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ABSTRACT 
 

Cisplatin (cis-diamine-dichloroplatinum (II), CDDP) is a prominent member of the effective broad-
spectrum antitumor drugs. However, its clinical usage is restricted due to serious side effects 
particularly nephrotoxicity. The vulnerability of the kidney to CDDP is almost certainly related to its 
primary role in the excretion of the drug as intact CDDP and its platinum containing products are 
excreted mainly in the urine. There is a correlation between the level of platinum in urine and 
nephrotoxicity because of renal uptake of the drug. Some analytical methods were applied for the 
determination of platinum content in biological fluids such as plasma, urine, serum, and peritoneal 
fluid. Studies have not documented a strong correlation between the renoprotective mechanism 
and the diminution of renal platinum content. 
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1. INTRODUCTION  
 

All molecules containing platinum produce a 
hazardous effect on health because of the heavy 
poisonous metal, it is accumulated and not 
biodegradable by the human body [1,2]. Cisplatin 
(cis-diamine-dichloroplatinum (II), CDDP) is a 
prominent member of the broad-spectrum 
antitumor drugs. However, it is blamed for its 
prominent nephrotoxicity [3,4]. Acute and 
cumulative renal toxicity associated with 
histological damage has been shown in-vivo 
[5,6], in humans [7], and rat kidney slices model 
[8]. CDDP produces nephrotoxicity shortly after 
initiation of therapy or after long-term 
administration. In general, renal toxicity can be 
divided into two phases, an acute phase and a 
chronic phase [9].  The acute toxicity of CDDP is 
characterized by hypomagnesemia, 
hypokalemia, acute reduction in glomerular 
filtration rate, and high serum creatinine [10]. The 
chronic phase of renal dysfunction is 
characterized by low creatinine clearance with or 
without increment in serum creatinine [11]. 
Several studies have reported the devastating 
effects of CDDP as one of the most effective 
antineoplastic agents [3,4,6,8]. Indeed, the role 
of platinum uptake by the kidneys has been 
documented, however, the implication of CDDP-
uptake in the renoprotective mechanism has not 
been fully clarified [12]. This review explored the 
main analytical methods which have been 
approved and used for CDDP analysis in 
biological fluids. In addition, the review aimed to 
elaborate the contribution of diminution of renal 
CDDP content as one of the mechanisms 
involved for the renoprotection of antioxidants 
and amino acids. 
 

1.1 Mechanisms of Cisplatin Renal 
Tubules Damage 

 

1.1.1 Oxidative stress and deoxyribonucleic 
acid (DNA) adduct formation 

 

Histologically, the renal damage is mainly 
situated in the S3 segment of the proximal 
tubules in the outer stripe of the outer medulla 
and occurring rarely in the glomeruli [13]. Several 
in-vitro and in-vivo studies have suggested that 
CDDP-induced kidney injury is linked to the 
production of oxidative stress [12, 14], lipid 
peroxidation [15] and reduction in the 
concentration of protein thiol [16] play a role in 
this toxicity. Two serial studies found that high 
lipid peroxides level is not mediated by direct 
membrane lipids peroxidation but was attributed 
to a reduction of antioxidant enzymes [17, 18]. 

CDDP induced depletion of renal reduced 
glutathione GSH [16] and inhibition of antioxidant 
enzymes activity such as glutathione-S-
transferase, glutathione peroxidase, catalase, 
and Cu-, Zn-superoxide dismutase in renal 
tissue, which shifts the cellular redox status 
resulting in an imbalance between free radicals 
and endogenous antioxidants occur leading to 
oxidative damage of membrane lipids [15, 19]. 
Also, selective inhibition of glutathione 
biosynthesis by buthionine sulfoximine is known 
to enhance CDDP nephrotoxicity [20], while 
glutathione ester coadministration along with 
CDDP protects against CDDP-induced 
nephrotoxicity [21, 22]. 

 
Another theory is based on a correlation of 
nephrotoxicity with structural changes in nuclear 
DNA of tubular cells through CDDP-induced 
interstrand and intrastrand DNA adducts as well 
as the adduct level in the kidney cells [23,24]. 
CDDP-induced renal toxicity is known to be of 
tubular origin [25], because the highest levels of 
CDDP -DNA adducts were seen in the renal 
tubules [26]. In addition, there is a good 
correlation between DNA adduct levels and drug 
efficacy as well as sensitivity in-vitro and in-vivo 
[27].  

 
1.1.2 Renal uptake of cisplatin 

 
The exact mechanism of CDDP nephrotoxicity is 
unclear. The vulnerability of the kidney to CDDP 
is linked to its crucial role in the excretion of both 
the intact drug and its platinum containing 
products [28]. CDDP is cleared by both 
glomerular filtration and tubular secretion [3], and 
the lower urinary excretion of CDDP might be 
due to a tubular reabsorptive process [29]. Thus, 
CDDP concentrations within the kidney exceed 
those in blood, which indicates accumulation of 
drug by renal parenchymal cells. In 1999, a 
strong correlation between the level of platinum 
in urine and nephrotoxicity because of 
reabsorption of the drug into the nephron was 
reported [30].  
 
Moreover, there are two different membrane 
transporters capable of transporting CDDP into 
cells: Ctr1 and hOCT2 [31]. Ctr1; copper 
transporter which was also shown to mediate 
CDDP uptake into renal tubular [12]. hOCT2; the 
human organic cation transporter 2 isoform is the 
critical transporter for CDDP uptake in proximal 
tubules [32]. A problem was detected with these 
studies on the transporter-mediated distribution 
of CDDP is the use of strong nucleophiles as 
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competitors which might confound the results by 
chemically interacting with CDDP [33]. Two 
examples are copper sulfate [34] and Cimetidine, 
an OCT2 substrate, reduced CDDP uptake and 
cytotoxicity in vitro [35,36], and CDDP-induced 
nephrotoxicity in vivo [37]. Therefore, caution is 
warranted when interpreting the results of such 
studies.  
 

2. ANALYTICAL METHODS FOR RENAL 
CISPLATIN CONTENT 

 

Several analytical separating techniques are 
used for the determination of CDDP content such 
as flow injection chemiluminescence [38], 
inductively coupled plasma atomic emission 
spectrometry, gas chromatography, high-
performance liquid chromatography (HPLC), and 
mass spectrometry [39-41]. 

 
2.1 Mass Spectrometry Technique  
 
Several analytical methods were applied for the 
determination of platinum content in biological 
fluids such as plasma, urine, serum, and 
peritoneal fluid. One of these methods used is 
the inductively coupled plasma mass 
spectrometry technique [42]. The detection of 
platinum was achieved in the linear range of 
0.01–100 ng/mL, with inter-and intraday 
precision and accuracy (≤15%),  recovery, 
robustness and stability. It was found that the 
quantification limit was 18.0 ng/mL platinum in 
plasma, 8.0 ng/mL platinum in ultrafiltrate and 
6.1 ng/mL in urine as well as the peritoneal fluid. 
The spectroscopic method was proposed for the 
detection of CDDP in the urine, but it has some 
disadvantages as the time required for 
derivatizing is 24 hours [43]. Cisplatin was 
determined in the urine and plasma by quenched 
phosphorescence in the range 5×10−7 to 
5×10−5M. [44], while the interaction between 
CDDP and G-quadruplex DNA was used to 
detect CDDP by using the fluorescence method 
[45]. 
 
2.2 Atomic Absorption Spectrometry 
 
The atomic absorption spectrometry technique 
was applied to assess CDDP and monohydrated 
form in plasma. The linearity was 60–600 and 
87.5–700 nM for CDDP and monohydrated 
CDDP in deproteinized plasma, respectively. The 
lower limits of quantification of both CDDP and 
the monohydrated CDDP were 60 and 87.5 nM, 
respectively. The samples were taken from the 
patient who received 75mgm−2 cisplatin as a 1-h 

intravenous infusion. [46]. Accurate and sensitive 
Atomic Absorption Spectrometry (AAS) methods 
coated with graphite tube were developed by [47, 
48] for analysis of CDDP in tissue and serum. 
Cisplatin was quantified using AAS by measuring 
the complex formed from its reaction with 
diethyldithiocarbamic acid, the complex was 
extracted into methylene chloride then mixed 
with acetonitrile to release the platinum which 
determined by Zeeman atomic absorption (AA) 
spectrophotometer [49]. 
 

An in vitro experiment to investigate the 
distribution of liposomal encapsulated CDDP in 
blood was developed by Meerum and coworkers 
[50]. In this method, total platinum concentration 
including the liposomal encapsulated platinum, 
protein-bound platinum released from the 
liposomes as well as the free platinum were 
assessed in plasma. In addition, a fraction of 
CDDP released from the liposomal carrier and 
the free platinum was measured in plasma 
ultrafiltrate by graphite furnace atomic absorption 
spectrometry (GF-AAS). As well CDDP was 
detected in the liposome and other biological 
fluids by (CE-ICP-MS) method [51] and by using 
HPLC [52] while the separation of the free CDDP 
from liposomal encapsulated and protein-bound 
was achieved by using a capillary 
electrophoresis inductively coupled plasma mass 
spectrometry (CE–ICP–MS) [53]. The electro 
analytical method was created for analysis of 
CDDP, the method based upon the replacement 
of mercury electrode by metallothionein and the 
determination of cisplatin were performed by 
adsorptive transfer stripping technique and 
differential pulse voltammetry [54]. 
 

Coupled plasma atomic emission spectrometric 
method was applied for the analysis of both 
CDDP and its hydrolysis products in addition to 
the two methionine–platinum complexes in 
aqueous solutions [55]. Moreover, A number of 
inductively coupled plasma– mass spectrometric 
methods were reported for the determination of 
CDDP [56-71]. From the aforementioned studies, 
modifications have been done to increase the 
accuracy of CDDP analysis in the biological 
fluids as well as purification of the platinum being 
analyzed. 
 

2.3 High-performance Liquid Chromato-
graphy (HPLC) 

 

HPLC methods are used for the separation of 
CDDP and its hydrolysis products using C18 
column and a mobile phase composed of 3% 
(v/v) methanol, 0.05mMsodium dodecyl sulfate, 
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and pH 2.5 (adjusted with triflic acid) [72]. Two 
methods were reported. One needs a pre-
treatment procedure and the detection 
wavelength is 210 nm [73]. The other needs an 
automated column switching technique [74]. 
Liquid chromatography post-column 
derivatization assay in plasma was proposed by 
Farrish et al., [75] who suggested that in order to 
increase the CDDP stability before being 
analyzed on a chemically generated anion 
exchange column, samples were treated with 
acetonitrile and a citrate buffer. The reaction 
forms a complex which is used for isolated of 
CDDP on an anion-exchange column using 
0.125M succinic acid–sodium hydroxide buffer 
pH 5.2 and methanol (2:3, v/v) as a mobile phase 
at 344 nm [28] or its reaction with sodium 
bisulfite to give products which have enhanced 
absorptivity at 280–300 nm. Detection limit at 
290 nm was 20 nM for CDDP [76]. However, 
while drugs containing platinum are not easy to 
be determined spectrophotometrically, post-
column derivatization technique is used [77-79]. 
Unchanged CDDP and its metabolites were 
determined by HPLC with post-column 
derivatization [80]. 
 
Selective HPLC methods are applied for 
detection of CDDP either with its toxic impurities 
using 4-methyl-2-thiouracil at 315 nm [81], or by 
chelating with diethyldithiocarbamate and 
detection at 260 nm [82] or by pre-column 
derivatization of platinum with a mobile phase 
such as bis (salicylaldehyde) 
tetramethylethylenediimine methanol–
acetonitrile–water and detection at 254 nm [83]. 
Two HPLC methods for quantization of CDDP 
using pre-column derivatization were proposed, 
the first based on the reaction of platinum with 2-
acetylpyridine-4-phenyl-3-thiosemicarbazone to 
form a complex which extracted in chloroform 
and detected at 380 nm while the second method 
based on chelation of Pt(II) with N, N’-
bis(salicylidene)-1,2-propanediamine and 
extraction of the neutral platinum complex, and 
detection at 254 nm [84,85]  
 
A method was developed for the analysis of 
CDDP in plasma, cancer cell and tumor samples 
by Lopez et al. [86], the separation was carried 
out using methanol–acetonitrile–water as mobile 
phase with flow rate 1.6mLmin

−1
 and detection at 

254 nm. Gradient elution on a reversed-phase 
column is used for the determination of CDDP 
with other anticancer drugs. [87].  To detect 
CDDP in plasma, A 
hexadecyltrimethylammonium loaded reversed-

phase HPLC column with a 5mM citrate-buffered 
eluent (pH 6.5) is used in anion-exchange 
chromatography with on-line reductive 
electrochemical technique [88].  
 
Liquid chromatography-mass assay was 
established for quantitation of CDDP in human 
[89] and in rat plasma and urine [90, 91] as well 
the same technique was used to study the effect 
of CDDP on liver and kidney [92] and the CDDP-
water interaction was studied by [93] moreover 
the detection in blood was take placed by [94]. 
Indeed, a study has reported that Liquid 
chromatography-electro spray ionization tandem 
mass spectrometric (LC/ESI-MS/MS) was used 
to identify and characterize in-vivo metabolites of 
CDDP in rat kidneys [95], while Bandu and 
coworkers [96] used the same technique to study 
the distribution of CDDP.  It could be concluded 
that HPLC is one of the most prominent methods 
used for the analysis of CDDP in renal or cancer 
tissues either to assess the nephrotoxicity or 
cytotoxicity indices of CDDP, respectively.  
 
2.4 Mass Spectroscopy 
 
The use of the mass spectroscopy is one of the 
most selective and sensitive techniques used for 
the analysis of platinum-containing drugs, CDDP 
was separated with its mono and dehydrated 
complexes using high-field asymmetric waveform 
ion mobility spectrometry (FAIMS) [97]. A 
combination of both size exclusion 
chromatography–ICP–MS (SEC–ICP–MS) and 
ESI-MS technique have been used to detect 
structural information of CDDP metabolites which 
react with metallothionein and GSH resulting in 
CDDP-mediated side effects [98]. Peleg-
Shulman studied the interaction between 
platinum and the protein by using either ubiquitin 
or myoglobin as model protein and identified 
platinum–protein adducts [99], while other 
studies reported the binding of CDDP to 
transferrin [100,101]. Moreover, the same 
technique was used for quantitative analysis of 
phospholipid alteration in resistant and sensitive 
cancer cells to CDDP [102].  One of the methods 
was applied for comparison of different methods 
for determination of platinum – DNA interaction 
and study the advantages and disadvantages of 
these methods [103]. 
 
Determination of platinum was established by the 
colorimetric method. It was based on the change 
of the red color result from the binding of 
platinum with gold nanoparticles (AuNPs) to blue, 
this binding prevents aggregation of AuNPs in 
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the presence of cationic polymer. The 
absorbances were measured at 610 and 520 nm 
and the linearity was 0.24–2 μM [104]. 

 

2.5 Miscellaneous Methods 
 
Because of the low solubility and non-volatile 
nature of CDDP, it is very difficult to determine it 
by the usual methods, and so it needs to use 
ESI-MS especially when it is used with the HPLC 
technique. Cui and his colleagues [105] applied 
this method to test the characteristics of CDDP 
and identify three hydrolysis products. 
Determination of CDDP in the pharmaceutical 
preparation and in blood samples of patients with 
cancer was carried out by using gas 
chromatography [106], the method based on the 
complex formation between platinum and 
bis(isovalerylacetone) ethylenediimine then 
extraction with chloroform.  
 
Many methods were reported for analysis of 
CDDP by capillary electrophoresis, one of them 
applied to examine the behaviors of CDDP in 
sodium chloride solution, The reagent used for 
detection was 4-nitrosodimethylaniline [107], 
some of these methods used for separation the 
hydrolysis products of CDDP originated because 
physiological stimulation [108] as well two 
methods used micellar electrokinetic capillary 
chromatography were applied for separation of 
platinum in aqueous solution [109,110], and in 
tumor tissues [111]. Capillary electrophoresis is 
either used to validate the interaction between 
CDDP and human serum albumin [112] or to 
investigate the interaction between CDDP and 
other anticancer drugs and nucleotides [113-
115], the absorption bands of the formed adducts 
were shifted compared to unmodified 
nucleotides. 
 

3. NOVEL RENOPROTECTIVE STRA-
TEGIES 

 
As the anti-tumor activity and renal toxicity in 
CDDP-based chemotherapy are mediated in part 
by different mechanisms, selective inhibition of 
its nephrotoxicity might be achieved while 
retaining the antineoplastic activity [116].  
Ibrahim and coworkers have stated that 
“continued aggressive high-dose CDDP 
necessitates investigating newer measures of 
preventing dose-limiting nephrotoxicity, that 
inhibit the administration of CDDP at tumoricidal 
doses” [117]. In recent years, newer therapeutic 
strategies are being investigated aimed at 
minimizing CDDP-induced nephrotoxicity while 

increasing its antitumor efficacy through the 
simultaneous supplementation of preventive 
agents. Such strategies may include 1) inhibition 
of pathways leading to activation of CDDP to a 
nephrotoxin, 2) reduction of renal uptake of 
platinum, 3) use of antioxidants to counter the 
effect of reactive oxygen molecules, 4) inhibition 
of CDDP-induced cell injury, MAPKs inhibitors, 5) 
inhibition of the inflammatory response by IL-10 
and specific suppression of TNF-α can, 6) target 
inhibition of apoptotic mechanism activated by 
CDDP specifically in kidney cells, 7) uses of 
cytoprotective agents that can protect normal 
cells, but not tumor cells, from CDDP, 8) uses of 
agents that enhance cell proliferation and 
differentiation and finally, uses of novel therapies 
like serum thymic factor and amino acids. 

 

3.1 Antioxidants and Renal Uptake of 
Cisplatin 

 
Several studies have documented the 
importance of ROS in CDDP -induced renal cell 
apoptosis [5,118]. For example, ROS can induce 
Fas [119], activate p53 [120,121], alter 
mitochondrial permeability [122,123], release 
cytochrome c into the cytosol [124] and even 
directly activate caspases [125]. Thus, several 
studies have investigated the antiapoptotic effect 
of many antioxidants such as dimethylthiourea 
(DMTU), Indole 3 carbinol, N-acetly cysteine 
(NAC), sodiumthiosulfate (STS), carvedilol and 
coenzyme Q specifically provide partial 
protection against CDDP-induced apoptosis 
[126-130]. The question with many studies 
concerning the antiapoptotic effect of 
antioxidants is if the antiapoptotic effect is 
secondary to antioxidative stress and/or has an 
independent mechanism. Another question to 
consider is can the antioxidants reduce the 
platinum uptake by the kidney and how much the 
effect will be? It was found by El Naga and 
Mahran that Indole-3-carbinol ameliorated the 
CDDP induced-nephrotoxicity through 
antioxidant effect without altering the cellular 
uptake of CDDP [130], another older study by 
Hannemann and coworkers reported that the 
antioxidant N,N'diphenyl-p-phenylenediamine 
(DPPD) did not reduce the uptake of platinum 
compounds in rat renal cortical slices [131]. 
Conclusively, we suggested that there was no 
strong evidence that the antioxidants might have 
their renoprotection through suppression of renal 
platinum uptake. Therefore, further investigation 
is warranted to elaborate on the involvement of 
renal platinum uptake in the nephroprotection 
mechanism. 
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3.2 Amino Acids and Renal Uptake of 
Platinum 

 

From two decades, it had been proved that 
amino acids and protein-derived peptides 
possess vasodilatory effects on renal vessels 
and improve glomerular filtration rate (GFR) [132, 
133]. They increase RBF and GFR through an 
important renal vasodilator which is NO. Alanine 
[134], glycine, and glutathione [135] are reported 
to protect renal proximal tubules from 
hypoxic/anoxic injury. 
 

The mechanisms involved in the cytoprotective 
effect of amino acids are not clarified. A study 
conducted by Weinberg & coworkers reported 
the cytoprotective effect of small amino acid 
including; glycine, D-alanine, L-alanine, and β-
alanine [136]. It was proposed that the 
cytoprotective effect of neutral small amino acids 
is attributed to their ability to influence the tertiary 
protein structure of renal cell membranes. They 
could be accumulated within the cell without 
disrupting pH or binding to reactive sites on 
intracellular proteins, and so they would correct 
the membrane-damaging actions of cytotoxic 
agents [137]. 
 

In the last years, certain amino acids have been 
shown to prevent CDDP-induced nephrotoxicity 
in vivo: L-cysteine [138], L-methionine [139]), N-
acetylcysteine [126], glycine [140], L-arginine 
[141], N-benzoyl-b-alanine [137] and glutamine 
[142]. However, the nephroprotective 
mechanisms are not well understood. Modulation 
of CDDP uptake in renal tissues by sulfur-amino 
acids had been suggested [143], Kroning and 
coworkers suggested that these amino acids 
such as N-acetylcysteine, cysteine, methionine, 
and DL-homocysteine might have prevented the 
CDDP-induced cytotoxicity in the kidney because 
of their inhibition of CDDP uptake in the cultured 
S1, S3, and DCT cells. They also suggested the 
structural element R-CH(NH2)-[CH2]1 2-S-R that 
might play a significant role in blocking the 
transport of CDDP. 
 

Besides the sulfur-containing amino acids, few 
studies investigated the nephroprotective effect 
of glycine and L-arginine through a 
hemodynamic and non-hemodynamic 
nephroprotective mechanism that involves NO 
production [15, 141].  A study by Mahran et al. [8] 
has suggested for the first time the non-
hemodynamic mechanisms of glycine and L-
arginine nephroprotection against CDDP in rat 
renal cortical slices through the restoration of the 
antioxidant cellular defense mechanism. In 

addition, they added another new mechanism for 
L-arginine nephroprotection through lowering the 
platinum uptake by the kidney tissue. 
 

Furthermore, the role of organic cation 
transporter 2 (OCT2) has been known in the 
nephroprotective mechanism of some amino 
acids and their derivatives. The human organic 
cation transporter 2 (hOCT2) is highly expressed 
in the renal proximal tubules and plays a crucial 
role in the secretion of platinum cation 
molecules. It was discovered that a single 
nucleotide polymorphism in hOCT2 gene 
(Ala270Ser) significantly reduced the platinum 
transport as well as the CDDP-induced toxicity 
compared to the wild-type hOCT2 [144]. A study 
by Kim and colleagues documented that 
glutamine inhibited the CDDP-induced 
expression of OCT2 which in turn inhibiting the 
CDDP accumulation and thus nephrotoxicity 
[145].  

 
4. CONCLUSION 
 
Several studies have reported the devastating 
effects of CDDP as one of the most effective 
antineoplastic agents. Indeed, the role of 
platinum uptake by the kidneys has been 
documented, however, the implication of CDDP-
uptake in the renoprotective mechanism has not 
been fully clarified. Moreover, a number of 
analytical methods have been approved and 
used for CDDP analysis in biological fluids while 
studying the nephroprotective effect of several 
agents. In this context, we did not find a strong 
correlation between the renoprotection and the 
diminution of renal platinum content.  
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