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ABSTRACT 
 

The cosmological model of the expanding balloon in 4D-space (CM) delivers in interaction with a 
homogeneous vector field exactly Newton’s law of gravitation with its 1/r-shape of the gravitational 
funnel. So far, the depth of space, W, in the 4-th spatial dimension can only be calculated using the 
theoretical approach of Feynman’s radius of excess rex=a/3 with Schwarzschild-radius a. With this, 
the connection to the general theory of relativity (GR) is established, but the situation is 
unsatisfactory. In the present study, the possibilities of an experimental approach to the calculation 
of spatial depth, W, are explored. The only experimental approach so far is the bending of light on a 
central mass. We hypothesize in addition to the main effect φ = -4a/y, i.e., the angle of diffraction of 
a light beam on a heavy central mass in the distance y and with Schwarzschild-radius a, an 
additional effect close to the center of the form φC ~ -1/y

4
. This additional effect has on the edge of 

the central mass about 1/3 of the strength of the main effect. However, its influence disappears 
very quickly with increasing distance. For this reason the sun cannot be used as the central mass. 
The bright corona and the strong magnetosphere do not allow measurements close to the sun. 
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However, ESA’s GAIA mission puts the planet Jupiter at the center of interest. This spacecraft 
measures with extremely high precision the positions of billions of stars. Results of first data 
analyses have already been published. As a side effect - the application of the CM to small 
particles provides an indication that the radius of the electron could be in the order of 10-23 m. 
 

 
Keywords: Membrane; curvature; depth of space; gravitational funnel; radius of electron. 
 

1. INTRODUCTION 
 

„God has no origin and no end”. This sentence of 
Christian Friedrich Gockel (1839) states one of 
the properties of our imagination of the 
hyperspace in which our universe expands 
besides countless other universes. The single 
universe may have an origin and an end, but not 
the hyperspace with its multiverses. 
 

In a series of papers, [1-7], we proposed a 
cosmological model, the Cosmic Membrane 
model (CM), in which we use the frame of 
reference, σ0, defined by the cosmic background 
radiation (CMBR), in the sense of an absolute 
3D-space. A 4-dimensional balloon with a thin 3-
dimensional envelope (membrane) expands in 
the 4D-hyperspace with an unknown speed of 
expansion, VE. At the same time, a 
homogeneous vector field permeates the 
membrane perpendicularly. The membrane does 
not resist (or resists only marginally) if it is free of 
matter and tensed perpendicularly to the 
homogeneous vector field. However, when the 
membrane is charged with matter, it resists. The 
resistance produces a force that causes the 
curvature of the membrane (curvature of our 3D-
space), and, as additional consequence, gravity 
and the effects of dark matter. 
 

One can illustrate the origin of the homogeneous 
vector field by different physical phenomena, for 
example, a material flow reverse to the speed of 
expansion, or a material flow from the inside of 
the balloon, if one assumes over-pressure there. 
However, the origin of the homogeneous vector 
field can also be a form of radiation, or a 
completely new phenomenon. The authors hold 
back here, and enumerate here only some 
indispensable properties [3]. The following strong 
evidence speaks in support of the cosmic 
membrane model: 
 

 The experimentally proven existence of the 
dipole-free frame of reference, σ0. 
Therefore, the discovery of the CMBR by 
Wilson and Penzias [4] is one of the pillars 
of the CM. 

 The result of the atomic-clock experiment 
of Haefele and Keating [3] can be 

explained much easier in the CM than in 
the SR. Therefore, the atomic-clock 
experiment is one of the key experiments 
of the CM, too. 

 A 3D-membrane tensed in the 4D-
hyperspace bends under central load as 
1/r, which corresponds exactly to Newton’s 
gravitational potential. For this reason, 
gravity simply becomes the downhill force, 
and becomes so explainable in a simple 
way [6]. 

 Another property of the membrane is that it 
clearly explains the decrease of the speed 
of light in a gravitational funnel, and it also 
explains in a simple manner light bending, 
radar echo delay, Einstein rings, and 
similar optical phenomena [3]. 

 Gravitational waves can appear in this 
cosmological model as well as longitudinal 
waves as in the form of transversal waves. 
The speed of the transversal waves still 
needs to be explicated. 

 Another property of the curved membrane 
is the increased resistance. The increased 
resistance can explain the dark matter. 
Dark matter is, thus, a simple effect of the 
membrane which only arises together with 
the curvature of the membrane (curvature 
of the space), and therefore only in the 
neighborhood of real matter [2]. 

 The geodetic precession of a rotating body 
in the gravitational field can be explained 
by an increase in mass in the gravitational 
field together with the above-mentioned 
change in the speed of light in the 
gravitational funnel [4]. 

 Frame-dragging is conceivable in the CM, 
but not the Lense-Thirring effect. We have 
demonstrated [4] that the value of the 
Lense-Thirring effect found by the Gravity 
B Experiment is with high probability the 
geodetic precession of the gyroscopes in 
the gravitational field of the sun, caused by 
the absolute speed in the rest frame σ0. 
Therefore, the Gravity B Experiment is also 
one of the key experiments of the CM. 

 Because of the limited tension of the 
membrane of Fo=2.164×1019 [N/m2] [2], 
neutron stars of the mass of the sun must 
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have a diameter of at least 200 km. A 
similar restriction for the minimal size or 
maximal mass also holds for black holes. 

 The fact that the electrons orbit the atomic 
nuclei without fatigue since the big bang, 
or that light waves propagate without 
fatigue over billions of years through the 
space, is probably due to the influence of 
the homogeneous vector field. The 
homogeneous vector field submits nonstop 
huge amounts of energy to the matter 
embedded in the membrane. 

 
Some newer considerations are:  
 

 Because of the extremely high tension of 
the membrane of Fo=2.164×1019 [N/m2] [2], 
one can conceive the stuff the membrane 
is made of only as a glassy, super strong 
material (for comparison: steel has a limit 
of about 109 [N/m2]). Therefore, it is more 
likely that waves propagate instead of 
particles [6], or that the particles move 
outside the membrane, comparable to 
drops of water on a glowing hotplate, or 
comparable to drops of mercury on a 
marble top. 

 There is strong evidence that leptons, i.e., 
electrons and positrons, consist of several 
charged building blocks. Electric charge 
means rotation of an object [8]. Here, 
vortexes of the homogeneous vector field 
can be conceived as a model of the CM. A 
single vortex filament stands 
perpendicularly on the membrane, and is 
in the 3D-space an electrically charged 
sphere with a rotating surface, but without 
a visible axis of rotation. The axis of 
rotation is directed toward the 4-th spatial 
dimension, i.e., it is inaccessible to us. In 
contrast, electrons and positrons have a 
spin and a magnetic momentum, which 
can be arbitrarily oriented in the space. 
From this fact follows that several electrical 
charged spheres rotate around each other. 
This way, the inner structure of electrons 
and positrons is comparable to the inner 
structure of baryons, for example, the 
proton. 

 

2. DEPTH OF SPACE OF THE CURVED 
MEMBRANE 

 
In [1], we have derived the ODE of the curved 
membrane under central load. In our 
cosmological model, the load from the 4th 
dimension is originated by the homogeneous 

vector field. This vector field reacts to 
disturbances in the membrane with a force in the 
direction of the negative w-axis. For example, 
matter embedded in the membrane is such a 
disturbance. The ODE is 
 

r

w
w




2
.                     (2.1) 

 
Here, w(r) is the depth of space of the gravity 
funnel in the 4th spatial dimension, w, at a 
distance r from the center of mass of the central 
mass. 
 

2.1 Calculation of the Depth of Space 
from Feynman’s Radius of Excess 

 
The depth of space, W0S, at the edge of the sun, 
the tension F0 of the membrane, and the vector-
field acceleration AV, which acts from the 4

th
 

spatial dimension on all matter inside the 
membrane, are essential constants of the CM. 
We have derived these constants from 
Feynman’s radius of excess of the sun [9], rex = 
a/3, with the Schwarzschild radius 
 

a = γ MS / c
2 
= 1.478.53 [m],        (2.2) 

 
gravitational constant γ = 6.67422×10-11 

[Nm2/kg2], solar mass =1.991×1030 [kg] and 
speed of light c = 299,792,456 [m/s]. We equated 
Feynman’s radius of excess, rex, with the path 
extension, dS [2], which occurs if one is 
approaching the edge of sun from infinite 
distance following the curved space of the gravity 
funnel (see Fig. 1). 

 
Integration of the path and comparison of the 
path extension with Feynman’s radius of excess, 
rex, results in Eq. (2.3). 

 

exSS rRW 60  = 1.435×106  [m].          (2.3) 

 
Here, RS =  =6.956×10

8
 [m] is the radius of 

sun. Newton’s law of gravitation demands the 
curvature of space of the form w(r)~1/r. This 
condition for the curvature is fulfilled in a brane 
world with 4 spatial dimensions and a central 
load. The slope w’(r) of the membrane inside the 
gravitational funnel at the distance r ≥ RS is given 
by Eq. (2.4). 
 

²
)( 0

r

RW
rw SS .                                (2.4) 
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Fig. 1. Gravitational funnel and depth of space 

 
The value of the slope w’(r) at the edge of sun is 
W’0S = 2.06071×10

-3
. In the CM, gravity is no 

direct force between two masses, but it is the 
downhill force. Here, the downhill force is the 
lateral component of the force the homogeneous 
vector field wields over the mass considered [1, 
2]. This way, we have the connection to the 
gravitational acceleration gs = γ MS / RS

2 
= 274.04 

[m/s2] at the edge of sun. Backward, one can 
calculate the vector-field acceleration, AV, by Eq. 
(2.5). FW=M AV is the force the homogeneous 
vector field exerts on the mass M. Force FW is 
directed to the negative w-axis. 
 





oS

s
V

W

g
A 1.33×10

5
 [m/s

2
].       (2.5) 

 
The vector-field acceleration AV is a universal 
constant. The tension of the membrane, F0, 
holds the mass M in the equilibrium against force 
FW. Using the example of the sun, one can 
explain the calculation of tension F0. The 
homogeneous vector field exercises the force 
FWS=MS AV  on the mass of sun. From this 
relation, we obtain the tension F0 =MS AV / (4π 
RS

2 w0s’). To obtain the small angle α = 
arctan(w0s’) with the undisturbed membrane far 
away from the sun, we divide MS AV by the slope 
w0s’ of the membrane at the edge of sun, 
because the sun does not make the membrane 
to be vertical. According to Eq. (2.4), we can 
replace w0s’ by W0S / RS, because, in the case of 
small slopes w’ of the membrane, relation w’= 
tan(α) ~ sin(α) holds. However, for greater values 
of w’, we have to replace the slope w’= W0S / RS 
by the expression sin(arctan(w’). Using the data 
of the sun, we obtain, for the tension of the 
membrane, 

))/(sin(arctan4 0
20

SSS

VS

RWR

AM
F


 = 

2.11×1019 [N/m2].                                    (2.6) 
 
We assume, exept for changes in the vicinity of 
heavy masses, the tension F0 is nearly constant 
for the whole universe. So, tension F0 is another 
universal constant. If one wishes to calculate the 
depth of space, W0, of other celestial bodies than 
the sun, for example for Jupiter or the Earth, one 
cannot use Eq. (2.3), because there the mean 
density of the sun is implicitly contained. Instead, 
one uses the escape energy EF= γ M / R, which 
we set equal to the energy EW = W0 AV. Here, EW 
is the energy that is needed to lift an object of 
mass 1 kg vertically over the distance W0 against 
the force FW1 = 1[kg]AV of the homogeneous 
vector field. We find 
 

vAR

M
W


0 .                                (2.7) 

 
For Earth, we find the depth of space at the 
surface of Earth as W0E = 470.2 [m] calculated 
from mass ME=5.975×10

24
 [kg] and radius 

RE=6.378×106 [m]. For Jupiter, we find the depth 
of space at the surface of Jupiter as W0J = 
1.41906×10

4
 [m] calculated from mass 

MJ=1.899×1027 [kg] and radius RJ=7.1398×107 
[m]. 
 
The derivation of the depth of space W0S at the 
edge of the sun from Feynaman’s radius of 
excess of the sun is the connection of the CM 
with the GR. Theoretically, there exists another 
access to the estimation of the depth of space. 
This access is based on a small change of the 
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curved membrane near a great central mass, in 
addition to the 1/r-curvature. This small change 
could be measured by the bending of light or the 
delay of the runtime of radar echoes for sun-near 
trajectories of the beam.  
 
2.2 Depth of Space W0S at the Edge of 

Sun from the Shapiro Effect of Signal 
Retardation 

 
We have published in [3] the derivation of the 
formula of the change of the speed of light inside 
the gravitational funnel. (see also Puthoff 2002 or 
Yarman et al. 2014 [10, 11]). 
 










r

a
crc ö

2
1)(                   (2.8) 

 
The quantity co is the speed of light in vacuum for 
r, 2a is the Schwarzschild radius of the Sun. 
The Shapiro effect of signal retardation by solar 
gravity is caused essentially by this decrease of 
speed of light c(r)=co(1-2a/r) in the gravitational 
funnel. The decrease of speed of light is 
vd=2ca/r, dependent on the distance r to sun. In 
1977, Shapiro et al. [12] have measured the time 
delay of a radar signal travelling from the Earth to 
a planet (Venus, Mercury) and back with a sun-
near trajectory. The authors used different 
frequencies to estimate and eliminate the 
influence of the corona of the sun. 
 
The Cassini mission [13] had the main task of 
investigating and photographing the planet 
Saturn and his moon Titan. In addition, one 
important side effect of the mission was the 
opportunity to measure the signal retardation at a 
new level of accuracy. In 2003, Bertotti et. al. [14] 
published the results of this part of the 
experiment. The authors also used a range of 
frequencies to estimate and eliminate the 
influence of the corona of the Sun. We consider 
the light path in Fig.2, and use the labels used by 
Bertotti. 
 

The signal starts from the Earth and travels to 
the Cassini orbiter. At the same time, the 
spacecraft sends signals with a constant 
frequency. Here, distance r1 = 1 AU (AU = 
astronomical unit or length of the averaged great 
axis of  the Earth’s orbit) is the distance Earth-O, 
r2 =8.43 AU the distance reflector-O. Distance b 
(the impact factor) is the nearest distance of the 
signal trajectory to the center of sun, i.e. the 
distance O-Sun. Integration of speed deficit vd 
over the travel time (travel time of the signal at 
the path r1 from Earth to point O) gives the path 
difference compared with a signal without speed 
deficit in the gravitational funnel. Now, x shall be 
the position on the path and r the distance 
between the position and the sun. We obtain with 
dt=dx/c and r

2
= x

2
+b

2
after integration of vd=2ca/r 

the integral 

 
1

0

22
11

22 )ln()ln(2/2
r

bbrrcadxbxcadS  

[see, for example, Stoecker [15], integral 198]. 
Because the impact factor b is very small 
compared with the distance r, this reduces to 
dS=2ca (ln(2r1) – ln(b). So, we obtain the speed 
deficit equivalent extension of the path dS1=2a 
(ln (2r1) – ln(b)) or dS1=2a ln (2r1 / b) of the time 
delay. By the path O-reflector, we obtain dS2=2a 
(ln(2r2) – ln(b)) or dS2=2a ln (2r2 / b).  By addition 
of dS1 and dS2, we obtain dS12=2a ln( (4r1 r1 ) / 
(b

2
) ). Because each path is used twice, we need 

to double the amount, and obtain dS=4a ln( (4 r1 

r1 ) / (b
2
) ). From the equivalent path extension 

dS, we obtain by division with c, the speed of 
light, the time delay dτ of the round travel, e.g. 
Earth-Cassini-Earth, according to Eq. (2.9). Here, 
γ is the post-Newtonian metric parameter, which 
has in the GR the value of γ =1. 
 











2
214

ln
)1(2

b

rr

c

a
d


 ,               (2.9) 

 
a result also given as Eq. (1) in [14]. The time 
retardation dτ is a positive value, i.e., the run-
time τ of the radio signal increases by the value 
of dτ. Because the distances r1 and r2 change

Cassini spc. 
8.43 AU 

r 2 

Sun 

Earth 
1 AU 

b 
r 

30 km/s 

O 

1 

 
Fig. 2. Path of the radio signals from Earth to  the Cassini orbiter and back 
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only unessentially during the few days of 
conjunction (Earth, Sun and spacecraft are on a 
line), the amount of the time delay dτ depends 
mainly on the impact factor b. Our result, based 
on the CM formalism, agrees fully with the 
theoretical forecast of the GR. 
 

Unfortunately, the depth of space Wo at the edge 
of sun cannot be derived from the effects of first 
order of light bending or signal retardation, 
because W0 does not appear there. Therefore, 
we must consider effects of higher order in 1/b. 
Simulation calculations of a 3-dimensional 
membrane with a central load in the 4-
dimensional space yielded the formula 
dr/r=(1+w’

2
)
1/2

 for the relative stretching dr/r of 
the membrane. This indicates that the membrane 
is stretched in radial direction inside the 
gravitational funnel. The tangential direction 
remains unchanged. The authors suppose now 
that this stretching of the membrane causes a 
relative increase of the speed of light according 
to dc/c=1 + w’

2
/2. Another effect is the 

geometrical path extension by the curvature of 
the membrane in the gravitational funnel. 
 

The Geometrical extension of the path is the sum 
of all differential extensions dS=(dx

2
+dw

2
)
1/2

–dx. 
In the case of small slopes w’ of the membrane, 
we find dS=((dw/dx)

2
/2)dx=(w’

2
/2)dx, or, from Eq. 

(2.4) the relation dS=W0
2
R

2
/(2x

4
)dx. This formula 

holds only for a trajectory through the center of 
sun. If the trajectory has the nearest distance y to 
the sun, then the relation r2=x2+y2 holds, and, in 
addition, one must use the directional derivation 
w`(x/r) instead of the radial derivation w’. Eq. 
(2.10) gives the signal retardation dτW of one part 
of the path (there or back). Fig. 3 shows the 
geometry. 
 

3

22

6

222

162 cy

RW
dx

cr

xRW

c

S
d ooW

W


 


 





.  (2.10) 

The effect of the sun-near acceleration of speed 
of light cr(r)=co(1+w’

2
/2) causes the distance gain 

dSC per time unit dt. We find the relation dSC = (c 

w’
2
/2)dt. With dt=dx/c and the directional 

derivation w`(x/r), we obtain exactly the same 
integral as given in Eq. (2.10), but with the 
opposite sign. That means that the two sun-near 
effects cancel each other out, and we have no 
chance of finding the depth of space by the 
Shapiro effect. 

 
The main effect according to Eq. (2.9) is 
predicted with exactly the same relation by the 
GR and the CM, but with slightly different 
theoretical foundations. This way, the 
experimental results of all Shapiro-effect 
missions confirm in the same way both theories, 
GR and CM, but cannot help to discriminate 
between GR and CM. 

 
2.3 Depth of Space W0S at the Edge of 

Sun from the Solar Gravitational 
Deflection of Light 

 
The light bending effect φ(y)= – 2(1+γ)a/y (with 
γ=1 and y indicating the nearest distance of the 
trajectory of the beam to the sun) of the solar 
gravitational deflection of light is in the framework 
of CM caused by the common gravitation 
together with the effect of a decrease of the 
speed of light described above. The resulting 
formula is the same as given by the GR (cf. 
Weinberg [16], Premadi et al. [17], Bruckman & 
Esteban 1993 [18], and, in the case of strong 
gravitational fields, Puthoff  [10]). Here, y is the 
nearest distance of the signal trajectory to the 
centre of the sun, with φ beeing the angle of 
deflection. In addition, we find three effects of the 
order 1/y

4
 in the framework of CM. The five 

effects of light deflection acting here are: 

 

earth 

planet 

sun 

x w 

y 

 
Fig. 3. Path extension in the x-w-plane 
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 G-effect or deflection caused by the y-
component of gravitation 

 B-effect or deflection caused by a brake-
effect of decrease of the speed of light 
inside the gravitational funnel and by the x-
component of gravitation 

 C-effect or deflection caused by a lateral 
effect of the centrifugal force in the 
x-w-plane 

 P-effect or deflection caused by the y-
gradient of the extension of the path 

 A-effect or deflection caused by the sun-
near acceleration of the speed of light 

 
The G-effect: Common gravitational acceleration 
of the photon in y-direction is 
 



















r

y

r

M
Ay 2


                  (2.11) 

 
With a = γM/c2, dx=dt/c und r2=x2+y2 the 
integration over time (from - to  yields the 
lateral speed vy=–2ac/y. By division with c, we 
obtain the result�φG= –2a/y or 0.875’’ as angle 
of deflection in the direction of the sun for a 
trajectory grazing the sun (y=R, R is here the 
radius of the sun). This value of  0.875 arcsec is 
one half of the main effect. 
 
The B-effect: A photon is slowed down when 
entering the gravitational funnel. Fig. 4 shows the 
geometrical relations. Brake-acceleration is 
Ab=dc/dt. With dx=dt/c, r

2
=x

2
+y

2
, c~co and 

c=co(1–2a/r) from Eq. (2.8), we find Ab=2c2ax/r3. 
The x-component of gravitation is  

  rxrMAx // 2 , and, with a=M/c2, we 

obtain Ax= –a c
2
x/r

3
. The sum of both 

accelerations, Abx=c2ax/r3, is negative at the 
entrance of the funnel (x<0), but positive at the 
exit. The y-gradient of this acceleration is 
Abxy=3c2axy/r5 [(m/s2)/m]. Integration over t=x/c 
(from – to  yields the difference of the                
speed of two trajectories that are 1 meter apart. 
Further integration over t=x/c yields the 
difference in path lengths at a given time and, 
thus, the angle of deflection φB according to Eq. 
(2.12).    
 

y

a
dx

r

ay
B

2
3

 




 .                      (2.12) 

 
Together, the G- and B-effects yield φ=-4a/y as 
main effect, i.e., the same result as given by the 
GR. 

-x x

y

r

sun

AxAb light path

 
 

Fig. 4. Brake-force and x-gravitation inside 
the funnel 

 
The C-effect is shown in Fig. 5. Here k is the 
radius of curvature of the trajectory with

kxw /1/ 22  . Because, for positive second 

derivation of a curve w(x), the acceleration vector 
points into the negative w-direction, the simple 
centrifugal acceleration is AC=-v2/k. With v/k, 
and v=c, we obtainAC=–2k=– (c/k)2k=–c2/k. 
With r

2
=x

2
+y

2
 and w(r)=–WoR/r, we find 

3
0 // rRxWxw   and 

krxRWrRWxw /1)/3()/(/ 52
0

3
0

22   . 

With AC=-c2/k, we obtain Eq. (2.13) for the 
centrifugal acceleration AC. 
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Fig. 5. Centrifugal acceleration AC with lateral 
effect AY 

 

The lateral motion, the effect AC, is caused by 

the slope of the membrane ywwy  /  with 

respect to the x-y-plane. AC is exactly inside the 
x-w-plane. AC is positive for large values of x. 
Inside the funnel, AC is negative, and therefore, 
the component Ay is negative, too. With r

2
=x

2
+y

2
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the partial derivation 
3

0 // rRyWwyw Y  , 

lateral acceleration AY=ACwY, speed  dtAv Yy

, time unit dt=dx/c, and angle φC= vY /c, we find 
Eq. (2.14) for the deflection angle φC (see 
Stoecker integrals 84 and 95). The deflection 
angle φC is negative. This means that the 
trajectory is bent in the direction of the sun. 
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The P-effect: To evaluate the P-effect, caused 
by the extension of the path inside the funnel, we 
start with the y-gradient of the differential path 
extension 
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resulting in 
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By integration over x from – to , one obtains a 
path difference and, therefore, the deflection 
angle 

4
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The A-effect of central acceleration 
c(r)=co(1+w’2/2) of the speed of light (caused by 
the stretching of the membrane inside the funnel) 
starts with acceleration of light AA=dc/dt and 
dt=dx/c. We find AA= –4c2Wo

2R2x /(2r6). Entering 
the funnel (x<0) AA is positive, leaving it, AA is 
negative. The y-gradient of AA is 
AAy=12c

2
Wo

2
R

2
xy/r

8
. Twice integrated over t =x/c, 

we find the path difference of two paths that are 
1 meter apart in y-direction at a given time, and, 
thus, the deflection angle 
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P-effect and A-effect cancel each other out. The 
only remaining effect of higher order is the lateral 
effect φC according to Eq. (2.14). In Fig. 6, one 
can see a well observable deviation in the light 
bending predicted by GR and CM in the range of 
1<y<2.5 radii of the sun. Unfortunately, this 
range near the sun is the range of the corona. 
Measurement of light bending data is, here, 
charged with the unknown and quickly changing 
dispersion of the gaseous atmosphere of the 
surface of the sun. So, one must handle very 
cautiously all light bending data obtained in this 
range of radii. 

 

 
 

Fig. 6. Light bending near sun for GR and CM 
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3. DATA AND METHODS 
 

3.1 Shapiro Effect of Signal Retardation 
 

The experimental data by Shapiro et al. [12] from 
the Viking Relativity Experiment, in which radar 
pulses traveled between Earth and Mercury or 
Venus and back, confirmed the Shapiro-effect of 
signal retardation. The post-Newtonian term γ, 
which has the value of γ =1 in the GR, was 
determined by Shapiro et al. to γ =0.8±0.4.  The 
influence of the solar corona was eliminated by 
Shapiro and his team using different wave 
lengths of the radar impulses. In 1979, 
Reasenberg, Shapiro et al. obtained, with better 
equipment for the round-trip times of light signals 
between Earth and Mars, a still improved result 
with γ =1.000±0.002. 
 

Bertotti et al. [14] obtained in 2003 a still better 
result. Cassini-Huygens [13] was the mission of 
two coupled spacecrafts with the task of 
exploring the planet Saturn and his moon Titan. 
During summer 2002, the sun was positioned 
nearly exactly between Cassini-Huygens and the 
earth. It was a once in a lifetime opportunity to 
perform a new proof of the Shapiro effect. Similar 
to the method of Shapiro, the influence of the 
corona of the sun could largely be eliminated 
using different frequency bands. In 2003, Bertotti 
et al. [14] prepared the data in a complex 
procedure and published the scientific results. By 
their work, the Shapiro-effect was measured and 
confirmed with an accuracy never achieved 
before with γ =1.0000±0.0001. Because the 
effect is the same in GR and CM, it is also the 
same confirmation for both theories. Bertotti et al. 
not only confirmed the effect of signal 
retardation, but they could also exclude sun-near 
effects. This follows from the plot of the residuals 
after the fit of the observed data with the 

theoretical curve. Therefore, the Cassini-
Huygens project is another important experiment, 
which puts the CM with an equal footing with the 
GR. 
 
3.2 Solar Light Bending  
 
In 1919, two expeditions were undertaken to 
Sobral and Principe to observe the solar eclipse 
with the aim to prove the General Relativity of 
Albert Einstein (1916). One of the initiators was 
A. S. Eddington [19]. Later it was said Dyson, 
Eddington and Davidson had only measured 
what they had wished to see, and moreover, the 
error of measurement had been greater than the 
effect they had sought. Other measurements 
confirmed Eddington, but showed also that an 
additional amount of light bending is possible and 
likely in the special case of sun-near trajectories, 
above the amount predicted by General 
Relativity. 
 
Measurements of deflection angles of sun-near 
photon trajectories are only possible during 
eclipses of the sun. But there, an estimation of 
the influence of the solar corona is difficult to 
perform. Presumably, the dense atmosphere of 
the corona causes a deflection to the sun, too, 
but the sun wind, quantified by Fresnel’s drag 
coefficient, causes a deflection away from the 
sun. Nevertheless, we use the data collected by 
Eddington in 1919 [19] and by van Bienstock in  
[20], given by Weinberg  [16], Mattig  [21], and 
Schmutzer  [22]. Some of the data were the 
same. Table 1 gives light bending data from 12 
eclipses. Col. 1 indicates the site and col. 2 the 
year of the eclipse. Col. 3 gives the bending 
angle in arcsec for a distance of r = RS, col. 4 the 
estimated error in arcsec. Col. 5 shows the 
references. 

 
Table 1. Light bending data from 12 eclipses between 1919 and 1952 

 
Place Year Angle in ´´ Error in ´´ Source 
Sobral 1919 1,98 0,17 Dyson et al. 
Principe 1919 1,61 0,45 Dyson et al. 
Takegon 1929 2,24 0,10 Schmutzer 
Australia 1922 1,61 0,40 Weinberg 
Australia 1922 1,77 0,40 Weinberg 
Australia 1922 1,79 0,19 Weinberg 
Australia 1922 1,72 0,15 Weinberg 
Australia 1922 1,82 0,20 Weinberg 
USSR 1936 2,73 0,31 Weinberg 
Japan 1936 1,7 0,21 Weinberg 
Brazil 1947 2,01 0,27 Weinberg 
Sudan 1952 1,7 0,10 Bienstock 
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To obtain a mean value, we weighted the angles 
with the square of their inverse standard error, 
and so we obtained the mean deflection angle of 
φ = 1.91’’ ± 0.19’’ of the above 12 eclipses of the 
sun. The error of ±0.19’’ is the harmonic average 
of the single errors. GR predicts φ=4a/R=1.75’’ 
for trajectories grazing the sun. We take the 
difference (1,91±0.19)’’-1,75’’=(0.16±0.19)’’ and 
compare it with the result of Eq. (2. 4). Thus, we 
obtain with y=RS another estimate of the depth of 
space with W0S = (2,04 ± 2,2) ×10

5
 [m]. This 

value is only 1/7-th of our theoretical value of 
W0S = 1,435 ×106 [m].  Otherwise, the uncertainty 
of the estimated value is large. But the 
observations of Robertson und Carter 1984 [23] 
show also an increase of the deflection angles 
for sun-near signal trajectories. Otherwise, in 
2009, Formalont et al. [24] did not find any 
additional near-sun effect. Their very precise 
measures, based on the VBLA-method, of the 
deflection of cosmic radio waves gave a 
limitation to the interval γ=1.0000 ± 0.0003 of the 
post-Newtonian parameter γ. They used the 
strong radio source 3C273, and they measured 
with a precision of 0,01 mas (milliarcseconds) the 
distances to several fainter radio sources more 
distant from the orbit of the sun. But Formalont et 
al. also noticed in their paper that, for a trajectory 
nearer than ~3° to the sun, all measures were 
unusable. The distance of 3° corresponds 
roughly to 12 radii of the sun. So, there was 
never a chance to find our assumed sun-near 
effect.  
 
In 1989-1993, the satellite HIPPARCOS 
measured the positions of numerous stars under 
different positions of the sun several times, with a 
precision of only a few mas. The evaluation and 
the comparison of the positions yielded another 
convincing proof of the main effect of 
gravitational light bending. The relation φ(y)= - 
4a/y has been proven anew with high accuracy. 
Otherwise, because of the danger of destruction 
of the optical arrangement by direct sunlight, the 
measurements ended at an angle of 45° to the 
sun. Our hypothesized sun-near effect falls 
below the mas-limit for a distance smaller than 
1.6°. This angle is equivalent to about 6 radii of 
the sun. Therefore, all these measures of the 
satellite HIPPARCOS make no contribution for a 
decision pro or against CM, because the main 
effect is identical in both theories. 
 
In 2013, the GAIA-mission was started by the 
ESA [25]. Since 2013, this satellite measures 
with a precision about 200-fold higher than that 
of HIPPARCOS the 10,000-fold number of stars. 

The mission was extended only recently until 
2025. Until now, the data of 4.6 billion objects 
have been published in 3 catalogues. Numerous 
researchers have recognized early on the 
possibility to study relativistic effects of the 
bending of light, especially by the influence of the 
planet Jupiter. So far, however, no evaluations 
have been published on the topic of light bending 
by Jupiter. Similar to the HIPPARCOS-mission, 
the GAIA-mission avoids sun-near star positions. 
Also, bright fixed stars and large planets cannot 
be measured by the GAIA spacecraft. This 
means that it is very hard for astronomers and 
astro-physicians to obtain proper data. The 
beginning has been made, e.g. by Abbas et al. in 
2018 [26]. 
 
3.3 Jovian Light Bending and Time Delay  
 
Jupiter is the greatest planet of our solar system. 
Its mass is about 1/1000 of the mass of the sun, 
and its diameter about 1/100 of the diameter of 
the sun. The surface of the planet is cold and so 
it has no sun-like corona. Light grazing the edge 
of the Jupiter is expected to be deflected by an 
angle of about 17 mas. This angle is large 
enough to be detectable. 
 
In 2003, Formalont et al. [27] determined the 
relativistic influence of the planet Jupiter as it 
passed in a small distance (3.7’ ~14 Jovian radii) 
the trajectory of the radio waves of the quasar 
J0842+1835 on September 8, 2002, by 
measuring the time delay using the VLBA-
method. At closest approach (3.7’), General 
Relativity (GR) predicts a radial (static) deflection 
of 1190 μarcsec, and a tangential (retarded) 
deflection in the direction of Jupiter's motion of 
51 μarcsec. The tangential (retarded) deflection 
relates to the speed of gravity, cg. The 
experiment achieved a rms position error of ≤10 
μarcsec, and measured the retarded deflection to 
be 0.98± 0.19 (rms error) times the value that is 
predicted by the GR. The GR predicts that the 
constant cg equals the speed of light c. The 
experiment measures the numerical value of cg 
as a test of the Lorentz invariance of the Einstein 
equations, and is an indirect measurement of the 
speed of propagation of gravity.  
 
However, the nearest distance between the orbit 
of the Jupiter and the trajectory of the radio 
waves of the quasar was 14 times the Jovian 
radius, much too far to detect effects of order 
1/y4. The main effect of light bending is about 
φGR=16500 μas for a beam grazing the surface 
of Jupiter. The additional surface-near effect 
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supposed by the CM is about φCM=4800 μas for 
the same beam. But, for a trajectory with the 
nearest point at r/RJ =14, the main effect is 
φGR=1190 μas, but only φCM =0,125 μas for the 
additional surface-near effect supposed by the 
CM and the same beam. This is a reduction from 
29% to 0,01% for the ratio φCM / φGR. Thus, there 
was no chance to detect deviations between GR 
and CM. 
 
The Jovian magnetosphere also produces a 
radial deflection of the radio waves, in the 
opposite direction of the gravitational radial 
deflection of light. However, calculations 
suggested that this bending would be 
significantly less than the small, retarded 
deflection term of 51 μarcsec, i.e., about 5 
μarcsec. This way, the influence of the 
magnetosphere will not essentially disturb the 
measurements of the deflection of light according 
to the main effect and the additional surface-near 
effect supposed by the CM. 
 
3.4 Reanalysis of the Light Bending Data 

of Eddington  
 
We re-analyzed the Eddington data from 1919 
[19].  Fig. 7 shows the bending angles of the 
seven stars measured by Eddington et.al. The 
black line is the prediction of the GR and of the 
main effect of the CM, i.e., in both cases 
φ(r)=1.75’’/r. Here, r is the dimensionless ratio 
“distance r / radius of sun”. The pink line is the 

prediction of the CM, i.e., the GR prediction with 
an additional sun-near term as φ(r)= 1.75’’/r + 
0.514’’/r4. The number 0.514’’ is computed using 
Eq. (2.14) with the theoretical depth of space 

exSS rRW 60  = 1.435×106 [m] at the edge of 

the sun. Both curves, GR and CM, remain below 
the bending angles of the three nearest stars. 
The green curve, labeled by EXP, shows the 
result of the non-linear regression with the model 
φ(r)= 1.75’’/r + b1 e - b2 r. The exponential function 
was chosen by us as a first approach of the 
density curve of the corona of the sun. The 
coefficient b1 was estimated to be b1 = 0.696’’± 
0.32’’, the coefficient b2 as b2 = 0.956. The blue 
curve, labeled with “1/r4”, shows the result of the 
non-linear regression with the CM-model φ(r)= 
1.75’’/r + b3 / r

4
, but with a fitted value of the 

additional effect. The coefficient b3 was 
estimated to be b3 = 1.70’’± 0.79’’. The errors of 
the coefficients of both nonlinear regressions, b1 
and b3, are large. The t-value of the EXP-fit is 
tEXP=2.18 with 5 degrees of freedom, and the t-
value of the 1/r4-fit is t1/r4=2.16 with 6 degrees of 
freedom. Both t-values are not significant using 
the 5%-level of significance. The data and the 
calculated points of the four curves are shown in 
Table 2. The two curves named as GR and CM 
are predictions. The two curves named as EXP 
and 1/r

4
 are fitted curves. 

 
Fig. 7 shows the 7 data points measured by 
Dyson et al. together with the four fitted models. 

 

 
 

Fig. 7. Comparison of 4 light bending models 
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Table 2. Light bending data of Dyson et al. with two predictions and two fitted models 
 

r φ GR CM EXP 1/r4 
1,00  1,75 2,26 2,02 3,45 
1,50  1,17 1,27 1,33 1,50 
1,95 1,02 0,90 0,93 1,01 1,02 
2,01 0,97 0,87 0,90 0,97 0,98 
2,28 0,84 0,77 0,79 0,85 0,83 
3,22 0,54 0,54 0,55 0,58 0,56 
4,27 0,56 0,41 0,41 0,42 0,41 
5,15 0,32 0,34 0,34 0,34 0,34 
5,40 0,20 0,32 0,32 0,33 0,33 

 
One can measure the averaged distance of the 4 
curves to the given n=7 data points by the resting 
standard deviation sr. The obtained values are 
sr,GR=0,0951’’, sr,CM=0,0874’’, sr,EXP=0,0786’’, and 
sr,1/r4=0,0789’’. How one can see – the predicted 
curves have greater values of the resting 
standard deviation sr than the fitted curves. The 
CM-prediction is a little better, but without 
significance by a F-Test. As one can see 
immediately, all models can hardly be 
distinguished within the range r>3RS of radii. The 
great uncertainty begins for radii r <3RS. 
Therefore, we performed two simple simulation 
experiments.  
 
With the first experiment, we tried to find 
differences in the results from the two methods of 
analyzing the light bending data, given in the 
literature, e.g., in [19, 20]. 
 

1. Method 1 is the curve fit with the 
adequate regression model φ(r)=b’’/ ri + ei 
over all measures ( φi , ri ) of one eclipse. 
The coefficient b estimates the expected 
effect φ(r) for r=1 (i.e., at the border of the 
sun). This method was used by Dyson et 
al. [19]. 

2. Method 2 involves averaging. This means 
that the formula Фi= φi ri estimates the 
expected effect Фi for r=1 (i.e., at the 
border of the sun) individually for each 
star. Then, all Фi-values are averaged. This 
method was used by van Bienstock [20]. 

 
In a first step, we extracted 11 typical radii from 
the data of Dyson et al. [19], van Bienstock [20], 

and Mattig [21]: (ri = 1.9, 2.1, 2.3, 2.7, 3.2, 3.7, 
4.3, 4.8, 5.3, 5.8, 6.5).  
 
The model of the main effect of light bending by 
a spherical mass has both in the GR (see [16]) of 
A. Einstein and in the CM (see chapter 2, G- and 
B-effect) the same form. It is   φ(r)=4a/r=1.75’’/r 
with Schwarzschild-radius a. Here, the                 
quantity r is the dimensionless ratio of the 
nearest distance of the trajectory y to the                
center of mass and the radius R of the central 
mass. The value φ(r=1)=1.75’’ corresponds to 
the light bending by the sun. We produced 12 
data sets (corresponding to 12 eclipses) each 
with 11 random data pairs (φi , ri ) (corresponding 
to 11 stars pro eclipse) using the formula 
φ(ri)=1.75’’/ ri +E∙Rand. Here, Rand is a               
normally distributed random number N(0;1), and 
E=0.1’’ the standard deviation for the angle                
φ(ri) of light bending of a single star. Then                     
we evaluated the 12 random data sets using the 
two above-described methods without                        
any change in the data. Table 3 shows the 
results. 
 
Method 1 (curve fit) produces the most stable 
estimation. The standard deviation for method 2 
(averaging) with a value of  σ =0.117 is 
significantly greater than σ =0.069 for method 1 
(curve fit). The maximum difference in the 
estimation of φ(r=1) was 0,2’’ in our simulation. 
However, the mean values of the 12 eclipses 
hardly differ. This way, the comparison of the two 
data analysis methods shows no significant 
difference. In practice, it does not matter which 
method is used. 

 
Table 3. Comparison of two methods of estimation of φ(r=1) 

 
E=0.1’’ Curve fit Averaging Difference 
Mean 1.775 1.760 0.014 
Maximum 1.932 2.006 0.202 
Minimum 1.684 1.598 -0.107 
Stand.dev. 0.069 0.117 0.102 
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Table 4. Curve fit with the GR-model for GR-modeled and CM-modeled data 
 

E=0.1’’ φGR (r=1) φCM (r=1) Difference 
Mean 1.732 1.761 -0.029 
Maximum 1.936 1.974 0.290 
Minimum 1.569 1.553 -0.236 
Std.dev. 0.130 0.123 0.132 

 
The CM not only predicts the main effect, 
φ(r)=4a/r=1.75’’/r, which is in the GR and CM 
identical, but also the additional effect according 
to Eq. (2.14). In the case of light bending by the 
sun, we obtain together with the main effect the 
model φCM(ri)=1.75’’/ ri + 0.514’’/ ri

 4
.  With the 

second simulation experiment, we tried to find 
the influence of an inadequate regression model 
on the result φ(r=1). Here, we produced two 
different data sets: (1) using the GR-model 
φGR(ri)=1.75’’/ ri +E∙Rand1 , and (2) using the CM-
model φCM(ri)=1.75’’/ ri + 0,514’’/ ri

 4 + E∙Rand2 . 
Here, Rand1 and Rand2 are stochastically 
independent random numbers both of type 
N(0;1). Also, here the index i ran from 1 to 11, 
and we performed 12 repetitions (according 12 
eclipses). Each data set with its 11 data pairs, 
independent of its different origin, was fitted with 
the same regression model φ(r)=b’’/ ri + ei . For 
the CM-modeled data, the model was 
inadequate. Table 4 shows the results. 
 
The comparison of the simulation results shows 
that there are no significant differences. The 
evaluation of the CM-modeled data with the false 
regression model is not noticeably worse, or, with 
other words, the hypothesized sun-near effect 
cannot be proven with such imprecise light 
bending data. 
 

4. RADIUS OF THE ELECTRON 
 
The classical electron radius Re has been 
estimated already shortly after the discovery of 
the electron. One obtained the estimation of Re 
from the doubled electrostatic self energy of the 
charge of the electron which has been equalized 
with the energy of the mass equivalent of the 
electron. Here, one thinks that the charge is 
evenly distributed on the surface of a ball.  Re 
has been calculated as Re,classic=2.8179×10

-15
 

[m].  In 2020, Salah Eid [28] calculated the 
electron radius from the energy of the gamma 
quant (according to Bethe’s experiment in 1938) 
which can split the deuterium nucleus into a 
neutron and a proton. He assumes that the 
gamma quant is constructed by an electron-
positron couple circling each other touching each 
other. He calculated Re as Re,Salah=3.623×10-16 

[m]. In 2014, the Chinese Particle Data Group 
[29] published that the electric dipole moment of 
the electron has the limit d<10.5×10

-28
 [e cm], but 

it published no radius. In contrast to the electron, 
the same group publishes for the proton several 
radii, depending on the property that the radius is 
supposed to describe, with values between 
Rp=0.77×10

-15
 and Rp=0.87×10

-15
 [m]. This 

corresponds to the opinion of many researchers 
that the electron is point-shaped, i.e., without 
expansion and, therefore, Re=0. This opinion is 
also supported by the fact that, for example, 
experiments at CERN showed that the radius Re 
of the electron must be smaller than 10 -19 [m] 
[30]. We do not think that’s a proof for Re=0, 
however. We already mentioned one argument in 
the introduction: The electron consists of several 
charged building blocks, i.e., a structure similar 
to the quarks in the proton.  
 
According to CM, the electron sinks into the 
membrane according to its mass, and produces 
a small gravitational funnel. We assume that the 
tension F0 of the membrane is constant for the 
entire membrane, with the exception of small 
changes near heavy masses. To obtain an 
estimate of the radius Re of the electron, we posit 
that the relation Re = W0e holds, i.e., the depth of 
space at the edge of the electron equals the 
radius Re. We use, according to Eq. (2.7), the 
two potential energies: (1) E1 =W0 AV, i.e., the 
energy needed to lift the mass of 1 kg over the 
distance W0 against the acceleration AV, and (2) 
E2 = γ Me / Re, i.e., the energy needed to lift the 
mass of 1 kg in the potential field of the electron 
from distance Re to the distance of r → ∞. With 
E1 = E2 and Re = W0e, we obtain the relation 
 

V

e
e

A

M
R


 .                    (4.1)  

 

The numerical value of Re is Re = Wo = 2.14×10-

23 [m] calculated with gravitational constant 
γ=6.674×10

-11 
[Nm

2
/kg

2
], mass of electron 

Me=9.104×10-31, and vector-field acceleration 
AV=1.33×10

5 
[m/s

2
].  For comparison, a number 

of experiments results in Re < 10-19 [m]. The 
Planck length lp is given with lp = 1.616×10

-35 
[m]. 
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Our estimation of Re = 2.14×10
-23 

[m] fits in well. 
Accordingly, the radii of the charged building 
blocks of the leptons (the rotating charged 
spheres supposed by us) must still be much 
smaller.  
 

Our condition for the estimation, Re =  W0e , is 
chosen arbitrarily. However, we made that 
decision, because the membrane has already the 
slope w’(Re )=1 at this point, and the slope will 
rapidly increase on further approach to the 
center. Probably, one will find no exact radius of 
the electron, similarly, just as in the case of the 
proton. Another problem is the relativistic 
contraction of moving particles. The SR assumes 
a length contraction in the direction of movement 

using the relation 
21  xx with β=v/c. The 

CM assumes length contraction and cross 

contraction with the relation  21  xx , and 

21  yy , respectively. An electron with a 

speed of 99% of the speed of light shortens its 
lengths in the direction of movement to 2% of its 
original length of 2 Re, and it shortens its width to 
about 15% of its original width of likewise 2 Re. 
This example shows that scattering experiments 
with high-energy electrons do not measure the 
true size of the electron. 
 

5. RESULTS AND DISCUSSION 
 

The GR knows three spatial dimensions and the 
time as fourth dimension. Therefore, the depth of 
space plays no role in the cosmological model. In 
contrast, the CM works with four spatial 
dimensions. Our 3-dimensional space is the thin 
membrane of a 4-dimensional balloon. The 
membrane may have a curvature with hills and 
dales in the fourth dimension. Depth of space is 
the depth of such a dale. Therefore, a big goal is 
to find an experimental access to the spatial 
depth, W, in the gravitational funnel of a central 
mass. So far, there exists only the theoretical 
approach with Feynman’ radius of excess rex = 
a/3 with the Schwarzschild radius a = γ MS / c

2
. 

We have shown as our contribution to this issue 
of research that there could be the experimental 
approach. Gravitational light bending from a 
heavy mass is a hot candidate. We hypothesize, 
beside the known main effect, which is in GR and 
CM the same, an additional effect close to the 
center that, close to the center, increases the 
deflection angle of a light beam even more. The 
main effect’s light deflection, φ= –4a/y, has two 
reasons: (1) ordinary gravitation deflects the light 
quanta towards the central mass, and (2) the 

decrease of the speed of light in the gravitational 
funnel that causes a small deflection of the wave 
fronts. Otherwise, our hypothesized additional 
effect, φC ~ –1/y

4
, depends on the square of the 

depths of space, i.e., W2, according to Eq. (2.14), 
and has the distance statistics 1/r

4
. Shapiro’s 

effect of time retardation when a signal passes 
through the gravity funnel does not show a 
dependence upon the depth of space W. It is 
therefore of no interest for this special purpose. 
 
So, our central interest focuses on the relativistic 
diffraction of light. An inspection of the many 
experiments and observations on the diffraction 
of light on the sun and the planet Jupiter, results 
in the following view: 
 
Most near-sun trajectories of light beams, which 
can be measured by the position shifts of the 

stars, end at a distance of about 2  from the 
center of the sun, as seen in Eddington’s data 
[19]. The corona of the sun, which is already 
visible to the naked eye during an eclipse, 

extends to three . The invisible 
magnetosphere presumably extends much 
further. Accordingly, diffraction measurements 
below 3 solar radii are definitely incorrect, and 
they are useless as evidence of a sun-near 
additional effect, because the value of this effect 
has decreased to 1/81st of its original value, 

which it has for r= . Even the highly precise 
measurements using VLBA do not change 
anything (e.g., Formalont et al. in 2009 [24]) – to 

the contrary, they end at a distance of 12 . 
The sun is, therefore, not a suitable research 
object when it comes to the spatial depth of 
space W of the gravitational funnel. 
 
In contrast, Jupiter has only 1/1000-th of the 
mass of sun, but also only 1/10-th of the sun’s 
diameter. Therefore, the relativistic light bending 
is 100 times smaller in relation to the sun, but its 
value is large enough to be measured very 
precisely. Thanks to GAIA, one can measure the 
positions of the stars with a precision of only 
some few μas. This position seems to be 
changing, when the planet Jupiter approaches 
the light path star-Earth. Unfortunately, bright 
stars - and the planet Jupiter is very bright – 
cannot be measured by GAIA. Therefore, it is a 
complex procedure to extract the correct 
positions of the stars from GAIA’s data 
catalogues with and without the influence of the 
giant planet. Specifically, a time lag arises, 
because, to obtain clean comparison positions 
the planet has to move far enough from a chosen 



 
 
 
 

Weber and Eye; PSIJ, 25(4): 15-31, 2021; Article no.PSIJ.70903 
 
 

 
29 

 

position at the sky. Because of the time lag, one 
must also pay attention to the proper motions of 
the stars, the changed parallaxes, and the 
ubiquitous diffraction influence of the sun. This is 
a job for astronomers and astrophysicists with 
experience concerning the GAIA mission and its 
data catalogues. The first evaluations of data are 
already in progress, e.g., by Abbas et al. [26]. 
Initially, however, it was a question of the 
accuracy that can be achieved. 
 
The Jupiter has no corona, but a magnetosphere 
[31]. The magnetosphere of Jupiter is dominated 
by the rotation of the planet that spins with a 10 h 
rotation period. For example, the satellite Io loses 
~1 t/s of atmospheric material that becomes 
trapped in Jupiter’s magnetic field. The densest 
plasma forms a torus around Jupiter just outside 
the orbit of Io. However, in 2003, Formalont et al. 
[27] have determined the density and the course 
of the density of the magnetosphere of the 
Jupiter. The Jovian magnetosphere also 
produces a radial deflection of radio waves, 
which goes in the opposite direction to the 
gravitational radial deflection of light. However, 
calculations suggested that this bending would 
be significantly less than the small, retarded 
deflection term of 51 μarcsec, i.e., about 5 
μarcsec. This way, the influence of the 
magnetosphere will not essentially disturb the 
measurements of the deflection of light that is 
caused by the main effect and the additional 
near-surface effect posited by the CM. Here, we 
see an opportunity to confirm our assumption in 
the near future. 
 
Summarizing the results of this paper concerning 
the determination of the depth of space, we can 
exclude light bending by the sun, caused by its 
strong corona, as an experimental base. There is 
a lot of literature and a lot of experimental data 
[11, 13, 14, 16, 19, 20, 21, 23, 24] on the 
diffraction of light on massive objects, but none 
for trajectories of the diffracted light rays close to 
the center. However, due to the lack of corona, 
diffraction of light by the planet Jupiter could 
become the center of attention in the near future 
[27], despite its strong and extensive 
magnetosphere [31]. 
 
Electrons have a spin axis which can - in 
absence of magnetic fields – point into arbitrary 
directions. An electric charge can be explained 
by rotation (see, for example, Mueller [8]). Here, 
under the paradigm of the membrane, vortexes 
of the homogeneous vector field are a 
conceivable model. A single vortex filament 

stands perpendicularly on the membrane, and is, 
in the 3D-space, an electrically charged sphere 
with a rotating surface, but without a visible axis 
of rotation. The axis of rotation points into the 4-
th spatial dimension, i.e., it is inaccessible to us. 
Otherwise, electrons and positrons have a 
measurable spin, as above noted, and a 
magnetic momentum, which can be arbitrarily 
oriented in space. From this fact follows that 
several electrically charged spheres must rotate 
around each other. This way, the inner structure 
of electrons and positrons is comparable with the 
inner structure of baryons, for example the 
proton. 
 
Experiments showed that the electron must be 
smaller than 10 

-19
 m. As a particle with mass, it 

produces a small gravitational funnel with a 
computable shape. Now, we postulated the 
radius Re of the electron so that it equals the 
depth of space, W0e , at the edge of the electron. 
The numerical value found by us is Re = 2.14×10-

23 
[m].  Naturally, this condition was chosen 

arbitrarily. Otherwise, it is possible that one will 
never find an exact radius of the electron. In the 
case of the proton, the radius is also not known 
exactly.  
 
6. CONCLUSIONS 
 
The best way to obtain an experimentally verified 
value of the depth of space, W, of a gravitational 
funnel in the 4-th spatial dimension seems to be 
the light bending at the planet Jupiter. Although 
the planet has an extensive and strong 
magnetosphere, it does not have a radiant 
corona as the sun. The influence of the 
magnetosphere is small enough for accurate 
measurements. Thanks to ESA’s GAIA mission, 
sufficient stellar data are now available, but they 
are still waiting to be evaluated for this special 
case of light diffraction. 
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