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Abstract 
In renewal theory, the Inspection Paradox refers to the fact that an interarriv-
al period in a renewal process which contains a fixed inspection time tends to 
be longer than one for the corresponding uninspected process. We focus on 
the paradox for Bernoulli trials. Probability distributions and moments for 
the lengths of the interarrival periods are derived for the inspected process, 
and we compare them to those for the uninspected case. 
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1. Introduction 

The Inspection Paradox, which occurs in many sampling situations, is a perva-
sive problem to researchers [1] [2]. It is called a paradox because selecting 
samples in an apparently correct way can lead to biased estimates. The sampling 
method that is used creates a bias called length bias ([2] [3], pp. 294-296). Two 
examples are the waiting times for buses [4] and estimates of class sizes [5]. 
They employ length-based sampling that leads to the paradoxical result of es-
timates that are too large. The scheduler of the buses knows how long the 
waiting periods are between arrivals of buses at a bus stop. Customers tend to 
obtain estimates of the waiting times that are larger because the customers are 
liable to arrive at the bus stop during a longer interval between buses. For the 
class size example, a school administrator might have a list of the number of 
children in each class. Instead of sampling from that list of classes to obtain an 
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average class size, students can be asked how many classmates they have. 
Larger classes have more students, so students from those classes are more 
likely to be asked about their class’s sizes. Estimates from this procedure will 
probably be too large. 

This paradox has been well-known for a long time. Bytheway [6] and Jenkins 
and Tuten [7] describe published articles that had unwittingly fallen into the pa-
radox and may have come to incorrect conclusions as a consequence. In [8], the 
author discusses the complication that the fastest growing tumors are less likely 
to be detected because the window of detection is smaller for them. 

Conversely, sometimes those longer intervals or larger objects are the target of 
a study. For example, [9] suggests purposely using sampling of individuals, i.e., 
length-based sampling, in order to find people’s experience with COVID. The 
goal of the authors of [4] is to find longer-lived examples using length-based 
sampling. 

In the past, continuous-time processes and models were the most commonly 
studied, but discrete processes, such as those investigated here, have become 
more prevalent in the digital age. A natural setting, which is consistent with our 
model, is DNA sequencing, where 0.25p =  ([10], pp. 17-41; [11]). The process 
is composed of consecutive live births, where a success is a birth with a particu-
lar genetic characteristic and the number of births between successes is the 
waiting time. Sometimes, the discrete time analysis is imposed by an artificial 
procedure such as hourly, daily, or weekly measurements [12], or an activity 
such as throwing a die. There is much continuing study and research into dis-
crete time renewal processes ([3], pp. 174-299; [12] [13] [14], pp. 53-65). 

In what follows, probability distributions and moments are derived for the 
lengths of all of the interarrival periods in the inspected process, and they are 
compared to those for the corresponding lengths in the uninspected process. 
Distributions are also derived for the waiting times for any fixed number of suc-
cesses that occur both before and after the inspected trial. The main tools used 
are conditioning arguments that make heavy use of the memoryless property of 
the geometric distribution. This distribution is the only distribution of the dis-
crete type which has this property. It is the discrete-time analog of the exponen-
tial distribution, which uniquely possesses the memoryless property among dis-
tributions of the continuous type. Accordingly, the results derived here are 
compared to the corresponding results in the continuous-time setting found in 
[2]. 

2. Bernoulli Processes 

Consider a Bernoulli process ( ){ }: 0,1,N t t =   with success probability p, 
where p is a fixed number in the interval ( )0,1 . The interarrival period lengths 

1 2, ,X X   are independent random variables, each of which has the Geome-
tric(p) distribution with cumulative distribution function (cdf) 

( ) ( )Pr 1 1 xX x p≤ = − −                      (1) 
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for 1,2,x =   and expectation [ ] 1X
p

= . 

Letting 0 0S =  and 
1

n
n kkS X

=
= ∑  for 1, 2,n =  , we see that nS  is the 

discrete waiting time or arrival time for the n-th event (i.e., the n-th success) and 

kX  is the additional number of trials required to obtain the k-th success after 
the occurrence of the ( )1k − -st success. 

Note that for 0,1,t =  , the number ( )N t  of successes that have occurred 
up to and including time t is ( ) { }{ }max 0,1, : nN t n S t= ∈ ≤ , which has the 
Binomial(t,p) distribution 

( )( ) ( )Pr 1 t kkt
N t k p p

k
− 

= = − 
   

for 0,1, ,k t=   with expectation ( )N t tp=   . 
For 1,2,n =  , nS  has the Negative Binomial (n, p) distribution with cdf 

( ) ( ) ( )( )

( )
1

0

Pr 1 Pr 1

0 0,1, , 1

1 1 , 1,

n n

n s kk

k

F s S s N s n

s n
s

p p s n n
k

−
−

=

= ≤ = − ≤ −

= −
=   − − = + 

 
∑





 

and expectation [ ]n
nS
p

= . These facts are well known and are discussed in 

([15], pp. 409-414) and ([16], pp. 457-471). 
Starting at a fixed inspection time t, the additional number ( )Y t  of trials 

required to obtain the next success has the geometric distribution in (1). It is in-
dependent of the number of trials ( )A t  since the last success, where ( ) 0A t =  
if a success occurs at time t and we define ( )A t t=  if no success occurs in the 
first t trials. The random variable ( )A t  has the truncated geometric distribu-
tion with cdf 

( )( ) ( ) 11 1 0,1, , 1Pr
1 , 1,

xp x tA t x
x t t

+ − − = −≤ = 
= +



  

and expectation ( ) ( )( )1 1 1 tpA t p
p
−

= − −   . 

3. The Inspected Interarrival Period 

The length of the interarrival period containing the inspection trial t is 

( ) ( ) ( )1 ,N tX A t Y t+ = +
 

and our first theorem gives its probability distribution. 
Theorem 1. The cdf of ( ) 1N tX +  is given by 

( )( ) ( )
( )1

1 1 0,1, , 1
Pr

1 1 , 1,

x

N t x

q px x t
X x

q pt x t t+

 − + = −≤ =  − + = +





 

where 1q p= − . 
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Proof. Our proof proceeds by computing the convolution of the distributions 
of ( )A t  and ( )Y t  given above. By conditioning on the value of ( )Y t  and 
using the independence of ( )A t  and ( )Y t , it follows that for 1,2, , 1x t= − . 

( )( ) ( )( ) ( )( )

( )

( )

1

1
0

1
1 1

0
1 1

1

0 0

Pr Pr Pr

1

1 1 .

x

N t
k

x
k x k

k
x x

x k x

k k
x

X x A t k Y t x k

p q q

p q p q

q px

−

+
=

−
+ − −

=

− −
− −

= =

≤ = ≤ = −

= −

= −

= − +

∑

∑

∑ ∑

 
For , 1,x t t= +   it similarly follows that 

( )( ) ( )( ) ( )( )

( )( ) ( )( )

( )

( )

1

1
0

1

1 1
1 1 1

0
1 1

1

0 0

Pr Pr Pr

Pr Pr

1

1 1 .

t

N t
k

x

k t
t x

k x k x k

k k t
x t

x k x

k k
x

X x A t k Y t x k

A t k Y t x k

p q q p q

p q p q

q pt

−

+
=

−

=

− −
+ − − − −

= =

− −
− −

= =

≤ = ≤ = −

+ ≤ = −

= − +

= −

= − +

∑

∑

∑ ∑

∑ ∑

 
Note that for 1,2,x =   

( )( ) ( )11Pr Pr .x
N tX x q X x+ > > = >

 
Hence we see that the length of the inspected interarrival period is stochasti-

cally larger than the length of a typical interarrival period in the uninspected 
process. This fact illustrates the Inspection Paradox. Note that as t →∞  

( ) 1 21 1N tX X X+ → − +

 
(where →  denotes convergence in distribution) and that 

( ) 1
2 1.N tX
p+

  → − 
 

The situation just illustrated for the Bernoulli process should be compared 
with the Inspection Paradox for the Poisson process (see [2]), in which case the 
limiting expected length of the inspected interarrival period is twice the expected 
length of a typical interarrival period in the uninspected process. The minus one  

arises from the fact that ( )A t  can be zero and its limiting expectation is 1 1
p
− . 

In [2] the distribution and moments for the pre- and post-inspection time in-
terarrival period lengths are derived for the Poisson process. Our goal here is to 
accomplish this for the Bernoulli process. 

4. Pre- and Post-Inspection Interarrival Periods 

Since for 0t >  and { }2,3,j∈   the post-inspection interarrival period 
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length ( )N t jX +  has the geometric distribution in (1), our focus in this section is 
on the pre-inspection interarrival period lengths ( )N t jX −  for 0,1,j =  . 

We begin with a combinatorial lemma. 
Lemma 1. If m, n and j are nonnegative integers with j n m< ≤ , then 

1
.

1

m j

k n j

m k m k
n n j j

−

= −

− −    
=    − −    
∑

 

Proof. Notice that 
m
n

 
 
 

 is the number of ways to select n integers from the  

set { }1,2, ,m . Another way to obtain this count is to select the ( )st1j +  
greatest integer, where { }0,1, , 1j n∈ − , call this integer k, and from the re-
maining integers in the set, select j integers which are greater than k and 

1n j− −  integers less than k. Since we must have at least j integers greater than 
k, and at least 1n j− −  integers less than k, k may only take values from the set 
{ }, 1, ,n j n j m j− − + − . So the number of ways to select n integers from the 
set { }1,2, ,m  by first selecting the ( )st1j +  greatest is given by  

1
1

m j
k n j

k m k
n j j

−

= −

− −  
  − −  

∑ , completing the proof. 

Theorem 2. For t a positive integer and { }0,1, , 1j t∈ −  

( )( ) 1
1 0,1, , 1

Pr
1 , 1,

t x
x n t x n

n jN t j

t x
q p q x t j

X x n
x t j t j

−
− −

= +−

 − 
− = − −  ≤ =   

 = − − +

∑ 

  
Proof. Fix { }1,2,t∈   and { }0,1, , 1j t∈ − , and define 0kX =  for all 

0k ≤ . In a discrete time renewal process, ( )N t t≤  for all { }1,2,t∈  , so we 
need not consider cases where j t≥ , because this implies ( ) 0N t j t j− ≤ − ≤ , 
and hence ( ) 0N t jX − = . 

Recall that the ( )( )th
N t j−  success occurs at time ( )N t jS − . Since j successes 

must occur after the ( )( )th
N t j−  success, but at or before time t, we must have 

( )N t jS t j− ≤ − . Therefore ( )
( )

( )1
N t j

iN t j N t jiX X S t j−
− −=
≤ = ≤ −∑ , so  

( )( )Pr 1N t jX x− ≤ =  for { }, 1,x t j t j∈ − − +  . 

Now we assume that { }0,1, , 1x t j∈ − − . Conditioning on ( )N t , noting that 
( )N t j≤  implies ( ) 0N t jX − = , and that ( )N t jX x− >  implies ( )N t t x≤ − , we 

have 

( )( ) ( ) ( )( )

( ) ( )( )
0

1

Pr Pr ,

Pr , .

t

N t j N t j
n

t x

N t j
n j

X x X x N t n

X x N t n

− −
=

−

−
= +

> = > =

= > =

∑

∑
 

Conditioning on ( )N t jS − , and noting that there must be at least j trials after 

( )N t jS − , up to and including trial t (to accommodate the j successes after ( )N t jS − ), 
and at least x n j+ −  trials up to and including trial ( )N t jS −  (to accommodate 
the interarrival period length greater than x, and the n j−  successes occurring 
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by trial ( )N t jS − ), we have 

( ) ( )( )

( ) ( ) ( )( )
1

1

1

1

Pr ,

Pr , ,

1
.

1

t x

N t j
n j

t jt x

N t j N t j
n j k x n j

t jt x
n j k x n j x j t k j

n j k x n j

X x N t n

X x N t n S k

k x t k
p q q p p q

n j j

−

−
= +

−−

− −
= + = + −

−−
− − − − + − −

= + = + −

> =

= > = =

− − −   
=    − −   

∑

∑ ∑

∑ ∑
 

By applying Lemma 1, 

( )( )
1 1

1

1
Pr , ( )

1

.

t jt x t x
x n t x n

N t j
n j n j k x n j

t x
x n t x n

n j

k x t k
X x N t n q p q

n j j

t x
q p q

n

−− −
− −

−
= + = + = + −

−
− −

= +

− − −  
> = =   − −  

− 
=  

 

∑ ∑ ∑

∑
 

Hence for { }0,1, , 1x t j∈ − − , 

( )( )
1

Pr 1 .
t x

x n t x n
N t j

n j

t x
X x q p q

n

−
− −

−
= +

− 
≤ = −  

 
∑

 
Although there are simple formulas for the moments of the exponentially dis-

tributed interarrival times in a Poisson process (see [17], pp. 498-499), the fac-
torial moments of the geometrically distributed interarrival times in a Bernoulli 
process have more concise formulas. For this reason, our next theorem gives the 
factorial moments for the lengths of the pre-inspection interarrival periods. The 
set of positive integral moments of any random variable can be determined from 
the factorial moments and vice-versa. 

Theorem 3. For 0,1,j =   and 1,2,m =  , the mth factorial moment of 

( )N t jX −  is 

( )( )
1 11

1 0 10
! .

1 1

t j j t jm
k t

N t j
k m k ma

k k t kpX a m q q
m mq

− − − −−

−
= − = = −=

 −        − = −        − −         
∑ ∑ ∑∏








 

Proof. For notational simplicity, we let ( )N t jX X −=  in this proof. From 
Lemma 1 and Theorem 2, 

( ) ( ) ( )( ) ( )

( )

( )

( )

( )

1

0

1

1

1

1 1

1

1

1

1 1

1 1 Pr

! Pr

! Pr
1

! Pr
1

! Pr
1

!
1

t jm

n ma

t j

n m

t j n

n m k m

t j t j

k m n k

t j

k m

t j t k
k

k m j

X a n n n m X n

n
m X n

m

k
m X n

m

k
m X n

m

k
m X k

m

k t
m q

m

−−

==

−

=

− −

= = −

− − −

= − = +

− −

= −

− − −

= − = +

 − = − − − =  
 

= = 
 

 
= = − 

 
= = − 

 
= > − 

 
=  − 

∑∏

∑

∑ ∑

∑ ∑

∑

∑ ∑




t kk
p q − −− 

 
 

 


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1

1 0

1 1

1 0 1

! 1
1

! .
1 1

t j j
k t k

k m

t j j t j
k t

k m k m

k t k
m q p q

m

k k t kpm q q
m mq

− −
− −

= − =

− − − −

= − = = −

 −     = −    −      
 −      = −      − −       

∑ ∑

∑ ∑ ∑

 











 

From Theorem 2 

( )( ) ( )1Pr PrN tX x X x≤ > ≤
 

for 0,1,x =   and 0t > , and so ( )N tX  is stochastically smaller than the length 

of a typical interarrival period in the uninspected process. Moreover, the sequence 

( ){ }
0N t j j

X
∞

− =
 is stochastically decreasing and ( ) 0N t jX − =  with probability one for  

j t≥ . Theorem 2 also shows that for fixed { }0,1,j∈  , ( ) 1N t jX X− →  as 
t →∞ , so that the inspection effect dissipates away for large t. A similar argu-
ment to the one given in the proof of Theorem 3 shows that the mth factorial 
moment of 1X  is 

( )
11

1
10

! ! .
1

mm
k

m
k ma

k qX a m q m
m p

−− ∞

= −=

  − = =   −   
∑∏

 
Since the double sum on the right hand side in the statement of Theorem 3 is 

a polynomial in t of degree m j+ , its product with tq  tends to zero as t →∞  
and hence the mth factorial moment for ( )N t jX −  approaches that for 1X  for 
any fixed { }0,1,j∈  . These results are analogous to those for the Poisson 
process (see [2]), which isn’t surprising since the Poisson process is the conti-
nuous time analog for Bernoulli trials. 

5. Waiting Times 

The next two theorems give the distributions for waiting times in the inspected 
process. 

Theorem 4. If { }0,1,j∈   and 0t > , 

( )( ) ( )Pr 1 0,1, , 1
Pr

1 , 1,N t j

Y s s t
t S s

s t t−

 − ≤ = −
− ≤ = 

= +



  
where Y has the NegativeBinomial (j + 1, p) distribution. 

Proof. Observe that ( )N t jj t S t−≤ − ≤ . Letting Y have the NegativeBinomial (j 
+ 1, p) distribution, it follows that if 0,1, , 1s j= − , then  

( ) ( ) ( )( )Pr 1 Pr 1 0 Pr N t jY s Y s t S s−− ≤ = ≤ + = = − ≤ . 
If , 1, , 1s j j t= + − , then 

( )( ) ( ) ( )( )
( ) ( )( )

( )
( )

1

0

Pr Pr 1 1

1 Pr 1 1
11

Pr 1
Pr 1 .

N t j

j
k s k

k

t S s N t N t s j

N t N t s j
s p q

k
Y s
Y s

−

− −

=

− ≤ = − − − ≥ +

= − − − − < +

+ = −  
 

= ≤ +
= − ≤

∑  
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Theorem 5. If { }1,2,j∈   and 0t > , then ( )N t jS t+ −  has the Negative 
Binomial (j, p) distribution. 

Proof. For { }1,2,j∈  , ( ) 0N t jS t+ − > . So for 0x >  

( )( ) ( ) ( )( )
1

0
Pr Pr 1 .

j
k x k

N t j
k

x
S t x N t x N t j p q

k

−
−

+
=

 
− ≤ = + − ≥ = −  

 
∑

 
An alternative proof of Theorem 5 can be given by observing that 

( ) ( ) ( )
2

j

N t j N t k
k

S t Y t X+ +
=

− = +∑
 

and that, as noted above, the summands on the right hand side of the last equa-
tion are independent random variables, each of which has the Geometric(p) dis-
tribution in (1). 

Once again, the results for waiting times are analogous to those for the Pois-
son process (see [2]). 

6. Conclusions 

The Inspection Paradox impacts experiments in both continuous- and discrete- 
time processes. The paradox represents a difficulty because inspected intervals 
are likely to be unusually long, which can result in inflated estimators. Our goal 
was to quantify this phenomenon for Bernoulli processes. 

Determination of the distributions and the expected lengths of all intervals 
when there has been an inspected interval is a major step for a systematic mod-
eling and length-based sampling. These distributions and their properties add to 
our intuition about length-based sampling. 

A perhaps surprising outcome is that the sequence of times between successes, 
i.e., the lengths of intervals such as the waiting times for buses, is stochastically 
decreasing into the past from the inspected interval. 

In order to gain a thorough understanding of the Inspection Paradox for Ber-
noulli trials, it is important to know the probability distributions for random va-
riables which naturally arise in this context. We have computed the distributions 
and moments for the interarrival and waiting times for the inspected Bernoulli 
process and compared them with those for the uninspected version of this 
process. The results presented constitute a nearly complete mathematical analy-
sis of the Inspection Paradox for Bernoulli trials. 
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