. Section 5 outlines the evaluation
experiments along with pertinent discussions. Finally, we conclude the paper in Section 6.

2. Related Work and Motivation
Related Work

We provide a concise overview of noteworthy studies in this field through data
classification to achieve cost-effective storage [17,18] in this section.

SEA [11] is designed to enhance energy efficiency within RAID-structured storage
systems. SEA employs popularity weights for data classification, storing them separately
on different disks. However, it relies on simple statistics for popularity, potentially over-
looking nuanced patterns in data access. Furthermore, the definition of popularity is
essential, which may lead to suboptimal results in dynamic environments with changing
data access patterns.

GreenHDFS [19] achieves energy-proportional behavior in data centers. According
to the energy consumption and performance, storage areas are categorized into two areas
(hot and cold). Although GreenHDFS achieves 26% energy savings of a Hadoop cluster
in the experiment, the reliance on statistical metrics for data classification may limit its
adaptability to diverse workloads.

Lightning’s [20] approach of configuring servers into two zones is efficient for en-
ergy conservation. However, putting servers in the cold zone to sleep raises concerns
about responsiveness and latency. The trade-off between energy savings and potential
delays in activating servers needs careful consideration, especially in environments with
unpredictable access patterns.
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Liao et al. [21] built a cost-effective model for distributed storage systems in which
racks are classified into active and sleep zones. While the approach effectively reduces
energy consumption, relying on statistical metrics for access regularity may oversimplify
the dynamics of real-world data access patterns. Additionally, the real performance of
sleeping servers in the sleep zone may vary based on workload characteristics.

Zhang et al. [22] partitioned data into three classes according to the file characteristics.
The rigid division of storage areas into reduplication, hot, and cold zones may adapt well
to evolving data access patterns. While the approach shows energy savings under specific
conditions, its effectiveness may diminish in dynamic environments.

K-ear [23] categorizes data into multiple groups by extracting seasonal period char-
acteristics using the K-means clustering algorithm. These categories are then stored in
various regions within a cloud storage system. While considering seasonal features is a
step forward, the K-means algorithm may limit the model’s ability to capture complex
relationships in the data. The shallow features extracted may not provide a comprehensive
understanding of the data dynamics, particularly in scenarios with intricate access patterns.

CSEA [4] also adopts access frequency as the basis for data classification. Unlike K-ear,
it considers the climatic season characteristics of data access and applies a fine-grained data
layout strategy from the perspective of climate and seasonal characteristics, reducing the
storage system’s expenses.

We compare the related studies in Table 1, most of which only depend on access fre-
quency. Our solution analyzes data from the perspective of text semantics and implements
classification, providing a new idea for data classification storage.

Table 1. The comparison of related studies.

Study Criterion Seasonal Feature Data Classification
Algorithm

SEA [11] Frequency - Statistic
GreenHDFS [19] Frequency - Statistic
Lighting [20] Frequency - Statistic
Liao et al. [21] Frequency - Statistic
Zhang et al. [22] Frequency - Statistic
K-ear [23] Frequency

√
K-means

CSEA [4] Frequency
√

K-means
Our work Text Semantics

√
Text Semantics

Motivation

Indeed, much of the existing research in the realm of classification storage is rooted in
the analysis of access frequency. Notably, within sectors such as banking and e-commerce,
researchers have discovered periodic regularities in data access frequency, uncovering peri-
odic hot-spot data by scrutinizing applications on enterprise-level storage servers. In our
study, we investigate the inner link between data access frequency and seasonal cycle laws.
We obtain the access frequency by searching for keywords on the Baidu Index website. The
statistical period for the access frequency provided by the website is from 2011 to 2024. We
intercept the data from 2017 to 2024 to display the seasonal characteristics corresponding to
the access frequency. Figure 1 exhibits the access frequency of keywords (e.g., “Watermelon
=西瓜” and “Big data =大数据”) [24]. We observe that the peak characteristic of “Water-
melon" access frequency is consistent with the corresponding seasonal laws. Conversely,
the access frequency pattern of “Big data" manifests characteristics that depart from sea-
sonal rules. Thus, we contemplate that it is viable to implement classification storage by
mining seasonal features of data access frequency.
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Figure 1. The access frequency of keywords.

3. The Data Classification Storage Framework Based on Season
3.1. Architecture Overview

As illustrated in Figure 2, our proposed method concludes three key components:
season division, seasonal feature extraction based on semantic similarity, and data classifi-
cation storage. Each of these components plays a crucial role in establishing an effective
and nuanced approach to managing data for seasonal attributes. For the season division,
we adopt the conventional astronomical seasons approach. This approach provides a stan-
dardized and widely accepted framework for delineating the boundaries of each season,
ensuring consistency and alignment with established meteorological conventions. Con-
cerning seasonal feature extraction, we employ a dual-layer strategy. In the initial phase,
coarse-grained data classification is applied to filter out text data without seasonal features.
Subsequently, in the fine-grained refinement stage, we delve deeper into the data to further
categorize it based on more intricate seasonal attributes. This dual-layer strategy ensures a
comprehensive and nuanced understanding of the seasonal characteristics inherent in the
dataset. For data classification storage, after extracting and categorizing the data based on
their seasonal features, we organize and store the information according to these identified
characteristics. This facilitates energy conservation and cost-effectiveness, aligning with the
overarching goals of our methodology. By combining these three components, our method
presents a holistic and efficient solution to the challenges of data classification storage in
the context of seasonal dynamics.

Division of Astronomical Season

Seasonal Feature Extraction Based on Semantic 

Similarity

Data Classification Storage Based on Seasonal Category

Spring Summer Autumn Winter Other

Figure 2. The data classification storage framework based on season.

3.2. Division of Seasons

Indeed, our current method for defining the four seasons predominantly relies on
astronomical seasons, representing the prevailing standard for season division. The four
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seasons adhere to a regular yearly cycle, with each month and region exhibiting distinctive
attributes. This unified and structured seasonal division method provides a coherent and
widely applicable basis for discussions and analyses related to seasons.

3.3. Text Classification Based on Semantic Similarity

Our work is inspired by Luo et al. [25] to use a double-layer Bloom filter for identifying
hot data. It exploits the characteristic of the Bloom filter with zero false negatives to pre-
classify the data in advance, leaving behind 100% cold data and rough hot data. Then, it
performs post-identification to divide the data into hot data (with false positives) and cold
data. After experimental verification, the double-layer hot data recognition framework
effectively improves the hot data recognition accuracy. Therefore, we propose a dual-layer
strategy based on semantic similarity to extract seasonal features for classification.

For semantic similarity calculation, cosine similarity [26] is the most common method.
It represents each word in the text as a vector that can describe the content of the text. Then,
employing the cosine formula, it computes the cosine value for the angle between these
two vectors, assessing the semantic similarity of texts in the process.

sim(A, B) = cos(theta) =
A · B

|A| ∗ |B| (1)

Figure 3 shows the process of extracting seasonal features and classifying them using
a dual-layer strategy. Our core idea revolves around the extraction of data text features
from coarse- to fine-grained. We achieve this by conducting numerous semantic similarity
analyses [27] using sources such as Baidu Encyclopedia, Wikipedia, Financial News, Zhihu
QA, and the Weibo corpus. These are publicly available and representative of Chinese text
corpora in the academic community. Due to differences in corpus size, attributes, domains,
etc., the semantic similarity obtained may be different in various corpora. Therefore, we
normalize the similarity obtained by comparing the data text with the feature text of each
season. Meanwhile, we need to comprehensively compare the similarity values of the
same text on different corpora and obtain a comprehensive similarity value by taking the
average value. We can obtain a composite value for each data text with these analysis
results. When semantic similarities are not found in the corpus, we assume that the data
text has no seasonal features. For text semantic similarity, a higher value indicates a higher
probability of having seasonal features, while a lower value indicates a lower probability of
having seasonal features. But there are also cases of recognition errors or false recognition.
Therefore, we adopt a dual-layer strategy to address this issue.

Season 

feature 

filter
Keywords

Season 

feature 

filter

Without seasonal feature Without seasonal feature

Seasonal feature classification

Spring

Summer

Autumn

Winter

Other

First Layer Second Layer

Maybe own seasonal feature

Figure 3. Dual-layer strategy to extract seasonal features based on text semantic similarity.

In the first layer, we employ a low threshold. Below this similarity threshold is
considered indicative of the absence of seasonal features. This initial filtering step effectively
screens out data texts that lack discernible seasonal characteristics. After using a low
threshold, the data are divided into 100% data without seasonal features and rough data
with seasonal features.
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In the second layer, we introduce a high threshold. Beyond this threshold, the presence
of seasonal features is definite, while values below it suggest the absence of such features.
After adopting a high threshold, we once again divide the rough seasonal feature data
into data with seasonal features and without seasonal features. Among them, based on
the semantic similarity comparison between each data text and seasonal feature text, the
data with seasonal features select the highest value as the seasonal attribute of the data
text. For example, if the similarity between the data text and seasonal feature words is
spring: 0.5, summer: 0.2, autumn: 0.1, winter: 0.2, then we consider the data text to have
the spring feature.

Algorithm 1 provides a detailed description of the process of implementing a dual-
layer strategy. Through this dual-layer strategy, our approach ensures a robust and compre-
hensive understanding of seasonal characteristics within the dataset. By combining both
coarse- and fine-grained analyses, we aim to enhance the precision and adaptability of our
data classification system, providing a sophisticated solution for capturing the intricate
nuances of seasonal patterns in different data texts.

Algorithm 1: Dual-layer strategy
Input:
w: the keywords set of short text w={w1, w2, ..., wn}
S: the corpus set, such as Baidu Encyclopedia, Wikipedia, Financial News, Zhihu
QA, and Weibo, S= {S1, S2, ..., S5}
t1: the threshold in the first layer
t2: the threshold in the second layer
Output:
the class of the data text

1 for every wi in set w do
2 for wi is compared to Sj do
3 We can obtain a comprehensive semantic similarity value t for wi.
4 end
5 if t > t1 then
6 if t > t2 then
7 Based on the similarity value compared to the seasonal feature text, the

seasonal feature with the highest value is the seasonal feature
contained in the data text.

8 end
9 else

10 These are data texts without seasonal characteristics.
11 end
12 end
13 else
14 These are data texts without seasonal characteristics.
15 end
16 end

3.4. Data Storage

Analyzing historical data, we have identified potential seasonal patterns in data access.
These patterns are inherently tied to time, wherein the data exhibit recurring patterns
or fluctuations during specific seasonal intervals. These observed seasonal data access
laws provide the basis for categorizing the data into “hot” and “cold” data, based on their
seasonal features. In this context, data with the current seasonal feature are considered “hot”
data, while data with other seasonal features are classified as “cold” data. We implement
data classification and storage by allocating high-performance disks for hot data and
utilizing low-performing disks for cold data. As the seasons change, the disk state can be
transformed and the data can also be migrated. Algorithm 2 describes the whole process
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of data classification storage and migration. The primary objective of the algorithm is
to assign the data to disks based on their performance, segregating the data into disks
corresponding to different temperature levels. We do not care about the data migration
overhead. This is because seasonal changes are a necessary condition for triggering data
migration, and there are only three seasonal changes in an entire year. That is to say, data
migration only occurs three times in one year. Therefore, the overhead resulting from data
migration during their lifespan after data placement can be disregarded when compared to
the data storage overheads post-data placement. Reducing the overall energy consumption
and cost of the storage system is facilitated with this method, all the while ensuring that
the quality of user access remains intact.

Algorithm 2: Data Classification Storage and Migration
Input:
ci: the class sets ci={cspring, csummer, cautumn, cwinter, cother}
E: the number of data texts
n: the number of classes
m: the current month
Season(m): determine the season of the current month
Output:
The data storage area according to hot/cold status

1 for t=0 to E-1 do
2 for g=0 to n-1 do
3 determine the data class of c
4 end
5 end
6 while true do
7 switch Season(m) do
8 case spring do
9 the data of cspring, cother are hot data;

10 the data of csummer, cautumn, cwinter, are cold data;
11 migrate hot data to high-performance HDD and cold data to

low-performance HDD;
12 end
13 case summer do
14 the data of csummer, cother are hot data;
15 the data of cspring, cautumn, cwinter are cold data;
16 migrate hot data to high-performance HDD and cold data to

low-performance HDD;
17 end
18 case autumn do
19 the data of cautumn, cother are hot data;
20 the data of cspring, csummer, cwinter are cold data;
21 migrate hot data to high-performance HDD and cold data to

low-performance HDD;
22 end
23 case winter do
24 the data of cwinter, cother are hot data;
25 the data of cspring, csummer, cautumn are cold data;
26 migrate hot data to high-performance HDD and cold data to

low-performance HDD;
27 end
28 end
29 end
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4. The Related Energy and Cost Model
4.1. Model Parameters

We evaluate the effectiveness of various classification methods by designing mod-
els. Table 2 details all parameters utilized in the models. We denote the dataset by
D = D1, D2, ..., Dt. The data are divided into five categories according to the experimental
requirements. The storage system’s operating time is denoted by T. Since the disks have
two performance modes and each mode has active and idle statuses, we set these parame-
ters separately. In the high-performance mode, we set the transfer rate to vh (Mbit/s), with
corresponding energy consumption rates of Eh

a (J/s) in the active status and Eh
i (J/s) in the

idle status. In the low-performance mode, we define the transfer rate as vl (Mbit/s), with
corresponding energy consumption rates of El

a (J/s) in the active status and El
i (J/s) in the

idle status. For simplicity, we suppose that the disks share equal capacity, in which the data
are stored in blocks with a size of B.

Table 2. Parameters and explanations needed to design the model.

Parameters Explanations

D Entire capacity

n Total disks

E Energy consumption

ttotal_idle The idle status time’s proportion over a year

vh, vl The transfer rate in two modes

ns, nm, na, nw The quantity of disks within the seasonal storage area

Dseason The data capacity within each seasonal storage area (e.g., Dspring)

ηh
season_active

The percentage of disks in high mode with active status within each
seasonal storage area (e.g., ηh

spring_active)

ηl
season_active

The percentage of disks in low mode with active status within each
seasonal storage (e.g., ηl

spring_active)

tseason_idle
The time that disks spend in idle status within each seasonal storage area
(e.g., tspring_idle)

δh
season_active

The proportion of data volume in high mode in active status within each
seasonal storage area (e.g., δh

spring_active)

δl
season_active

The proportion of data volume in low mode in active status within each
seasonal storage area (e.g., δl

spring_active)

ph, pl The cost associated with processing data under two modes

ps Data storage cost

There are two key points to emphasize in the model: (1) Disks in the current seasonal
storage area operate in the high-performance mode, while those in other seasonal storage
areas run in the low-performance mode. (2) Storage areas’ disks without seasonal features
consistently run in the high-performance mode, regardless of the season.

4.2. Energy Consumption Model

As the storage system adjusts the performance modes of disks based on seasonal
variations, the total energy consumed within one year is the total energy consumption over
the four seasons.

Etotal = Etotal_spring + Etotal_summer + Etotal_autumn + Etotal_winter

Given space limitations, we employ the spring as an illustrative example. Throughout
a specific spring month, disks in both the spring and without seasonal feature storage areas
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run in high-performance mode, with the remaining disks assigned to low-performance
mode. The energy consumption is evaluated as follows: First, the count of disks in ac-
tive status within the spring storage area is ns × ηh

spring_active. The overall transfer speed is

vh × ns × ηh
spring_active. Then, the data volume of spring active status is Dspring × δh

spring_active.

Next, we derive the time spent in transmitting these data as
Dspring×δh

spring_active

vh×ns×ηh
spring_active

. Finally, dur-

ing active status, the spring energy consumption in high-performance mode is represented

as
Eh

a×Dspring×δh
spring_active

vh×ns×ηh
spring_active

. The variable T represents the operational time of a storage system

over one year. During the spring season, the cumulative operational time is T
4 . The expres-

sion for the ratio of the total idle time in spring to the total operational time during spring
is given by tspring_idle. We calculate the spring energy consumption during idle status as
Eh

i ×
T
4 × tspring_idle. By analogy, we can obtain the other seasons’ energy consumption.

Etotal_spring =Eh
spring_active + Eh

spring_idle + El
summer_active + El

summer_idle

+ El
autumn_active + El

autumn_idle + El
winter_active + El

winter_idle

+ Eh
other_active + Eh

other_idle

=
Eh

a × Dspring × δh
spring_active

vh × ns × ηh
spring_active

+ Eh
i ×

T
4
× tspring_idle

+
El

a × Dsummer × δl
summer_active

vl × nm × ηl
summer_active

+ El
i ×

T
4
× tsummer_idle

+
El

a × Dautumn × δl
autumn_active

vl × na × ηl
autumn_active

+ El
i ×

T
4
× tautumn_idle

+
El

a × Dwinter × δl
winter_active

vl × nw × ηl
winter_active

+ El
i ×

T
4
× twinter_idle

+
Eh

a × Dother × δh
other_active

vh × no × ηh
other_active

+ Eh
i ×

T
4
× tother_idle

4.3. Operating Cost Model

Using the established energy consumption model, we quantify the overall operational
cost of a storage system throughout one year. Again, we take the spring operating cost
as an example. The cost associated with processing data per megabyte in both high- and
low-performance modes is denoted as ph and pl , respectively. Additionally, the expense of
data storage per megabyte per day is represented as ps. Now, we quantify the operating
cost in the following steps. First, the volume of data to be processed during the active
status in spring is Dspring × δh

spring_active. Subsequently, we determine the cost in the high-

performance mode during the active status as Dspring × δh
spring_active × ph. Following that,

the data volume during the idle status is Dspring × δh
spring_idle. T denotes the total running

time for a year. Then, the spring running time is T
4 . The operational time during the idle

status is represented as T
4 × tspring_idle. Ultimately, we calculate the overall storage cost

during the idle status as Dspring × δh
spring_idle × ps × T

4 × tspring_idle. The operating cost of
the other seasons can be derived in the same fashion.
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Costtotal =Costprocess + Coststorage

Costtotal =Costspring + Costsummer + Costautumn + Costwinter

=Costspring_process + Costspring_storage + Costsummer_process

+ Costsummer_storage + Costautumn_process + Costautumn_storage

+ Costwinter_process + Costwinter_storage

Costspring = Dspring × δh
spring_active × ph + Dspring × δh

spring_idle × ps × T
4
× tspring_idle

+ Dsummer × δl
summer_active × pl + Dsummer × δl

summer_idle × ps × T
4
× tsummer_idle

+ Dautumn × δl
autumn_active × pl + Dautumn × δl

autumn_idle × ps × T
4
× tautumn_idle

+ Dwinter × δl
winter_active × pl + Dwinter × δl

winter_idle × ps × T
4
× twinter_idle

+ Dother × δh
other_active × ph + Dother × δh

other_idle × ps × T
4
× tother_idle

5. Experiments and Evaluation

We begin by outlining the experimental environment and pertinent settings of the
CloudSimDisk simulator. Subsequently, we delve into performance analyses focusing
on storage energy consumption and operational costs. For performance comparison, we
employ the AS-H and K-ear methods as baselines.

AS-H: This method adopts the access frequency of data text as the classification
basis. By analyzing the access peak, it selects the highest peak as the seasonal feature
contained in the text. It considers data with current seasonal characteristics as hot data
and data with other seasonal characteristics as cold data. All disks storing data operate in
high-performance mode.

K-ear: This approach utilizes K-means as the text classification method and imple-
ments classification storage based on seasonal features. It considers data containing current
seasonal characteristics as hot data and data containing other seasonal characteristics as
cold data. The high-performance disks store hot data. The low-performance disks store
cold data.

5.1. Experimental Setup

Table 3 provides a comprehensive list of experimental parameters, encompassing both
hardware and software configurations.

Table 3. The configuration of both hardware and software.

Hardware/Software Type/Version

CPU Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz
Memory Size 12 GB
Hard Disk 256 GB(SSD)+1TB(HDD)
Network Card Realtek PCIe FE Family Controller
Operating System Windows 10
Environment Simulation CloudSim 4.0
Energy Simulation CloudSimDisk 1.0
Programming Platform IntelliJ IDEA

5.1.1. CloudSimDisk

CloudSim [28] stands out as a robust and versatile discrete-event simulator specifi-
cally designed for evaluating cloud computing infrastructures and services. Despite its
prowess, a notable gap in its functionality is the absence of capabilities for simulating energy
consumption in cloud storage systems. In response to this limitation, researchers and devel-
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opers have endeavored to enhance CloudSim’s capabilities by integrating energy awareness
into cloud storage simulations, resulting in the development of CloudSimDisk [29].

CloudSimDisk incorporates an innovative and scalable module dedicated to simulat-
ing energy-aware cloud storage systems. Building upon this foundation, we have further
extended its functionality by developing a specialized cost module. This module is de-
signed to evaluate operational costs, encompassing factors such as data processing and
storage costs. By doing so, it empowers users to strike a balance between performance
and cost, ensuring the provision of high-quality cloud storage services with optimized
operational cost-effectiveness.

5.1.2. Storage Device Models

CloudSimDisk offers the modeling of storage device components: it generates a
package comprising classes that model components of storage devices. Table 4 lists the
storage device characteristics implemented in CloudSimDisk, where the parameter key
retrieves the value of a specific characteristic associated with this device.

Table 4. Storage device characteristics implemented in CloudSimDisk.

Key Characteristics Description

0 Name The device name

1 Model Number The unique device number

2 Capacity The capacity of storage device (MB)

3 Average Rotation Latency

Rotational latency refers to the time required for the
desired sector to rotate under the read–write heads of
the HDD. The average rotation latency of the HDD is
defined as half the time it takes for the HDD to
complete one full revolution.

4 Average Seek Time

The average seek time is the average time taken by the
HDD to move the head to the track where the data are
located after receiving the system command. It reflects
the ability of HDD to read data to a certain extent.

5 Maximum Internal Data
Transfer Rate

The maximum internal data transfer rate, also known
as sustained data rate or sustained transfer rate,
represents the rate at which data are transferred
physically from the disk to the internal buffer.

6 Power Parameters

Power is the quantity of energy consumed per unit
time, in W. Power parameters mainly include the
power of active and idle status in different disk
performance modes.

7 Cost Parameters Cost is the overhead of processing and storing data
per unit of time, in USD.

To demonstrate the approach’s effectiveness, we conduct the experiments in CloudSim-
Disk to model three disks. The disk parameters crucial for our simulation are sourced from
the official website [30] and are detailed in Table 5.
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Table 5. The parameters of different disk models.

Description Parameter Value

Disk Model HUC109090CSS600 ST6000VN0001 MG04SCA500E

Storage capacity 900 GB 600 GB 500 GB
Average rotation latency 3 ms 4.16 ms 4.17 ms
Average seek time 4 ms 8.5 ms 9 ms
Transfer rate in high mode 198 MB/s 216 MB/s 215 MB/s
Transfer rate in low mode 59 MB/s 64 MB/s 64 MB/s
Active power in high mode 5.8 J/s 11.27 J/s 11.3 J/s
Active power in low mode 4.1 J/s 8 J/s 8 J/s
Idle power in high mode 3 J/s 6.9 J/s 6.2 J/s
Idle power in low mode 1.3 J/s 3 J/s 3 J/s
Cost for processing data in
high mode USD10/MB USD12/MB USD11/MB

Cost for processing data in
low mode USD3.3/MB USD4/MB USD3.8/MB

5.1.3. Workload Characteristics

To evaluate the performance of various solutions, we adopt a replay real-access record
method. K-ear selects a set of 70 keywords, mainly including entertainment, season, work,
and other aspects. Simultaneously, it crawls their access records from the Baidu index website
for 2018 and generates experimental workloads based on this. However, this method has
certain limitations, including a relatively small number of selected keywords and a short
time span. We have borrowed from this method, refining and improving it. Specifically,
we have augmented the keyword set to encompass 200 keywords (such as short skirt, tree
planting, Spring Festival, skiing, Christmas, etc.), offering a more comprehensive and diverse
representation. After classification using the semantic similarity algorithm, the classification
results for the 200 keywords are: Spring: 27, Summer: 25, Autumn: 5, Winter: 29, Other: 113.
Furthermore, we have extended the time span for our data collection, covering the period
from January 2018 to December 2020. This extended time span allows for a deeper exploration
of periodic patterns and trends in the data, providing a more solid foundation.

There are seven key points to consider regarding the characteristics of the workload.

1. Workload format. The workloads include vital data from access records, such as text,
request size, storage location, and timestamp.

2. Workload generation. We organize the keyword access records monthly and calculate
the ratio to the year’s access records. This approach guarantees that the workload
characteristics remain unaffected by the workload size.

3. Number of I/O records. The number of records affects the disk array’s load. Generally
speaking, the search volume for each feature keyword is huge. Therefore, we choose
to optimize the experiment by limiting the total I/O records monthly.

4. Access frequency. Generally, each access is considered an I/O record
5. Data size distribution. Prior studies [31,32] observed that the data size shows a robust

correlation with the access frequency, often conforming to a Zipf-like distribution.
Hence, we guarantee the law for data size and access frequency in reverse order.

6. Request size. We set equal access sizes for the same keyword, which can be obtained
from the data size and frequency.

7. Request timestamp. Since the total number of I/Os is kept at a fixed value, the
timestamps need to be scaled down by the same multiplier.

5.2. Results and Discussions

The overhead of a disk is mainly related to the transaction time of files. The calculation
of transaction time is shown in Formula (2).

TransactionTime = SeekTime + RotLatency + Trans f erTime (2)
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E is the entire storage system’s energy consumption, as in Formula (3).

E =
n

∑
i=1

Ehdd_i (3)

The disk’s total energy consumption contains the active status Ehdd_i,active and idle
status Ehdd_i,idle, as in Formula (4).

Ehdd_i = Ehdd_i,active + Ehdd_i,idle (4)

The energy consumed by the two states equals the multiplication of the time spent in their
respective statuses and the power of the corresponding mode P, as in Formulas (5) and (6).

Ehdd_i,active = thdd_i,tans f ertime × Phdd_i,active (5)

Ehdd_i,idle = thdd_i,idle × Phdd_i,idle (6)

The operating cost encompasses both the data processing and data storage cost. Data
processing costs encapsulate the expenditures related to processing data across a range of
storage devices. Data storage costs account for the varying expenses incurred by different
devices due to acquisition costs. The operating cost is expressed by C, which is the total
operating cost of all disks, as in Formula (7).

C =
n

∑
i=1

Chdd_i (7)

The cost of each device is equal to the cost sum of processing Chdd_i,processing and
storing data Chdd_i,storage, as in Formula (8).

Chdd_i = Chdd_i,processing + Chdd_i,storage (8)

The operating cost of processing data and storing data are equal to the product of the
file size f and the corresponding cost s, as in Formulas (9) and (10).

Chdd_i,processing = f × shdd_i,processing (9)

Chdd_i,processing = f × shdd_i,storage (10)

5.2.1. Comparison across Multiple Years

Energy Consumption. In this comprehensive analysis, we delve into the nuanced
landscape of energy consumption across various data classification strategies. The experi-
mental workloads are meticulously configured for the years 2018, 2019, and 2020, provid-
ing a robust foundation for evaluating the strategies’ performance over time. Figure 4
elucidates the dynamic trends in energy consumption associated with different data
classification methods.

Figure 4 unveils that the semantic similarity method outperforms other classification
strategies regarding energy consumption. Across the time quantum from January 2018
to December 2020, compared with AS-H and K-ear, the semantic similarity method de-
creases energy consumption by 8.33–12.24%, 7.35–11.42%, and 9.51–13.35%, respectively.
Furthermore, we can observe that the semantic similarity method not only outperforms its
counterparts but also showcases a resilient and enduring advantage over three consecutive
years. This sustained superiority highlights the robustness and stability of the semantic
similarity approach in minimizing energy consumption in data classification tasks. Com-
pared with the method that relies solely on access frequency for classification, this is mainly
attributed to the advantages of the text semantic method in extracting semantics, because
there is a large amount of semantic data text with seasonal features and access frequency
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without seasonal feature. Text semantics have greater dimensional information in reflecting
seasonal characteristics than access frequency.
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Figure 4. Annual total energy consumption of different methods (2018–2020). We use the energy
consumption module in CloudSimDisk to compare the energy consumption of all approaches by
replaying the workloads. Compared to AH-S and K-ear, the semantic similarity method reduces
energy consumption by up to 9.51–13.35%.

Operating Cost. In our comprehensive analysis, we delve into the operating costs
associated with diverse data classification approaches from 2018 to 2020. The operating
costs for each classification strategy are visually presented in Figure 5.

Figure 5 illuminates the operating cost of the semantic similarity method, which con-
sistently exhibits a lower operating cost compared to alternative strategies. Specifically,
when juxtaposed with the AS-H and K-ear classification strategies, the semantic similarity
method showcases substantial operating cost savings, ranging from 13.19% to 22.00% in
2018, 13.20% to 22.17% in 2019, and 13.20% to 22.05% in 2020. This notable cost advan-
tage underscores the economic viability and efficiency of the semantic similarity method,
positioning it as a choice for seeking to optimize the operational cost of data processing
and storage. The sustained and substantial cost savings over the three years further ac-
centuate the method’s reliability and cost-effectiveness in real-world applications. This is
mainly attributed to the improvement in the accuracy of seasonal feature recognition using
text-semantic methods. The improvement in accuracy allows limited data to be placed
on high-performance disks. This also means that more data are placed on low-cost disks,
reducing the entire storage system’s cost.
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Figure 5. Annual total operating cost of different methods (2018–2020). We compare the operating
costs of all approaches through the cost module designed by us in CloudSimDisk. Compared to AH-S
and K-ear, the semantic similarity method economizes operating cost by up to 13.20–22.17%.

5.2.2. Comparison Across Multiple Disk Models

To emphasize the benefits of the semantic similarity method, we expand our analysis
to different disk models. The energy consumption of these strategies on three different disk
models in the year 2020 is shown in Figure 6. Notably, the semantic similarity approach
maintains its advantageous position under the HUC109090CSS600 disk model, while
presenting an unstable trend under the other two disk models. It can be seen that the
selection of disk models has a certain impact on the energy consumption reduction effect of
data classification storage schemes. Through analysis, we find that the average rotation
latency is a crucial parameter affecting energy consumption simulation. Compared with
HUC109090CSS600, the other two models have a significant gap in average rotation delay
parameters, even up to twice. This plays a crucial role in the increase in energy consumption.
In other words, the negative impact of the average rotation latency offsets the positive
benefits brought by the classification storage scheme.

The comparison of total operating costs of different disk models is presented in
Figure 7. Remarkably, regardless of the specific disk model, the total operating cost of
AS-H is always the highest, while the semantic similarity method consistently registers the
lowest. A detailed comparison reveals that, in comparison to AS-H and K-ear, the semantic
similarity method achieves substantial operating cost savings in different disk models,
ranging from 11.77% to 19.15%, 13.75% to 22.03%, and 12.78% to 21.42%, respectively.
By analyzing the parameters of the three disk models, it can be found that compared to
HUC109090CSS600, the other two models did not have a significant gap in data processing
costs. This means that the negative impact of the increased costs is smaller than the positive
benefits of data classification storage approaches.
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Figure 6. Total energy consumption of different disk models. The energy consumption of the semantic
similarity method is always lower than that of K-ear. AS-H is greatly affected by disk performance.
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Figure 7. Total operating cost of different disk models. For all disk models, the energy consumption
of the semantic similarity method is always lower than those of AS-H and K-ear. AS-H has the highest
operating cost.

In the thorough analysis of overall energy consumption and total operating expenses,
we can obtain two key conclusions. Firstly, the semantic similarity method consistently
outperforms the other two strategies across different periods, highlighting its edge in
overall power consumption and operating cost. Secondly, while the superior performance
in energy consumption may exhibit some variability under different disk models, the
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semantic similarity method consistently maintains stability in terms of operating cost.
In implementing the semantic similarity approach, it is necessary to pair it with high-
performance disks to fully leverage its advantages. Otherwise, the benefits brought by data
classification approaches may be masked by the negative impact of the disk.

6. Conclusions

In this paper, we introduce an innovative approach to data classification storage by
leveraging text semantic similarity to extract seasonal features effectively. By incorporating
text semantic similarity, our proposed method aims to enhance the precision and relevance
of seasonal feature extraction in the context of data classification. Our method employs a
two-layer strategy to fully exploit the seasonal characteristics embedded in textual data.
Furthermore, we introduce a data classification storage framework that is specifically
designed around these seasonal features. The introduced data classification storage frame-
work, tailored to leverage seasonal features, reflects our commitment to optimizing storage
solutions for diverse datasets. Our experimental results affirm the cost-effectiveness of
our approach, demonstrating its potential to efficiently store and categorize data while
minimizing operational expenses. In conclusion, our proposed method not only advances
the field of data classification storage but also provides a practical and effective solution for
handling seasonal features in textual data. The demonstrated cost-effectiveness positions
our approach as a promising avenue for organizations seeking efficient and economically
viable solutions for data management and storage.

As a future research direction, we will continuously investigate mining data features
from multiple perspectives to optimize data classification storage.
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