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ABSTRACT 
 
Digital images are extensively used by the medical doctors during different stages of 
disease diagnosis and treatment process. In the medical field, noise occurs in an image 
during two phases: acquisition and transmission. During the acquisition phase, noise is 
induced into an image, due to manufacturing defects, improper functioning of internal 
components, minute component failures and manual handling errors of the electronic 
scanning devices such as PECT/SPECT, MRI/CT scanners. Nowadays, healthcare 
organizations are beginning to consider cloud computing solutions for managing and 
sharing huge volume of medical data. This leads to the possibility of transmitting different 
types of medical data including CT, MR images, patient details and much more 
information through internet. Due to the presence of noise in the transmission channel, 
some unwanted signals are added to the transmitted medical data. Image denoising 
algorithms are employed to reduce the unwanted modifications of the pixels in an image. 
In this paper, the performance of denoising methods with two dimensional transformations 
of nonsubsampled contourlets (NSCT), curvelets, double density dual tree complex 
wavelets (DD-DTCWT) are compared and analysed using the image quality measures 
such as peak signal to noise ratio, root mean square error, structural similarity index. In 
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this paper, 200 MR images of brain (3T MRI scan), heart and breast are selected for 
testing the noise reduction techniques with above transformations. The results shows that 
the NSCT gives good PSNR values for random and impulse noises. DD-DTCWT has good 
noise suppressing capability for speckle and Rician noises. Both NSCT and DD-DTCWT 
copes well in images affected by poisson noises. The best PSNR value obtained for salt 
and pepper and additive white Guassian noises are 21.29 and 56.45 respectively. For 
speckle noises, DD-DTCWT gives 33.46 and it is better than NSCT and curvelet. The 
values 33.50 and 33.56 are the top PSNRs of NSCT and DD-DTCWT for poisson noises. 
 

 
Keywords: Nonsubsampled contourlet; curvelet; double density dual tree complex wavelets; 

denoising, noise removal, medical image processing. 
 

1. INTRODUCTION  
  
Magnetic Resonance Imaging technique is universally used to obtain detailed visual 
information about the internal organs of the body. The main advantage of MRI is its ability to 
show higher contrast between the soft tissues of the body than computed tomography (CT). 
So it is widely used in obtaining neurological (brain), gastrointestinal, musculoskeletal, 
cardiovascular, and ontological (cancer) images. MRI uses a powerful magnetic field to align 
the nuclear magnetization of (usually) hydrogen atoms in water in the body. The orientation 
of the magnetization is adjusted by the radio frequency (RF) waves to produce a rotating 
magnetic field that are recognized by the scanner, i.e. the resonance frequency of the 
magnetic field produced by the RF transmitter is used to flip the photons. After the field is 
turned off, the protons settles to its original spin-down state and the difference in energy 
between the two states is released as a photon. An image can be constructed because the 
photons in different tissues return to their equilibrium state at different rates. By changing the 
parameters on the scanner this effect is used to create contrast between different types of 
body tissue. The photons returns to its equilibrium state by the independent processes of T1 
and T2 relaxation. T1 relaxation is characterized by the longitudinal return of the net 
magnetization to its ground state in the direction of the main magnetic field. This occurs 
when spins in the high and low energy state exchange with loss of energy to the surrounding 
lattice. T2 relaxation occurs when spins in the high and low energy state exchange without 
losing energy to the surrounding lattice. 
 
The raw data generated by the scanner is complex in nature and is corrupted with zero 
mean Gaussian distributed noise. After applying inverse Fourier transformation, the resulting 
real and imaginary data are still Gaussian distributed due to the orthogonality and linearity 
property of the Fourier transform. MR magnitude images are obtained by taking the square-
root of the sum of the square of the real and imaginary images pixel by pixel. After this 
nonlinear transformation, MR magnitude data can be shown to be Rician distributed. 
 
Medical Imaging is a popular technique applied in the medical field where the internal organs 
can be viewed without incursion of human body. Medical image processing comprises of 
several important tasks such as noise suppression, registration [1], segmentation [2], 
reconstruction [3] and compression [4]. Over the years, various effective algorithms are 
formulated to solve the medical imaging problems. Noise occurs in CT/MR images during 
two phases: Acquisition and transmission. During the acquisition phase, noise or artifact can 
occur in an image due to two reasons: First, the image acquisition devices induces 
noise/artifacts to images, as they are susceptible to thermal noise and statistical 
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randomness in emission of photons; second, the physiological interference, which is the 
inability of a patient to manage his or her physiological processes and systems. For 
example, the result of breathing on a chest X-ray image, movement of material through the 
gastrointestinal system, cardiovascular activity on CT images. It is difficult for the doctors to 
incur accurate and useful information from these images. The noises in the images are 
inevitable and hence, removing the noises is mandatory for improving the quality of the 
image so that the doctors can make use of these images to arrive correct conclusions. It is 
known that there are several physical or mechanical factors that affects these scanning 
devices, the researchers have to deal with different types of noises such as Rician, 
Gaussian, salt and pepper, shot, speckle and poisson. Each noise has its own pattern and 
have to be dealt with special algorithms accordingly. 
 
From the data management point of view, digital medical images pose a great challenge as 
they produce extremely large data files. At the same time, existing technologies of data 
storage in healthcare organizations limits their efforts to cope up with huge volume of 
medical data. As the cloud computing provides good solutions for data storing, sharing, 
accessing and archiving medical imaging data, healthcare organizations are now 
considering cloud computing as an attractive option for managing and sharing data. Medical 
data sharing is always essential for these organizations, as their employees need to work 
together across locations and departmental boundaries. So the data needs to be transmitted 
across the globe for the complete integration of the employees or organizations. In addition 
to the occurrence of the noise in the acquisition phase, different types of noises such as 
additive noise, multiplicative noise and thermal noise are also introduced to the data in the 
transmission phase. 
 
In this modern era, many ensemble learning techniques [5] are used to automatically detect 
a particular disease. These techniques need large databases as training set to learn about 
the disease. The learning is effective, if the training set has less noise. As the training set is 
not guaranteed to be noise free, various denoising techniques depending upon the 
applications are employed to suppress the unwanted data. The different types of noises 
discussed in this paper are as follows: 
 
Random noises are caused due to the interference from random process such as thermal 
noise and counting of photons. The central value theorem states that irrespective of shapes 
of the individual random distributions, the convolution of these random functions in cascade 
will tend to a Gaussian distribution function. So the Gaussian noise is simulated for studying 
the effects of random noise and this is an additive model. Let Im,n be the NxN image pixels 
and ηm,n be the NxN noise pixels where 1 < m,n < N;   

 
 ��,� =  I�,	 +  η�,	                                                                                           (1) 

 
The probability density function � of a Gaussian random variable z with ��� as the variance 
and �� as the mean of the noise is given by: 
 

��(�) =  1
√2���

 ��(����)�
����                                                                                    (2) 

 
During transmission, the additive noise is caused due to passing automobiles, static 
electricity, power lines, etc., near the transmission lines. Additive White Guassian noise 
(AWGN) is generated from additive guassian noise. João M. Sanches, Jacinto C. 
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Nascimento, and Jorge S. Marques [6] removes the Guassian noise in an image by solving 
computationally intensive equations using numerical methods. 

 
Noises in MR images are generally modeled as white and Rician distributed [7,8]. For the 
images with high SNR, Rician noise is well approximated to Guassian noise. But in low SNR 
cases, the Rician noise distribution is considerally different than Guassian noise. The 
probability of image pixels to be Rician distributed is given by  
 

 ��(�) =  �
�� ����  !�

�"�    #$ %& .  �
�� (                                                                           (3) 

 
Where N is Rician noise pixel, I is the original image and σ is the variance. 
 
Jan Aelterman et al. [9] proposes a two-step Rician noise removal process. First, the bias is 
removed and then the denoising is done on the square root of the image in wavelet domain. 
 
The uncertain behavior in the emission of photons by the sensors of the scanners leads to 
the poisson noise and it is characterized by a random variable represented by poisson 
probability distribution function. This is associated with the systems such as PET, SPECT, 
and fluorescent confocal microscopy imaging. Shot noise in the scanning devices can also 
be modeled as poisson noise. The likelihood of getting poisson noise pixel η an observed 
image I with  as proportionality factor is given by: 
 

P(η�,	 | I�,	, λ)  = , -λI�,	.η/,0��λ1/,0
η�,	!

�

�,�34
                                                       (4)  

 
Speckle noises occur due to the random disturbance in the coherent properties of the 
emitted wave in the imaging systems such as laser, acoustics and synthetic aperture radar 
imagery. It follows a multiplicative noise model and it estimated by generalized gamma 
distribution. It is represented as  
 ��,� =  I�,	 ∗  η�,	                                                                                       (5)      

 
A generalized gamma random variable X with scale parameter α, and shape parameters β, 
and γ, gamma function 8 has probability density function: 
 

�(�) = γxγβ�4e�%;
α

(γ

αγβ8(β)                                                                                      (6) 

 
During transmission, the multiplicative noise is caused due to turbulence in air, reflections, 
refractions, etc., on the transmission lines. Y. Guo et al. [10] modifies non-local mean filter 
which works better for Gaussian denoising, to adapt with the speckle reduction process.  
This new filter is proved to be with good denoising property along with the better edge 
information preservation. 
 
Salt and pepper noises are induced due to malfunctioning of acquiring sensors and 
synchronization errors in transmission. It causes a sudden change in the pixel value of an 
image and is an impulse type of noise. Nawazish Naveeda et al. [11] used the neural 
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networks to detect the impulse noise and weighted average of three filters to clear out the 
noise in corrupted mammographic images. 
 
In this paper, medical image denoising is done using 2-dimensional non-subsampled 
contourlets, curvelets and double density dual tree complex transform. The issues such as 
shift invariance, aliasing and lack of directionalty of the traditional Discrete Wavelet 
Transform (DWT) makes it ineffective in the field of medical image denoising. Over years, 
many variant of wavelet transforms like the double density DWT [12], dual tree complex 
DWT [13] are developed to overcome these disadvantages. There are many identical factors 
between the double density DWT and dual tree complex DWT such as shift invariance, over 
completeness by a factor of 2 and they both use perfectly reconstruction filter banks. The 
double density DWT has a single scaling function, and its output wavelets are smooth and 
are shift invariant. Scientists believe that the best waveform for image processing is of gabor 
atom which is complex in nature. To incorporate the complex nature for wavelets, a new type 
of wavelet called double density dual tree complex wavelet transform (DD-DTCWT) [14] 
combined with properties of double density DWT and dual tree complex DWT is introduced.  
 
Curvelet [15] is a multiscale transform that efficiently represents singularities and the edges 
of curves. Their representation of edges are scattered than in wavelets i.e. the energy of the 
object is localized in few coefficients. This property of the sparseness allows for the better 
image reconstructions or coding algorithms.  
 
Contourlet is the expansion of wavelet theory with the directionality and non-shift invariant 
property. Non-subsampled contourlet (NSCT) [16] is a directional multiresolution transform 
which is known for its property of shift invariance, multiscale and the preservation of vital 
information in natural scenes.  
 
In this paper, the effect of different 2D geometric multiscale transforms like non-subsampled 
contourlets, curvelets and double density dual tree complex transform on many types of 
noises like AWGN, salt and pepper noise, speckle noise, and poisson noise present on MR 
images are analysed. 
 

2. MATERIALS AND METHODS  
 
2.1 Dataset 
 
For this survey, several images from three different datasets are chosen. First subset: 100 
3T brain T1 MR images are selected from MR image database provided by CASI Lab [17]. 
Images of patients with the history of diabetes, hypertension, head trauma, psychiatric 
disease, or other symptoms or history likely to affect the brain are excluded for this study. 
Second subset: 70 breast T1 MR images are taken from the database of The Cancer 
Imaging Archive (TCIA) [18]. Here, images of patients with no tumours or abnormalities are 
selected. Third subset: 30 heart T1 MR images are taken from cardiac MR image dataset 
provided by Alexander Andreopoulos and John K. Tsotsos [19,20] for research purposes. 
 

2.2 Curvelet Transform 
 
Curvelet transform [15] well represents the objects, shapes with smoothness except for 
discontinuity along a general curve with bounded curvature. It splits the frequency plane into 
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dyadic coronae and subdivides further into angular wedges. So it works at specified scales, 
locations and orientations.  
 
Let us consider a continuous curvelet transform [21] f → Γf(a, b, θ) of functions f(x1, x2) on 
R

2
, with parameter space indexed by scale a > 0, location b ∈ R

2
, and orientation θ. The 

coefficient are given by Γf (a, b, θ) = <f, γabθ>; the corresponding curvelet γabθ is defined 
by parabolic dilation in polar frequency domain coordinates. To create curvelet frame [15], 
the wedges are obtained by frequency tiling to find a set of curvelet functions for the 
frequency domain. Curvelet elements being locally supported near wedges, where the 

number of wedges is Nj = 4, 2?@/�B at scale 2
-j
. The coefficients are obtained from the functions 

that support the admissibility criteria [15]. Fig. 1 shows stages of denoising an image using 
curvelets.  
 

 
 

Fig. 1. Noise suppression by Curvelet Transform 
 
H. S. Bhadauria and M. L. Dewal [22] proposed a noise suppression method by using total 
variation and curvelet transform method with fusion of images and is tested on CT and brain 
MRI images. S. Ali Hyder and R. Sukanesh [23] compares the result of the curvelet 
transform with different types of noises and proved that the curvelet reconstruction gives 
better edge preservation than wavelets. 
 

2.3 Double Density Dual Tree Complex Wavelet Transform (DD-DTCWT) 
 
The double density model and the dual tree DWT are mixed to create DD-DTCWTs [14]. The 
dual-tree DWT is a complex-valued wavelet transform which is useful for signal modeling 
and denoising and can be used to implement two-dimensional transforms with directional 
wavelets. Kingsbury’s [13] idea of joining of two wavelets into Hilbert transform pairs has 
many advantages like near shift invariance, good denoising property, implementation of 
directional 2D DWTs at the same time. The oversampled filter banks also leads to good 
wavelet smoothness, better time frequency bandwidth and closer spacing between two 
wavelets of closer scale. The DD-DTCWT uses a mixture of two oversampled DWTs with 
oversampled iterated filter banks. The oversampled iterated filter banks of The DD-DTCWT 
are placed in parallel are as shown in Fig. 2.  
 
The Hilbert transform pairs of wavelets designed to be in off-set from one another by one 
half, is combined with the above dual tree complex wavelet to produce DD-DTCWTs. Here, 
different iterated bank filters are used in both the DWTs. Fig. 3. depicts the stages of 
denoising an image using DD-DTCWT. 
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Fig. 2. Oversampled iterated filter banks 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 3. Noise suppression by Double Density Dual Tree Complex Wavelet Transform 
 

Let 2-D Dual Tree Complex Wavelet [24] be C(D, E) =  C(D)C(E) where C(D) is a complex 
wavelet of form C(D) = CF(D) + GCH(D).the expression C(D, E) is given by: 

 

 C(D, E)   = ICF(D) + GCH(D)JICF(E) + GCH(E)J 
                        = ICF(D)CF(E) + CH(D)CH(E)J + 

GICF(D)CH(E) +  CH(D)CF(E)J           (7) 

 
V. Naga Prudhvi Raj and T. Venkateswarlu [25] uses the shrinkage operation to remove 
noises from images and experiments with adding semi-soft and stein thresholding operators 
along with conventional hard and soft threshhold operators and proves the adaptability of 
dual tree complex wavelet transform in denoising medical images. Chen Bo et al. [26] 
combines the high directional sensitivity ridgelets and shift invariant dual tree wavelets are to 
denoise images. This modified ridgelet algothm is compared with weiner2 filtering and 
classical ridgelet image denoising. Ufuk Bal [27], uses dual tree complex wavelet transform 
to remove poisson noises from optical microscopy images and the analyse the results with 
image quality metrics. 
 

2.4 Non-subsampled Contourlet Transform (NSCT) 
 
This is a fully shift invariant multiscale directional transform, obtained by the frequency 
partitioning of wavelets that have periodically time-varying units of downsamplers and 
upsamplers. It is a combination of non-subsampled laplacian pyramid and directional 

Noisy 
image 

Construct Hilbert 
pairs of four 

wavelets & Over 
sampled Filter 

banks 

Image 
Blocks 
NxN 

Double Density Dual 
Tree Complex 

Wavelet Transform 
Coefficients 

Soft 
Thresholding 

 

Noise 
Suppressed 

image 

Inverse Double 
Density Dual Tree 
Complex Wavelet 

Transform 

h0(-n)  
 
Down 
Sampl

ing 

 
 
  Up 
Sampl

ing 

h0(n) 

x(n) 
y(n) 

c(n) 

h1(n)      
h2(n) 
… 
hk(n) 

h1(-n)      
h2(-n) 
… 
hk(-n) 

di(n) 



 
 
 
 

Annual Research & Review in Biology, 4(19): 2938-2956, 2014 
 
 

2945 
 

filterbanks (DFB) [16]. The image is divided several lowpass and highpass subbands. The 
lowpass and highpass directional filters are applied to the image at multiple scales. The 
inverse transform reconstructs the image perfectly. Fig. 4 shows the three stage pyramid 
reconstruction. 
 

 
 

Fig. 4. Multi stage pyramid reconstruction [16] 
 

Laplacian pyramid achieves the multiscale decomposition for the transform. Non 
subsampled directional filterbanks are obtained by critical oversampling of DFB of the 
contourlets. Fig. 5 shows various stages of denoising an image using NSCT. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Noise suppression by Nonsubsampled Contourlet Transform 
 
Md. Foisal Hossain et al. [28] applies the least mean square error estimation on NSCT 
coefficients. The results show that the NSCT smooths the contour and preserves the 
dominant feature of the image and performs better than wavelets. 
 

2.5 Soft Thresholding 
 
In multiscale transformations, the thresholding can be applied at various levels of 
resolutions. It is proved that employing adaptive thresholding [29] at different levels of the 
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transform yield better results in denoising an image. Each and every subband are soft 
thresholded by the values calculated by taking the median values of the coefficients of the 
largest coefficient spectrum L1. Noise variance is given by 
 

�LM� =  ND�OPQE(RST@U V4R)
0.67452 X

�
                                                                               (8) 

 

Threshold value is given by Z[ =  �\M�
�]^

                                                                             (9) 

 

where  �`^ = amax-�d�̂ − �LM
� , 0. and �d�̂ is the variance of the subband coefficients at i

th 
level. 

 

The scaling factor 0.67452 is best suited for the approximate estimation of Gaussian White 
noise [30]. The scaling factors for other types of noises like salt & pepper noise, poisson 
noise, speckle noise are chosen according to the performance metrics discussed in next 
section. 
 

3. RESULTS AND DISCUSSION 
 
The purpose of this paper is to analyze the performance of the 2-Dimensional multiscale 
transformations like nonsubsampled contourlets, curvelets, double density dual tree complex 
wavelets on noisy MR images. A collection of 200 MR images of brain (3T MRI scan), heart 
and breast are selected and input set is created by inducing the different types of noises like 
AWGN, Rician noise, salt and pepper noise, speckle noise and poisson noise for each 
image. The images are tested on the system with intel i5 processor, 4GB RAM and graphs 
are plotted using MATLAB R2013 software. 
 
Image quality metrics like Peak Signal to Noise Ratio (PSNR), Mean Absolute Error (MAE), 
Root Mean Square Error RMSE) and Structured Similarity Index (SSIM) are calculated for 
assessing the performance of NSCT, Curvelet and DD-DTCWT. PSNR is the commonly 
used parameter for testing the quality of the reconstructed image. PSNR is more vulnerable 
to noises and SSIM works as the indicator that is consistent with the human eye vision 
model. Here, PSNR value indicates whether the reconstructed image is closer to the original 
image or not. More the PSNR value, better the image is restored to its original version. MAE 
and RMSE represent the closeness of the estimated value and the true value. Less the 
MAE/RMSE, more closer they are. IN CT/MR images, the structural information that holds 
the relationship between the objects are important, as they hold the key to earlier disease 
diagnosis. To effectively represent the structural dependencies of the denoised image and 
the original image, a metric called Structural Similarity Index (SSIM) is used. More the SSIM 
is close to one, more the two images are closer to each other.  
  
The values and the graphs that are furnished below are obtained from inducing different 
types of noises to a 3T MRI brain scan image and calculating several quality metrics of the 
denoised image. 
 

3.1 Analysis of AWGN Removal in MR Images Using NSCT, Curvelet and DD-
DTCWT 

 
For AWGN reduction analysis, noisy images of different SNR per sample are created and 
denoised. Different plots given in Figs. 6(a-d) shows the performance of AWGN removal 
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using NSCT, Curvelet, and DD-DTCWT. It is evident that NSCT woks better than Curvelet 
and DD-DWT. It has more PSNR, less RMSE and MAE and better SSIM. Fig. 7(a) shows 
brain MR image with additive noise of 10 SNR/sample and Figs. 7(b-d) shows the deonoised 
images using NSCT, Curvelet and DD-DTCWT. NSCT [31] have two distinct characteristics: 
high level of redundancy and anisotrphic contourlet basis. The high level of redundancy 
indicates that the NSCT coefficients of relevant data in the image present a sparse 
distribution in finer scale and estimation of the threshold at the finer scale gives NSCT a 
good noise suppressing ability. As the threshold is obtained at each finer scale, the overall 
average value is also used to remove additive noise model like AWGN. NSCT uses 
anisotrophic contourlet basis functions captures details at multiple directions and scales. The 
combination of these two properties makes NSCT outperforms other transforms. Paul Bao et 
al. [32] proposes a wavelet-based multiscale products thresholding scheme for noise 
suppression of MR images. First, the Multi-scale edge detection using dyadic wavelet 
transform is applied to noisy MR images. This wavelet transform is designed to improve the 
signal’s instantaneous features. For the sake of fast numerical computation, the dyadic 
sequence is limited to 2

j
. The wavelet is a quadratic spline that can be approximated to the 

first derivative of Guassian, which is more suitable to remove additive noise. The adjacent 
wavelet subbands are multiplied to improve the significant features of the images and the 
adaptive thresholding is done on multiscale products to give better noise removal. The 
perfromance of this method is measured on MSR and CNR indices on the Desired Region of 
Interest (DROI).  
 

  

  
 

Fig. 6. (a-d) shows PSNR, RMSE, MAE & SSIM estimation of denoised 3T MRI brain 
scan image (AWGN) respectively 

 
 

(a) (b) 

(c) (d) 
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Fig. 7. (a) shows Brain MRI with AWGN(SNR/sample = 10). Fig. 7(b, c, d) shows the 
denoised output of NSCT, Curvelet and DD-DTCWT respectively 

 
Florian Luisier et al. [33] uses an unbiased risk estimation procedure, to denoise the 
magnitude MR denoising, where the squared value of each pixel comprises an independent 
noncentral chi-square variate on two degrees of freedom. 
 

3.2 Analysis of Rician Noise Removal in MR Images using NSCT, Curvelet, DD-
DTCWT 

 
For Rician noise reduction analysis, images with different Rician noise levels are created 
and denoised. Figs. 8(a-d) shows various performance metrics of Rician noise removal using 
NSCT, Curvelet, and DD-DTCWT are shown. DD-DTCWT outperforms all the other 
transforms. Fig. 9(a) shows breast MR image with Rician noise Variance = 0.1 and  Figs. 
9(b- d) shows the deonoised images using NSCT, Curvelet and DD-DTCWT.Rajeesh et al. 
[34] improves the quality of MR image affected with Rician noise using wave atom transform. 
Wave atoms accurately represents the oscillatory patterns in images. Like other 
transformations like wavelet or curvelet, it obeys the scaling law and retains the isotrophic 
aspect ratio property. These wave atoms shows sharp frequency localization that are not 
found in filter banks based wavelets. In this method, the noise variance are automatically 
computed from histogram bins of the wave atom transformed image and it is used to denoise 
the MR image. The result show that it performs well than wavelet shrinkage and old 
threshold model.  
 
Geetika Dua et al. [35] proposes a new shrinkage threshold technique to fix the denoise 
threshold. Noise variance is calculated depending on the wave atom transform of the image. 
This method is tested on both real time and simulated images and the results shows better 
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performance than wavelets. Aja-Fernandez et al. [36] develops least minimum mean square 
error (LMMSE) for the Rician noise distribution function. The dynamic estimation of noise 
power is done using use the information of the sample distribution of local statistics of the 
image, such as the local variance, the local mean, and the local mean square value. The 
results show that the LMMSE estimation technique shows good performance in both noise 
cleaning and feature preservation. These above two methods uses multi scale 
transformations and gives good performance when compared with our methods. 
 

  

  
 
Fig. 8. (a-d) shows PSNR, RMSE, MAE and SSIM estimation of denoised 3T MRI brain 

scan image (Rician Noise) respectively 
 

3.3  Analysis of Salt & Pepper Noise Removal in MR images using NSCT, 
Curvelet and DD-DTCWT 

 
For Salt and Pepper Noise reduction analysis, corrupt images with different percentage of 
noise pixels are created and denoised. The plots of Salt and Pepper Noise removal using 
NSCT, Curvelet, and DD-DTCWT are shown in Figs. 10(a-d). NSCT has shown good overall 
image metrics. By inspecting the graphs in Fig. 10(a) and Fig. 10(b), it is inferred that, the 
values of the image metrics of salt and pepper noise reduction is smaller than those of the 
AWGN. These transforms with soft thresholding removes the random noise better than the 
impulse noises. The smoothness of non subsampled iterated filter banks and the multiscale 
decomposition makes NSCT a good transform for dealing the random and impulse noises. 
Raymond H. Chan et al. [37] devises a two stage process for salt and pepper noise removal. 
First, the pixels which have the highest probability of noise are identified by decision based 
median filters and then edge preserving regularization estimator is used to improve the 
pixels. The results show good performance even when the image is affected with 90% noise. 

(c) 
(d) 

(b) (a) 
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Ning Chun-Yu et al. [38] compares the traditional median filters and adaptive median filters 
in the field of denoising MR and CT images. Both filtering techniques are tested in virtual 
endoscope system and the adaptive median filters gives better PSNR values. The above 
both techniques does not use any multi-scale transformations. 
    

 
 

Fig. 9. (a) Shows Breast MRI with Rician noise (Variance = 0.1). Fig. 9(b-d) shows the 
denoised output of NSCT, Curvelet and DD-DTCWT respectively. 

 

3.4  Analysis of Poisson Noise Removal in MR images using NSCT, Curvelet 
and DD-DTCWT 

 
For Poisson noise reduction analysis, the noise with factor λ=0.5 is induced into the images 
and denoised. Table 1 shows the metrics of Poisson Noise removal using NSCT, Curvelet, 
and DD-DTCWT. It is clear that NSCT and DD-DTCWT gives better quality of reconstructed 
images.  

 
Table 1. Calculated values of PSNR, RMSE, MAE and SSIM Poisson Noise Removal in 

MR Images using NSCT, Curvelet, and DD-DTCWT 
 

 PSNR RMSE MAE SSIM 

NSCT 33.50 5.38 2.43 0.97 
Curvelet 24.04 16.01 7.74 0.76 
DD-DTCWT 33.36 5.47 2.70 0.96 



 

 
Fig. 10. (a, b, c, d) shows PSNR, RMSE, MAE & SSIM estimation of denoised 3T MRI 

brain scan image (

3.5  Analysis of Speckle Noise Removal in MR Images using NSCT, Curvelet, 
DD-DTCWT 

 
For Speckle noise reduction ana
created and denoised. The plots of speckle removal using NSCT, Curvelet, and DD
are drawn in Figs. 11(a-d) for the estimation of various performance metrics. DD
performs well with speckle n
offset between the Hilbert transforms pairs is one half and the thresholding is applied for 
both real and imaginary coefficients of wavelets. This gives the DD
NSCT and Curvelets in denoising speckle noise images. 
MR image with Speckle noise
using NSCT, Curvelet and DD
 
Bo Chen et al. [39] first converts the mulitiplicative noise to ad
Fourier transform and logarithm strategy, and then a fourth order partial differentiation 
equation model is created to remove the speckle noise. This model involves more 
computation than our method. 
 

(a) 
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Fig. 10. (a, b, c, d) shows PSNR, RMSE, MAE & SSIM estimation of denoised 3T MRI 
brain scan image (Salt & Pepper Noise) respectively. 

 

Analysis of Speckle Noise Removal in MR Images using NSCT, Curvelet, 

For Speckle noise reduction analysis, images with different noise variance values are 
created and denoised. The plots of speckle removal using NSCT, Curvelet, and DD

d) for the estimation of various performance metrics. DD
performs well with speckle noise and shows better results than NSCT. In DD-DTCWT, the 
offset between the Hilbert transforms pairs is one half and the thresholding is applied for 
both real and imaginary coefficients of wavelets. This gives the DD-DTCWT more edge than 

s in denoising speckle noise images. Fig. 12(a) shows cardiovascular 
MR image with Speckle noise (Variance = 0.2) and 12(b-d) shows the deonoised images 
using NSCT, Curvelet and DD-DTCWT.  

Bo Chen et al. [39] first converts the mulitiplicative noise to additive noise in the image using 
Fourier transform and logarithm strategy, and then a fourth order partial differentiation 
equation model is created to remove the speckle noise. This model involves more 
computation than our method.  

(b) 

(c) 
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Fig. 10. (a, b, c, d) shows PSNR, RMSE, MAE & SSIM estimation of denoised 3T MRI 

Analysis of Speckle Noise Removal in MR Images using NSCT, Curvelet,  

lysis, images with different noise variance values are 
created and denoised. The plots of speckle removal using NSCT, Curvelet, and DD-DTCWT 

d) for the estimation of various performance metrics. DD-DTCWT 
DTCWT, the 

offset between the Hilbert transforms pairs is one half and the thresholding is applied for 
DTCWT more edge than 

Fig. 12(a) shows cardiovascular 
d) shows the deonoised images 

ditive noise in the image using 
Fourier transform and logarithm strategy, and then a fourth order partial differentiation 
equation model is created to remove the speckle noise. This model involves more 

(d) 



 

Fig. 11. (a, b, c, d) shows PSNR, RMSE, MAE & SSIM estimation of denoised 3T MRI brain scan 

 

Fig. 12.(a) shows Cardiovascular MRI with Speckle noise(Variance = 0.2). Fig. 12(b, c, d) shows 
the denoised output of

(c) 
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(a, b, c, d) shows PSNR, RMSE, MAE & SSIM estimation of denoised 3T MRI brain scan 
image (Speckle Noise) respectively. 

  
 

  
 

Fig. 12.(a) shows Cardiovascular MRI with Speckle noise(Variance = 0.2). Fig. 12(b, c, d) shows 
the denoised output of NSCT, Curvelet and DD-DTCWT respectively. 

(a) (b) 

(d) 

(b) 
(a) (b) 

(c) (d) 
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(a, b, c, d) shows PSNR, RMSE, MAE & SSIM estimation of denoised 3T MRI brain scan 

Fig. 12.(a) shows Cardiovascular MRI with Speckle noise(Variance = 0.2). Fig. 12(b, c, d) shows 
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Md. Motiur Rahman et al. [40] used the median filtering technique to remove the speckle 
noise. The performance is measured in PSNR, Edge Preservative Factor(EPF), RMSE, Root 
Mean Square Error of Signal to Noise Ratio (RMSE_SNR), Ratio of gray level to preserve 
contrast(RM), Image Fidelity(IM) and SSIM values. Multiplicative noise removal is complex 
and needs algorithm with good adaptability factor. 
 

4. CONCLUSION 
 
In this paper, Nonsubsampled Contourlets(NSCT), Curvelets, Double Density Dual Tree 
Complex Wavelets(DD-DTCWT) are used to suppress noises like additive white gaussian 
noise, Rician noise, salt & pepper noise, poisson noise and speckle noise and the results are 
compared in terms of image quality metrics such as PSNR, RMSE, MAE, SSIM. For random 
noises and salt & pepper noises, NSCT has shown better performance metrics and 
produces good quality denoised biomedical images than curvelets and DD-DTCWTs. 
Curvelets scores poor in all the cases and its efficiency in medical image noise removal is 
less than other transforms. DD-DTCWT performs better than NSCT in removing speckle and 
Rician noises and both these transforms gives good results in removing poisson noises.  Our 
future work will be to focus on the noise reduction analysis on MR images classification 
using multi-scale transformations like wavelets, shearlets, surfacelets and 3D adaptive 
filters. 
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