

International Journal of Environment and Climate Change

Volume 13, Issue 9, Page 1961-1977, 2023; Article no.IJECC.102751 ISSN: 2581-8627 (Past name: British Journal of Environment & Climate Change, Past ISSN: 2231–4784)

Spartial Analysis of Groundwater Using Geographic Information System (GIS) and Water Quality Index (WQI) in Yenagoa Local Government Area Bayelsa State, Nigeria

Digha, Opaminola Nicholas^{a*}

^a Department of Environmental Management and Toxicology, Federal University of Otuoke, P.M.B. 126, Yenagoa, Bayelsa State, Nigeria.

Author's contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/IJECC/2023/v13i92429

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/102751

Original Research Article

Received: 11/05/2023 Accepted: 13/07/2023 Published: 25/07/2023

ABSTRACT

The purpose of the study is to examine the spartial analysis of groundwater using geographic information system and water quality index (WQI) in the study area. Fifty (50) water samples were collected and analysed in accordance to APHA, 2012. The data-set were further analysed using water quality index (WQI) and geographic information system (GIS). The results of the indicate that Igbogene 1, Yenagwe 1 & 2, Akenfa 1, Ekeki 1, Yenizue-Epie 1, Swali 1, Igbogene 2, Akenfa 2, Agudama 1 & 2, Etegwe 2, Opolo 1 & 2,Yenizuepie 2, Swali 2, Akaba 2, Ogu 2, Akaibiri 2, Gbarantoru3 & 5, Ogbuna 1, 3 & 4, Okolobiri 1, 2, & 5 and Tombia 2 & 4, water quality index shows that the quality ranges from poor to very poor. While the samples, Yenigwe 1, Biogbolo 1, Kpansia 1 & 1, Amarata 1, Ogbogoro 1, Ogu 1, Akaba 1,Okutukutu 1, Kpansia3, Amarata 2, Ogbogoro 2,Akaibiri 1, Gbarabtoru 1, 2 & 4, Ogbuna 2, Okolobiri 3 & 4 and lastly, Tombia 1 & 3 all

Int. J. Environ. Clim. Change, vol. 13, no. 9, pp. 1961-1977, 2023

^{*}Corresponding author: E-mail: dighaopaminola@yahoo.com;

ranges from good, very good to excellent water quality. However, the study shows a very high spartial variation in water quality. Therefore, groundwater should be regularly monitored and treated.

Keywords: Spartial; water quality index; geography information system.

1. INTRODUCTION

Water is an essential natural resource in our environment for societal growth and development. Water is life and support the life of all living things. It is a clear liquid originated from rain which can be found in rivers, lakes, seas and even underground as groundwater [1]. Water is an important resource, which human activities such as industries, domestic uses agriculture, irrigation, human husbandry, transport and recreation depends on [2,3]. Water is the richest solvent on earth that sustains all forms of life [4]. About 70% the earth surface is occupied by water, this include the oceans, lakes, rivers, lagoons, ponds and other water bodies (Rilwanu, 2014) [1,2,5]. Water is an indispensable natural resource and it is a major concern of many earth scientist among other aeographers. researchers have beenon the acquisition of a reliable source of drinking water (Akinbinu, 2015) [5,6] (Egai, 2t al, 2022).

Water quality is an assessment of water condition including, physical, chemical and biological parameters [2,7-9]. Lawson [10] analysed water with regard to physical, chemical and biological parameters of water. The quality of water changes with respect of the flow dynamics of acquifers.

More so, the quality of groundwater is influence by both natural and anthropogenic factors. The natural factors maybe as a result of earthquake, volcanic eruption and fire outbreak. While the anthropogenic factors include, oil spillage, effluents discharge into lakes or directly on the land, solid waste disposal on landfills and industrials activities. Water pollution is one of the most serious environmental problem in the globe today [6,11-13]. Water is said to be polluted when it changes in its quality or composition either naturally or as a result of human activities such that it becomes less useful for drinking, agricultural, domestic activities, industrial, recreational wildlife and other uses (God, 2006) [12,13].

Water pollution is an environmental hazard, an environmental is any condition, process or state

adversely affecting the environment [13-15]. These hazards can be physical, chemical and bacteriological present in water. According to World Health Organization (2022) that over 2 billion people live in water-stressed countries which is expected to be exacerbated in some regions as a result of climate change and increase in population. More so, globally, 2 billion people use a drinking contamination of drinking poses a serious health risk to inhabitant of these regions consuming these polluted water sources. The most important chemical risks in drinking water arise from arsenic, fluoride or nitrate, per pharmaceutical. pesticides. and polyfluroalkylsubstances (PFASs). Microbial contaminations drinking water can transmit disease like diarrhoea, cholera, dysentery, typhoid and polio, and estimated to cause 485,000 diarrhoealdeath annually (Chima and Digha, 2009; WHO, 2022).

1.1 Study Area

The study area is located within longitude 6°101 and 6°26¹ East of the Greenwich Meridian o⁰ and Latitude 4⁰⁻⁵¹⁺¹ extending to 5°DO¹ North of the Equator O⁰. The study area morphologically lies within the Niger Delta plains. It is a part of the sedimentary basic of the Niger Delta [16,17]. It is a low lying broad and gentle sloping in North-South direction to the Atlantic Ocean. According to Oyegun [18] that a close examination of the micro relief is formed from the gradational materials resulting to a homoclinial (gently geomorphic inclined) structure extending Westwards and are broken by small log back rides and shallow basins, Oyegun [18] further affirmed that, a topographical map of the study area show that the area equal heights and isohyets of about 12.30m above sea level. Sand beach ridges are common particularly along the Ekole Creek for example the Famgbe sand Beach opposite Yenagoa [16]. The River Nun, Ekole creek and the Epie creek are the major drainage arteries.

The study area is characterized by high rainfall. There are two major seasons, the wet (rainy) season and the dry season. The rainy or wet season last for eight months from March to October, while the dry season last for four months from November to February. A short break in the rainy season isobserved around late July and August but it occurs mostly in August thus the name August break is given. This implies, two periods of high rainfall in the year which means the study area experiences double maxia-rainfall. The mean monthly temperature varies between 25°C to 32°C. the mean annual temperature is constant within Bayelsa State.

2. MATERIALS AND METHODS

The water samples were collected and analyzed between November and December 2021 in a once-off sampling exercise. The water samples were collected between 6am and 7am at all locations on same day. The water quality parameters selected for the study were pH, salinity, Electrical conductivity, Turbidity, TDS, TSS, NO_3^{-7} , SO_4^{-2} , TA (Total alkalinity), TH (total hardness), Ca, Mg. Na, K, Fe, Mn, Total coliform (T.col), Total Heterotrophic Bacteria (THB) and fungi.

The collection, transportation, preservation and analyses of water sample were carried out as prescribed in the standard methods for water examination (APHA, 1985) and interpreted based on the World Health Organisation Standard for Drinking Water Quality and the Nigerian Drinking Water Quality Standard. The concentrations of the physico-chemical and bacteriological constituents as they affect the quality of drinking water were used to determine the level of groundwater pollution in the study area.

For parameters like PH, temperature, turbidity, total dissolved solids, electrical conductivity, turbidity calibrated meters were used in the analyses. For other parameters like alkalinity, chloride as iron, chromium, cadmium, copper, zinc was analysed using atomic absorption spectrophotometric techniques. While total and faecal coliform were determined using multiple fermentation and most probable number (MPN) techniques using media such as nutrient agar and macConky agar.

Fig. 1. Map of the study area showing borehole samples

2.1 Water Quality Index Determination

The water quality index (WQI), first introduced by Horton [19] in United States, later by Brown et al., [20] for determining water guality according to the suitability of water for various beneficial purposes, and has been used by various workers in their studies [21-23]. A water quality index is a weighted average of selected ambient concentrations of pollutants usual linked to water quality classes [24]. Water quality indices provide a way to distill thousands of records of environmental data into meaningful value that indicate the health of water resources and create a vardstick for measuring and assessing water quality.

To calculate water quality index, 11 parameters of groundwater quality are selected from the dataset of study area. Each parameter is assigned weight according to its relative importance for quality of water for drinking purposes (Table 3) Total Dissolved Solids (TDS), Nitrate (NO₃), Chloride (CL), Total hardness (TH), Iron (Fe) and weight of 4 is assigned to Sulphate (SO₄), Sodium (Na), pH, Electrical Conductivity and weight of 3 is assigned to Magnesium (Mg), Calcium (Ca) and Potassium (K). The relative weight of each parameter is calculated by following formula;

In stage 2 the relative weight (Wi) is computed from the following equation:

$$Wi = \frac{wi}{\sum_{i=1}^{n} wi}$$
(1)

Where:

Wi is the relative weight, Wi is the weight of each parameter and n is the number of parameters.

In the third step, a quality rating scale (qi) for each parameter was assigned by dividing its concentration in each groundwater sample by the World Health Organization (WHO) standard for drinking water and the result multiplied by 100.

 $qi = (ci/si) \times 100$

Where:

qi is the quality rating,

ci is the concentration of each chemical parameter in water sample in mg/l,

si is the World Health Organization drinking water standard for each chemical parameter mg/l, according to the guidelines.

For computing the WQI, the Sliis first determined for each chemical parameter which is then used to determine the WQI as indicated by the following equations;

 $WQI = \Sigma SIi$ (2)

Where:

Si is the sub index of the parameter, qi is the rating based on concentration of the parameter, n is the number of parameters.

The computed WQ1 values were classified into five types, excellent water, good water, poor water, very poor water and water unsuitable for drinking, according to Brown et al., [20], Abbasi et al., (2000), and Jonathan et al., [25], Austin and Ayibawari, [26].

3. RESULTS AND DISCUSSION

3.1 Interpolation of Groundwater Quality Parameters in Yenagoa

The spatial distribution of groundwater quality parameters surfaces created by using Inverse Distance Weighted (IDW)method show the spatial distribution of groundwater quality parameters (pH, TDS, Conductivity, Total Hardness, SO4, NO3, Fe, Cl, Mg, Na, Ca). (see Figs. 2,3,4,5,6,7,8,9,10,11,12 and 13).

3.2 Results of the Water Quality Index Analysis

The computed WQI values were classified into five types, excellent water, good water, poor water, very poor water and water unsuitable for drinking, according to Brown et al., [20], Abbasi et al., (2000), and Jonathan et al., [25].

The result of the water quality index in Table 4 shows that BH1 Igbogene 1 has WQI value of 182 which indicate poor water. BH2 Yenegwe 1 has 22 presenting excellent water. BH3 Yenegwe 2 with a WQI of 122 shows poor water quality. BH4 Akenf 1 with WQI 113 indicates poor water. BH5 Etegwe 1 with a WQI of 116 also shows poor water qulity. BH6 Biogbolo 1 with a WQI value of 92 indicates good water. BH7 Kpansia 1 with water quality (WQI) of 47 is an excellent water quality. BH8 Ekeki 1 with a value 107

Borehole	Lat	Long	Town	pН	EC	TDS	NO ₃	CI	SO ₄	TH	Са	Iron	Mg	Na
BH1	5.036889	6.405972	Igbogene 1	6.12	406	203	0.36	39	1.4	25	22.4	0.6	6.35	10.86
BH2	5.01975	6.398167	Yenagwe1	6.3	715	356	0.165	15	0.8	45	8.5	0.14	2.48	4
BH3	5.016722	6.396528	Yenagwe 2	6.38	857	430	0.335	21	1.67	18	13.7	0.4	3	6.5
BH4	5.002366	6.387691	Akenfa 1	6.1	782	391	0.175	14	0.86	37	8.85	0.37	2.5	4.85
BH5	4.957417	6.35375	Etegwe 1	5.99	164	82	0.165	14	0.82	35	8.6	0.38	2.76	4.54
BH6	4.94325	6.324806	Biogbolo 1	5.93	175	84	0.094	16	0.48	32	9	0.3	2.85	5.2
BH7	4.908472	6.337083	Kpansia 1	5.6	763	383	0.085	14	0.45	30	7.4	0.15	2.38	4.74
BH8	4.929167	6.300806	Ekeki 1	6.69	1156	578	0.096	22	0.5	46	12.48	0.35	3.62	5.8
BH9	4.917722	6.317583	Kpansia 1	6.14	269	135	0.348	34	1.75	101	20	0.14	5.65	9.95
BH10	4.91175	6.305972	Yenizue-Epie 1	6.74	1652	826	0.42	47	2.1	45	27.86	0.36	7.5	13.58
BH11	4.925861	6.275583	Amarata 1	6.05	422	211	0.204	37	0.96	91	21.48	0.16	6.2	9.84
BH12	4.916	6.2755	Swail 1	6.87	722	361	0.49	23	2.45	33	16.74	0.36	4.4	7.6
BH13	4.917028	6.251222	Ogbogoro 1	6.43	928	464	0.078	16	0.39	27	9.2	0.26	2.58	5.4
BH14	4.903722	6.251222	Ogu 1	6.2	160	80	0.162	24	0.8	56	14.56	0.12	3.8	6
BH15	4.91125	6.255611	Akaba 1	6.91	530	265	0.17	8	0.86	15	6.75	0.18	1.76	3.85
BH16	5.026869	6.398981	Igbogene 2	6.33	496	248	0.137	13	1.28	65	8.16	0.39	2.42	5.82
BH17	5.002678	6.379307	Akenfa 2	6.13	164	82	0.341	55	5.6	93	33.97	0.4	8.7	15.9
BH18	4.992793	6.375336	Agudama 1	5.88	334	167	0.23	58	5.5	200	34.5	0.7	8.84	17.4
BH19	4.98176	6.37166	Agudama 2	6.01	173	87	0.22	46	4.38	128	27.6	0.68	7.45	13.54
BH20	4.953314	6.355015	Etegwe 2	5.99	164	82	0.165	14	0.82	35	8.6	0.8	2.76	4.54
BH21	4.952838	6.34541	Okutukutu 1	5.85	91	46	0.132	14	1.42	56	8.78	0.32	1.96	4.62
BH22	4.94409	6.331098	Opolo 1	5.93	84	42	0.374	43	3.4	90	26.74	0.65	6.4	12.43
BH23	4.940728	6.326492	Opolo 2	6.38	94	48	0.41	65	5.6	115	35.6	0.4	7.64	14.9
BH24	4.933825	6.307698	Kpansia 2	5.86	348	174	0.127	14	1.38	26	9.5	0.11	2.64	4.86
BH25	4.916093	6.301615	Yenizue-Epie 2	6.4	422	211	0.318	90	10.8	148	56.88	0.44	12.76	28.64
BH26	4.935199	6.285502	Amarata 2	6.74	194	97	0.187	22	0.28	47	12.69	0.112	4.2	6.38
BH27	4.923142	6.272686	Swail 2	6.46	486	243	0.172	19	1.64	116	11.28	0.35	3.54	5.38
BH28	4.905837	6.258554	Akaba 2	5.99	77	38	0.213	40	4	111	23.86	0.4	5.72	12.58
BH29	4.918221	6.25624	Ogbogoro 2	6.2	160	80	0.162	24	0.8	56	14.56	0.12	3.8	6
BH30	4.899849	6.269169	Ogu 2	6.28	172	86	0.348	52	5.25	41	29.78	0.43	6.88	16.7
BH31	4.983667	6.276111	Akaibiri 1	6.14	285	142	0.218	14	2.48	17	10.35	0.31	2.87	5.48
BH32	4.987861	6.275722	Akaibiri 1	6.59	355	178	0.231	20	3.5	34	14.36	0.364	3.54	7.6

Table 1. Physico-chemical parameters of groundwater in Yenagoa

Borehole	Lat	Long	Town	рН	EC	TDS	NO ₂	CI	SO4	тн	Са	Iron	Ма	Na
BH33	5.000389	6.279556	Gbarantoru 1	6.01	420	210	0.31	20	4	52	13.3	0.136	4.2	6.5
BH34	4.999861	6.280667	Gbarantoru 2	5.97	583	292	0.318	34	4.8	48	22.18	0.32	5.68	9.45
BH35	4.999656	6.279361	Gbarantoru 3	5.96	363	182	0.22	20	3.85	36	14.7	0.36	2.53	6.84
BH36	4.999222	6.2785	Gbarantoru 4	5.92	364	182	0.23	30	3.64	30	13.82	0.132	4.86	8.35
BH37	5.004056	6.294028	Gbarantoru 5	6.15	310	155	0.197	12	3	26	17.48	0.38	2.25	5.42
BH38	5.032306	6.312556	Ogbuna 1	6.49	379	189	0.271	13	4.3	43	9.47	0.348	2.84	5.46
BH39	5.033528	6.311917	Ogbuna 2	6.35	304	152	0.176	14	2.34	27	10.2	0.186	3	4.96
BH40	5.034	6.311778	Ogbuna 3	6.52	279	140	0.185	11	2.97	30	9.78	0.36	2.56	3.75
BH41	5.033361	6.311056	Ogbuna 4	6.08	285	143	0.121	12	2.58	21	8.5	0.372	2.58	4.34
BH42	5.038194	6.323444	Okolobiri 1	6.15	382	191	0.278	62	4.84	43	32.76	0.388	10.72	18.68
BH43	5.038	6.319889	Okolobiri 2	5.99	457	274	0.328	16	4.75	44	13.6	0.374	3.52	7.48
BH44	5.035417	6.321361	Okolobiri 3	6.6	348	174	0.281	12	3.84	41	9.55	0.328	2.84	4.72
BH45	5.034306	6.318833	Okolobiri 4	6.83	298	199	0.217	12	3.76	35	9.28	0.146	1.78	5.46
BH46	5.03425	6.31789	Okolobiri 5	6.62	306	153	0.227	13	4	35	10.32	0.346	2.1	4.8
BH47	4.996806	6.262944	Tombia 1	6.24	436	218	0.29	14	3.46	45	9.88	0.33	3	5.75
BH48	5.001417	6.263	Tombia 2	6.08	307	154	0.214	21	3.2	22	13.25	0.39	4.34	6.58
BH49	5.000861	6.265528	Tombia 3	6.1	376	188	0.245	32	4	19	18.72	0.136	5.63	9.36
BH50	5.000639	6.266833	Tombia 4	5.67	357	178	0.235	33	3.85	10	19.3	0.382	5.82	9.65
WHO 2012				6.5-8.5	1000	500	50	250	100	150	100	0.3	0.2	200
NSDWQ 2007				6.5-8.5	500	500	10	100	-	100	50	0.3	20	-

Nicholas; Int. J. Environ. Clim. Change, vol. 13, no. 9, pp. 1961-1977, 2023; Article no.IJECC.102751

represents poor water quality. While BH9 Kpansia 2 has water quality index (WQI) vlue of 44 showing that the water guality index for this location is excellent water. BH10 Yenizue-Epie with a WQI of 110 indictes poor water. While BH11 Amarta 1 with a value 50 shows an excellent wter. On the other hand BH12 Swali 1 with WQI 110 indicates poor water. Table 4 further shows that BH13 Ogbogoro 1 WQI value of 80 indicates good water. BH14 Ogu 1 with a WQI value of 38 represents an excellent water quality, moreso; BH15 Akaba 1 with a WQI value of 56 indicates a good water quality. While, BH16 Igbogene 2 with a WQI value of 122 shows a very poor water quality. In the same vein BH18 Agudama 1 has a WQI value of 212 which shows that the water is very poor. BH19 Agudama 2 with a value of 206 indicates a very poor water. BH20 Etegwe 2 with a value of 242 indicates very poor water quality. This is about the wost water quality in the study area. BH21 Okutukutu 1 with a Water Quality Index (WQI) of 98 indicates good water. BH22 Opolo 1 has a water quality index (WQI) value of 197 which shows that the water is poor quality. In the same vain, BH23 Opolo 2 with a value of 122 also indicates poor water quality. However, BH24 Kpansia 3 with WQI of 35 shows an excellent water quality. While BH25 Yenizue Epie 2 with a value of 134, represent poor water quality. While BH26 Amarata 2 with WQI of 36, indicates an excellent water quality. BH 27 Swali 2 with WQI of 107 shows a poor water quality. BH28 Akaba 2 with a WQI of 122 also shows a

poor water quality. While BH29 Ogbogoro 2 with a WQI of 38, represent an excellence water quality. BH30 Oqu 2 with a WQI of 131 shows a poor water quality. While, BH31 Akaibiri 1 with a WQI of 95 indictes good water quality. BH32 Akaibiri 2 with a WQI of 111 shows a poor water quality. BH33 Gbarantoru 1 with a WQI of 43 represents an excellent water quality. While, BH34 Gbarantoru 2 with a WQI of 98 shows good water quality. BH35 Gbarantoru 3 with a WQI of 110 shows a poor water quality. Also, BH36 Gbarantoru 4 with a WQI of 42 represents an excellent water quality. While BH37 Gbarantoru 5 with a WQI of 116, shows a poor water quality. BH38 Obuna 1 with a WQI of 106 shows a poor water quality. BH39 Obuna 2 with a WQI of 58 indicates a good water quality. BH40 Obuna 3 with a WQI of 110 shows a poor water quality. BH41 Obuna 4 with a WQI of 114 shows a poor water qualiy. BH42 Okolobiri 1 with a WQI of 118 shows a poor water quality. BH43 Okolobiri 2 with a WQI of 114 shows a poor water guality. BH44 Okolobiri 3 with a WQI of 100 indicates a good water quality. BH45 Okolobiri 4 with a WQI of 45 represents an excellent water quality. BH46 Okolobiri 5 with a WQI of 106 shows a poor water quality. BH47 Tombia 1 with a WQI of 101 indicates a good water quality. BH48 Tombia 2 with a WQI of 119 shows a poor water quality. BH49 Tombia with a WQI of 43 represents an excellent water quality. While BH50 Tombia 4 with a WQI of 117, shows a poor water quality. (see Fig. 13 for the water quality index of Yenagoa LGA) [27-30].

s/n	Chemical parameters	Desirable	Weight	Relative weight
	-	Limit	(wi)	(Wi)
I	Ph	7.5	4	0.085106383
2	Electrical Conductivity	1000	4	0.085106383
3	Total dissolved solids	500	5	0.106382979
4	Nitrate	50	5	0.106382979
5	Chloride	250	5	0.106382979
6	Sulphate	150	4	0.085106383
	Total Hardness	100	5	0.106382979
8	Calcium	70	3	0.063829787
9	Magnesium	30	3	0.063829787
10	Sodium	200	4	0.085106383
11	Iron	0.3	5	0.106382979
			Σwi= 47	$\Sigma Wi = 1$

Table 2. Calculation	n of relative	weight of eac	h parameter
----------------------	---------------	---------------	-------------

Fig. 2. Spartial concentration of calcium (Mg/I) in the study area

Fig. 3. Spartial concentration of chloride CI (Mg/I) in the study area

Fig. 4. Spartial concentration of Electrical Conductivity EC (us/cm) in the study area

Fig. 5. Spartial concentration of iron Fe (Mg/I) in the study area

Fig. 6. Spartial concentration of magnesium Mg (Mg/I) in the study area

Fig. 7. Spartial concentration of sodium Na (Mg/I) in the study area

Fig. 8. Spartial concentration of nitrate NO₃ (Mg/I) in the study area

Fig. 9. Spartial concentration of pH in the study area

Fig. 10. Spartial concentration of sulphate SO₄ (Mg/I) in the study area

Fig. 11. Spartial concentration of Total Dissolved Solids TDS (Mg/I) in the study area

Fig. 12. Spartial concentration of total hardness (Mg/I) in the study area

Fig. 13. A GIS map showing spatial distribution of Water Quality Index (WQI) in Yenagoa L.G.A Source: Service Layer Credits: Abia State University, Department of Geography and Planning GIS Lab. (2021)

Water Quality Index value (WQI)	Class	Water quality status
<50	I	Excellent Water
50-100	II	Good Water
100-200		Poor Water
200-300	IV	Very Poor Water
>300	V	Unsuitable Water

Table 3. Water quality classification based on Water Quality Index (WQI) value; [20,23]

BH1 Igbogene 1 5.036889 6.405972 182 Poor water BH2 Yenagwe1 5.01975 6.398167 44 Excellent water BH3 Yenagwe 2 5.016722 6.398167 44 Poor water BH3 Yenagwe 2 5.016722 6.3967691 113 Poor water BH4 Akenfa 1 5.002366 6.387691 113 Poor water BH5 Etegwe 1 4.957417 6.35375 116 Poor water BH6 Biogbolo 1 4.94325 6.324806 92 Good Water BH7 Kpansia 1 4.903472 6.337083 44 Excellent Water BH8 Ekkei 1 4.92167 6.305972 110 Poor water BH10 YenizueEpie 1 4.91772 6.305972 110 Poor water BH11 Amarata 1 4.925861 6.27558 50 Excellent Water BH12 Swail 1 4.91728 6.251222 80 Good Water BH	Borehole	Town	Lat	Long	Water Quality Index (WQI) value	Class of water
BH2 Yenagwe1 5.01975 6.398167 44 Excellent water BH3 Yenagwe 2 5.016722 6.396528 122 Poor water BH4 Akenfa 1 5.002366 6.387691 113 Poor water BH5 Etegwe 1 4.957417 6.3575 116 Poor water BH6 Biogbolo 1 4.94325 6.324806 92 Good Water BH7 Kpansia 1 4.908472 6.337083 47 Excellent Water BH8 Ekeki 1 4.929167 6.300806 107 Poor water BH10 YenizueEpie 1 4.91772 6.317583 44 Excellent Water BH11 Amarata 1 4.925861 6.275583 50 Excellent Water BH12 Swail 1 4.916 6.27552 110 Poor water BH13 Ogbogoro 1 4.917028 6.251222 38 Excellent Water BH14 Ogu 1 4.903722 6.251222 38 Excellent Water	BH1	Igbogene 1	5.036889	6.405972	182	Poor water
BH3 Yenagwe 2 5.016722 6.396528 122 Poor water BH4 Akenfa 1 5.002366 6.387691 113 Poor water BH5 Etegwe 1 4.957417 6.35375 116 Poor water BH6 Biogbolo 1 4.94325 6.324806 92 Good Water BH7 Kpansia 1 4.908472 6.337083 47 Excellent Water BH8 Ekeki 1 4.929167 6.300806 107 Poor water BH9 Kpansia2 4.91772 6.317583 44 Excellent Water BH10 YenizueEpie1 4.91772 6.37553 50 Excellent Water BH11 Amarata 1 4.925861 6.2755 110 Poor water BH13 Ogbogoro 1 4.917028 6.25122 80 Good Water BH14 Ogu 1 4.903722 6.25122 80 Good Water BH14 Ogu 1 4.903723 6.373007 122 Poor water BH15	BH2	Yenagwe1	5.01975	6.398167	44	Excellent water
BH4 Akenfa 1 5.002366 6.387691 113 Poor water BH5 Etegwe 1 4.957417 6.35375 116 Poor water BH6 Biogbolo 1 4.94325 6.324806 92 Good Water BH7 Kpansia 1 4.908472 6.337083 47 Excellent Water BH8 Ekeki 1 4.929167 6.300806 107 Poor water BH9 Kpansia 2 4.91772 6.317583 44 Excellent Water BH10 YenizueEpie 1 4.91175 6.305972 110 Poor water BH11 Amarata 1 4.925861 6.27558 50 Excellent Water BH12 Swail 1 4.916 6.27552 110 Poor water BH13 Ogbogoro 1 4.91702 6.251222 38 Excellent Water BH14 Ogu 1 4.903722 6.255611 56 Good Water BH16 Igbogene 2 5.026869 6.398981 119 Poor water	BH3	Yenagwe 2	5.016722	6.396528	122	Poor water
BH5 Etegwe 1 4.957417 6.35375 116 Poor water BH6 Biogbolo 1 4.94325 6.324806 92 Good Water BH7 Kpansia 1 4.908472 6.330803 47 Excellent Water BH8 Ekeki 1 4.99167 6.300806 107 Poor water BH9 Kpansia2 4.917722 6.317583 44 Excellent Water BH10 YenizueEpie 1 4.91175 6.305972 110 Poor water BH11 Amarata 1 4.925861 6.27558 50 Excellent Water BH12 Swail 1 4.917028 6.251222 80 Good Water BH13 Ogbogoro 1 4.91725 6.255611 56 Good Water BH14 Ogu 1 4.903722 6.251222 38 Excellent Water BH14 Igbogene 2 5.026869 6.398981 119 Poor water BH15 Akaba 1 4.91256 6.37536 212 Very Poor water BH14 Agudama 1 4.992793 6.375035 242 Very Poor water <td>BH4</td> <td>Akenfa 1</td> <td>5.002366</td> <td>6.387691</td> <td>113</td> <td>Poor water</td>	BH4	Akenfa 1	5.002366	6.387691	113	Poor water
BH6 Biogbolo 1 4.94325 6.324806 92 Good Water BH7 Kpansia 1 4.908472 6.337083 47 Excellent Water BH8 Ekeki 1 4.929167 6.300806 107 Poor water BH9 Kpansia2 4.917722 6.317583 44 Excellent Water BH10 YenizueEpie 1 4.917726 6.305972 110 Poor water BH11 Amarata 1 4.925861 6.27558 110 Poor water BH12 Swail 1 4.917028 6.251222 80 Good Water BH14 Ogu 1 4.903722 6.251222 38 Excellent Water BH14 Ogu 1 4.903722 6.255611 56 Good Water BH16 Igbogene 2 5.026869 6.398981 119 Poor water BH17 Akenfa 2 5.002678 6.379307 122 Poor water BH18 Agudama 1 4.992793 6.375336 212 Very Poor water	BH5	Etegwe 1	4.957417	6.35375	116	Poor water
BH7 Kpansia 1 4.908472 6.337083 47 Excellent Water BH8 Ekeki 1 4.929167 6.300806 107 Poor water BH9 Kpansia2 4.917722 6.317583 44 Excellent Water BH10 YenizueEpie 1 4.91175 6.305972 110 Poor water BH11 Amarata 1 4.925861 6.275583 50 Excellent Water BH12 Swail 1 4.916 6.2755 110 Poor water BH13 Ogbogoro 1 4.91726 6.251222 80 Good Water BH14 Ogu 1 4.903722 6.255611 56 Good Water BH14 Ogu 1 4.9125 6.255611 56 Good Water BH15 Akaba 1 4.9127 6.25533 212 Poor water BH17 Akenfa 2 5.002678 6.379307 122 Poor water BH18 Agudama 1 4.992793 6.37536 212 Very Poor water BH20 <td>BH6</td> <td>Biogbolo 1</td> <td>4.94325</td> <td>6.324806</td> <td>92</td> <td>Good Water</td>	BH6	Biogbolo 1	4.94325	6.324806	92	Good Water
BH8 Ekeki 1 4.929167 6.300806 107 Poor water BH9 Kpansia2 4.917722 6.317583 44 Excellent Water BH10 YenizueEpie 1 4.91175 6.305972 110 Poor water BH11 Amarata 1 4.925861 6.275583 50 Excellent Water BH12 Swail 1 4.916 6.2755 110 Poor water BH13 Ogbogoro 1 4.91722 6.251222 80 Good Water BH14 Ogu 1 4.903722 6.251222 38 Excellent Water BH14 Ogu 1 4.903722 6.255611 56 Good Water BH16 Igbogene 2 5.026869 6.398981 119 Poor water BH17 Akenfa 2 5.002678 6.379307 122 Poor water BH18 Agudama 1 4.992793 6.37536 212 Very Poor water BH20 Etegwe 2 4.98176 6.37166 206 Very Poor water	BH7	Kpansia 1	4.908472	6.337083	47	Excellent Water
BH9 Kpansia2 4.917722 6.317583 44 Excellent Water BH10 YenizueEpie 1 4.91175 6.305972 110 Poor water BH11 Amarata 1 4.925861 6.275583 50 Excellent Water BH12 Swail 1 4.916 6.2755 110 Poor water BH13 Ogbogoro 1 4.917028 6.251222 80 Good Water BH14 Ogu 1 4.90702 6.251222 38 Excellent Water BH14 Ogu 1 4.90722 6.251222 38 Excellent Water BH15 Akaba 1 4.91125 6.255611 56 Good Water BH16 Igbogene 2 5.026869 6.398981 119 Poor water BH17 Akenfa 2 5.002678 6.379307 122 Poor water BH18 Agudama 1 4.992793 6.37536 212 Very Poor water BH20 Ekgwe 2 4.98176 6.37166 206 Very Poor water	BH8	Ekeki 1	4.929167	6.300806	107	Poor water
BH10 YenizueEpie 1 4.91175 6.305972 110 Poor water BH11 Amarata 1 4.925861 6.275583 50 Excellent Water BH12 Swail 1 4.916 6.2755 110 Poor water BH13 Ogbogoro 1 4.917028 6.251222 80 Good Water BH14 Ogu 1 4.903722 6.251222 38 Excellent Water BH15 Akaba 1 4.91125 6.255611 56 Good Water BH16 Igbogene 2 5.002678 6.379307 122 Poor water BH18 Agudama 1 4.992793 6.375336 212 Very Poor water BH20 Etegwe 2 4.98176 6.37166 206 Very Poor water BH21 Okutukutu 1 4.952838 6.34541 98 Good Water BH22 Opolo 1 4.94409 6.331098 197 Poor water BH23 Opolo 2 4.940728 6.326492 122 Poor water BH24 Kpansia3 4.933825 6.301615 134 Poor water <	BH9	Kpansia2	4.917722	6.317583	44	Excellent Water
BH11 Amarata 1 4.925861 6.275583 50 Excellent Water BH12 Swail 1 4.916 6.2755 110 Poor water BH13 Ogbogoro 1 4.917028 6.251222 80 Good Water BH14 Ogu 1 4.903722 6.251222 38 Excellent Water BH14 Ogu 1 4.903722 6.255611 56 Good Water BH15 Akaba 1 4.91125 6.255611 56 Good Water BH16 Igbogene 2 5.02689 6.398981 119 Poor water BH17 Akenfa 2 5.002678 6.37307 122 Poor water BH18 Agudama 1 4.992793 6.37565 212 Very Poor water BH20 Etegwe 2 4.95314 6.355015 242 Very Poor water BH21 Okutukutu 1 4.952838 6.34541 98 Good Water BH22 Opolo 1 4.9409 6.331098 197 Poor water BH23 Opolo 2 4.940728 6.326492 122 Poor water <t< td=""><td>BH10</td><td>YenizueEpie 1</td><td>4.91175</td><td>6.305972</td><td>110</td><td>Poor water</td></t<>	BH10	YenizueEpie 1	4.91175	6.305972	110	Poor water
BH12 Swail 1 4.916 6.2755 110 Poor water BH13 Ogbogoro 1 4.917028 6.251222 80 Good Water BH14 Ogu 1 4.903722 6.251222 38 Excellent Water BH15 Akaba 1 4.91125 6.255611 56 Good Water BH16 Igbogene 2 5.026869 6.398981 119 Poor water BH17 Akenfa 2 5.002678 6.379307 122 Poor water BH18 Agudama 1 4.992793 6.375336 212 Very Poor water BH20 Etegwe 2 4.98176 6.37166 206 Very Poor water BH21 Okutukutu 1 4.952838 6.34541 98 Good Water BH22 Opolo 1 4.9409 6.331098 197 Poor water BH23 Opolo 2 4.940728 6.326492 122 Poor water BH24 Kpansia3 4.933825 6.307698 35 Excellent Water BH26 Amarata 2 4.935199 6.285502 35.6 Excellent Water	BH11	Amarata 1	4.925861	6.275583	50	Excellent Water
BH13 Ogbogoro 1 4.917028 6.251222 80 Good Water BH14 Ogu 1 4.903722 6.251222 38 Excellent Water BH15 Akaba 1 4.91125 6.255611 56 Good Water BH16 Igbogene 2 5.026869 6.398981 119 Poor water BH17 Akenfa 2 5.002678 6.379307 122 Poor water BH18 Agudama 1 4.992793 6.375336 212 Very Poor water BH19 Agudama 2 4.98176 6.37166 206 Very Poor water BH20 Etegwe 2 4.953314 6.355015 242 Very Poor water BH21 Okutukutu 1 4.952838 6.34541 98 Good Water BH22 Opolo 1 4.94409 6.331098 197 Poor water BH23 Opolo 2 4.940728 6.326492 122 Poor water BH24 Kpansia3 4.933825 6.307698 35 Excellent Water BH25 YenizueEpie 2 4.916093 6.301615 134 Poor wate	BH12	Swail 1	4.916	6.2755	110	Poor water
BH14 Ogu 1 4.903722 6.251222 38 Excellent Water BH15 Akaba 1 4.91125 6.255611 56 Good Water BH16 Igbogene 2 5.026869 6.398981 119 Poor water BH17 Akenfa 2 5.002678 6.379307 122 Poor water BH18 Agudama 1 4.992793 6.375336 212 Very Poor water BH19 Agudama 2 4.98176 6.37166 206 Very Poor water BH20 Etegwe 2 4.953314 6.355015 242 Very Poor water BH21 Okutukutu 1 4.952838 6.34541 98 Good Water BH22 Opolo 1 4.94409 6.331098 197 Poor water BH23 Opolo 2 4.940728 6.326492 122 Poor water BH24 Kpansia3 4.933825 6.307698 35 Excellent Water BH25 YenizueEpie 2 4.916093 6.301615 134 Poor water BH26 Amarata 2 4.923142 6.272686 107 Poor wate	BH13	Ogbogoro 1	4.917028	6.251222	80	Good Water
BH15 Akaba 1 4.91125 6.255611 56 Good Water BH16 Igbogene 2 5.026869 6.398981 119 Poor water BH17 Akenfa 2 5.002678 6.379307 122 Poor water BH18 Agudama 1 4.992793 6.375336 212 Very Poor water BH19 Agudama 2 4.98176 6.37166 206 Very Poor water BH20 Etegwe 2 4.953314 6.355015 242 Very Poor water BH21 Okutukutu 1 4.952838 6.34541 98 Good Water BH22 Opolo 1 4.9409 6.331098 197 Poor water BH23 Opolo 2 4.940728 6.326492 122 Poor water BH24 Kpansia3 4.933825 6.307698 35 Excellent Water BH25 YenizueEpie 2 4.916093 6.301615 134 Poor water BH26 Amarata 2 4.935199 6.285502 35.6 Excellent Water BH27 Swail 2 4.905837 6.258554 122 Poor w	BH14	Ogu 1	4.903722	6.251222	38	Excellent Water
BH16 Igbogene 2 5.026869 6.398981 119 Poor water BH17 Akenfa 2 5.002678 6.379307 122 Poor water BH18 Agudama 1 4.992793 6.375336 212 Very Poor water BH19 Agudama 2 4.98176 6.37166 206 Very Poor water BH20 Etegwe 2 4.953314 6.355015 242 Very Poor water BH21 Okutukutu 1 4.952838 6.34541 98 Good Water BH22 Opolo 1 4.9409 6.331098 197 Poor water BH23 Opolo 2 4.940728 6.326492 122 Poor water BH24 Kpansia3 4.933825 6.307698 35 Excellent Water BH25 YenizueEpie 2 4.916093 6.301615 134 Poor water BH26 Amarata 2 4.935199 6.285502 35.6 Excellent Water BH27 Swail 2 4.923142 6.272686 107 Poor water BH28 Akaba 2 4.905837 6.258554 122 Poor	BH15	Akaba 1	4.91125	6.255611	56	Good Water
BH17 Akenfa 2 5.002678 6.379307 122 Poor water BH18 Agudama 1 4.992793 6.375336 212 Very Poor water BH19 Agudama 2 4.98176 6.37166 206 Very Poor water BH20 Etegwe 2 4.953314 6.355015 242 Very Poor water BH21 Okutukutu 1 4.952838 6.34541 98 Good Water BH22 Opolo 1 4.9409 6.331098 197 Poor water BH23 Opolo 2 4.940728 6.326492 122 Poor water BH24 Kpansia3 4.933825 6.307698 35 Excellent Water BH25 YenizueEpie 2 4.916093 6.301615 134 Poor water BH26 Amarata 2 4.935199 6.285502 35.6 Excellent Water BH27 Swail 2 4.923142 6.272686 107 Poor water BH28 Akaba 2 4.905837 6.258554 122 Poor water BH29 Ogbogoro 2 4.918221 6.269169 131 Poor	BH16	lgbogene 2	5.026869	6.398981	119	Poor water
BH18 Agudama 1 4.992793 6.375336 212 Very Poor water BH19 Agudama 2 4.98176 6.37166 206 Very Poor water BH20 Etegwe 2 4.953314 6.355015 242 Very Poor water BH21 Okutukutu 1 4.952838 6.34541 98 Good Water BH22 Opolo 1 4.9409 6.331098 197 Poor water BH23 Opolo 2 4.940728 6.326492 122 Poor water BH24 Kpansia3 4.933825 6.307698 35 Excellent Water BH25 YenizueEpie 2 4.916093 6.301615 134 Poor water BH26 Amarata 2 4.935199 6.285502 35.6 Excellent Water BH27 Swail 2 4.923142 6.272686 107 Poor water BH28 Akaba 2 4.905837 6.258554 122 Poor water BH29 Ogbogoro 2 4.918221 6.269169 131 Poor water BH30 Ogu 2 4.899849 6.269169 131 Poor wa	BH17	Akenfa 2	5.002678	6.379307	122	Poor water
BH19 Agudama 2 4.98176 6.37166 206 Very Poor water BH20 Etegwe 2 4.953314 6.355015 242 Very Poor water BH21 Okutukutu 1 4.952838 6.34541 98 Good Water BH22 Opolo 1 4.94409 6.331098 197 Poor water BH23 Opolo 2 4.940728 6.326492 122 Poor water BH24 Kpansia3 4.933825 6.307698 35 Excellent Water BH25 YenizueEpie 2 4.916093 6.301615 134 Poor water BH26 Amarata 2 4.935199 6.285502 35.6 Excellent Water BH27 Swail 2 4.923142 6.272686 107 Poor water BH28 Akaba 2 4.905837 6.258554 122 Poor water BH29 Ogbogoro 2 4.918221 6.25624 38 Excellent Water BH30 Ogu 2 4.899849 6.269169 131 Poor water BH30 Ogu 2 4.899849 6.269169 131 Poor water </td <td>BH18</td> <td>Agudama 1</td> <td>4.992793</td> <td>6.375336</td> <td>212</td> <td>Very Poor water</td>	BH18	Agudama 1	4.992793	6.375336	212	Very Poor water
BH20 Etegwe 2 4.953314 6.355015 242 Very Poor water BH21 Okutukutu 1 4.952838 6.34541 98 Good Water BH22 Opolo 1 4.94409 6.331098 197 Poor water BH23 Opolo 2 4.940728 6.326492 122 Poor water BH24 Kpansia3 4.933825 6.307698 35 Excellent Water BH25 YenizueEpie 2 4.916093 6.301615 134 Poor water BH26 Amarata 2 4.935199 6.285502 35.6 Excellent Water BH27 Swail 2 4.923142 6.272686 107 Poor water BH28 Akaba 2 4.905837 6.258554 122 Poor water BH29 Ogbogoro 2 4.918221 6.25624 38 Excellent Water BH30 Ogu 2 4.899849 6.269169 131 Poor water BH30 Ogu 2 4.899849 6.269169 131 Poor water	BH19	Agudama 2	4.98176	6.37166	206	Very Poor water
BH21 Okutukutu 1 4.952838 6.34541 98 Good Water BH22 Opolo 1 4.9409 6.331098 197 Poor water BH23 Opolo 2 4.940728 6.326492 122 Poor water BH24 Kpansia3 4.933825 6.307698 35 Excellent Water BH25 YenizueEpie 2 4.916093 6.301615 134 Poor water BH26 Amarata 2 4.935199 6.285502 35.6 Excellent Water BH27 Swail 2 4.923142 6.272686 107 Poor water BH28 Akaba 2 4.905837 6.258554 122 Poor water BH29 Ogbogoro 2 4.918221 6.25624 38 Excellent Water BH30 Ogu 2 4.899849 6.269169 131 Poor water BH30 Ogu 2 4.899849 6.269169 131 Poor water	BH20	Etegwe 2	4.953314	6.355015	242	Very Poor water
BH22 Opolo 1 4.94409 6.331098 197 Poor water BH23 Opolo 2 4.940728 6.326492 122 Poor water BH24 Kpansia3 4.933825 6.307698 35 Excellent Water BH25 YenizueEpie 2 4.916093 6.301615 134 Poor water BH26 Amarata 2 4.935199 6.285502 35.6 Excellent Water BH27 Swail 2 4.923142 6.272686 107 Poor water BH28 Akaba 2 4.905837 6.258554 122 Poor water BH29 Ogbogoro 2 4.918221 6.269169 131 Poor water BH30 Ogu 2 4.899849 6.269169 131 Poor water	BH21	Okutukutu 1	4.952838	6.34541	98	Good Water
BH23 Opolo 2 4.940728 6.326492 122 Poor water BH24 Kpansia3 4.933825 6.307698 35 Excellent Water BH25 YenizueEpie 2 4.916093 6.301615 134 Poor water BH26 Amarata 2 4.935199 6.285502 35.6 Excellent Water BH27 Swail 2 4.923142 6.272686 107 Poor water BH28 Akaba 2 4.905837 6.258554 122 Poor water BH29 Ogbogoro 2 4.918221 6.25624 38 Excellent Water BH30 Ogu 2 4.899849 6.269169 131 Poor water BH30 Ogu 2 4.899849 6.269169 131 Poor water	BH22	Opolo 1	4.94409	6.331098	197	Poor water
BH24 Kpansia3 4.933825 6.307698 35 Excellent Water BH25 YenizueEpie 2 4.916093 6.301615 134 Poor water BH26 Amarata 2 4.935199 6.285502 35.6 Excellent Water BH27 Swail 2 4.923142 6.272686 107 Poor water BH28 Akaba 2 4.905837 6.258554 122 Poor water BH29 Ogbogoro 2 4.918221 6.25624 38 Excellent Water BH30 Ogu 2 4.899849 6.269169 131 Poor water BH30 Ogu 2 4.899849 6.269169 131 Poor water	BH23	Opolo 2	4.940728	6.326492	122	Poor water
BH25 YenizueEpie 2 4.916093 6.301615 134 Poor water BH26 Amarata 2 4.935199 6.285502 35.6 Excellent Water BH27 Swail 2 4.923142 6.272686 107 Poor water BH28 Akaba 2 4.905837 6.258554 122 Poor water BH29 Ogbogoro 2 4.918221 6.25624 38 Excellent Water BH30 Ogu 2 4.899849 6.269169 131 Poor water	BH24	Kpansia3	4.933825	6.307698	35	Excellent Water
BH26 Amarata 2 4.935199 6.285502 35.6 Excellent Water BH27 Swail 2 4.923142 6.272686 107 Poor water BH28 Akaba 2 4.905837 6.258554 122 Poor water BH29 Ogbogoro 2 4.918221 6.269169 131 Poor water BH30 Ogu 2 4.899849 6.269169 131 Poor water	BH25	YenizueEpie 2	4.916093	6.301615	134	Poor water
BH27 Swail 2 4.923142 6.272686 107 Poor water BH28 Akaba 2 4.905837 6.258554 122 Poor water BH29 Ogbogoro 2 4.918221 6.25624 38 Excellent Water BH30 Ogu 2 4.899849 6.269169 131 Poor water	BH26	Amarata 2	4.935199	6.285502	35.6	Excellent Water
BH28 Akaba 2 4.905837 6.258554 122 Poor water BH29 Ogbogoro 2 4.918221 6.25624 38 Excellent Water BH30 Ogu 2 4.899849 6.269169 131 Poor water BH30 Ogu 2 4.092627 6.251141 05 Ocad Water	BH27	Swail 2	4.923142	6.272686	107	Poor water
BH29 Ogbogoro 2 4.918221 6.25624 38 Excellent Water BH30 Ogu 2 4.899849 6.269169 131 Poor water BH30 Ogu 2 4.899849 6.269169 131 Poor water	BH28	Akaba 2	4.905837	6.258554	122	Poor water
BH30 Ogu 2 4.899849 6.269169 131 Poor water	BH29	Ogbogoro 2	4.918221	6.25624	38	Excellent Water
	BH30	Ogu 2	4.899849	6.269169	131	Poor water
BH31 Akaldin 4.983667 6.276111 95 Good Water	BH31	Akaibiri 1	4.983667	6.276111	95	Good Water
BH32 Akaibiri2 4.987861 6.275722 111.2 Poor water	BH32	Akaibiri2	4.987861	6.275722	111.2	Poor water
BH33 Gbarantoru 1 5.000389 6.279556 42.8 Excellent Water	BH33	Gbarantoru 1	5.000389	6.279556	42.8	Excellent Water
BH34 Gbarantoru 2 4.999861 6.280667 98 Good Water	BH34	Gbarantoru 2	4.999861	6.280667	98	Good Water
BH35 Gbarantoru 3 4.999656 6.279361 110 Poor water	BH35	Gbarantoru 3	4.999656	6.279361	110	Poor water
BH36 Gbarantoru 4 4.999222 6.2785 41.6 Excellent Water	BH36	Gbarantoru 4	4.999222	6.2785	41.6	Excellent Water
BH37 Gbarantoru 5 5.004056 6.294028 116 Poor water	BH37	Gbarantoru 5	5.004056	6.294028	116	Poor water
BH38 Ogbuna 1 5.032306 6.312556 106.4 Poor water	BH38	Ogbuna 1	5.032306	6.312556	106.4	Poor water
BH39 Ogbuna 2 5.033528 6.311917 57.8 Good Water	BH39	Ogbuna 2	5.033528	6.311917	57.8	Good Water
BH40 Ogbuna 3 5.034 6.311778 110 Poor Water	BH40	Ogbuna 3	5.034	6.311778	110	Poor Water
BH41 Ogbuna 4 5.033361 6.311056 113.6 Poor Water	BH41	Ogbuna 4	5.033361	6.311056	113.6	Poor Water

Table 4. Summary of water quality of the study area in Yenagoa

Nicholas; Int. J. Environ. Clim. Change, vol. 13, no. 9, pp. 1961-1977, 2023; Article no.IJECC.102751

Borehole	Town	Lat	Long	Water Quality Index (WQI) value	Class of water
BH42	Okolobiri 1	5.038194	6.323444	118.4	Poor Water
BH43	Okolobiri 2	5.038	6.319889	114.2	Poor Water
BH44	Okolobiri 3	5.035417	6.321361	100.4	Good Water
BH45	Okolobiri 4	5.034306	6.318833	45.8	Excellent Water
BH46	Okolobiri 5	5.03425	6.31789	105.8	Poor Water
BH47	Tombia 1	4.996806	6.262944	101	Good water
BH48	Tombia 2	5.001417	6.263	119	Poor water
BH49	Tombia 3	5.000861	6.265528	42.8	Excellent Water
BH50	Tombia 4	5.000639	6.266833	116.6	Poor water

4. CONCLUSION

Life cannot be sustained without water, not just water but it must be one of desirable quality. Water that is not of a desirable quality is threat to human society and the environment especially the biosphere. The study reveals that most of the sampled locations had water quality index ranging from poor to very poor. This may have serious negative implication on the inhabitants and ecology of the study area. In the light of the above, groundwater in the study area must be treated to ensure its portability be consumption and other uses.

5. RECOMMENDATIONS

The researcher wishes to proffer some recommendation based on the observed findings of the study.

- 1. Dumping of solid wastes should be limited to only collection centres.
- 2. Motor parks and mechanic workshop should be control to restricted areas.
- 3. Groundwater should be properly treated before use.
- 4. There should be regular monitoring of bore-well water from time to time.
- 5. Regular clearing of drainages will ensure the evacuation of polluted water through surface run-off with infiltrating into the groundwater.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

1. Mustapha S, Tasi'u YR. Assessment of groundwater potential using integrated method in Dange-Shuni area, Sokoto

state, Nigeria. Nigeria Journal of Hydrological Sciences. 2022;9:27-44.

- Digha ON. Evaluation of groundwater quality using pollution index in some communities of Bayelsa state, Nigeria. International Journal of Innovation Environmental Research. 2021;9(3):1-9.
- Digha ON, Martha AE. Seasonal variation of physico-chemical and bacteriological characteristic of Sagbama river, Central Nigeria Delta, Bayelsa state, Nigeria. Journal of Environment and Earth Science. 2022;12(5):46-54.
- 4. Mudassir HI, Lawal IS. Water quality status of Ajiwa Reservoir, Kastina State, North Western Nigeria using water quality index. Nigerian Association of Hydrological Sciences. (NAHS) Proceedings of the 12th Port-Harcourt. National Conference Theme: Climate Change: Issues and Challenges for Sustainable Water Management in Nigeria; 2022.
- Chima GN. Water, water everywhere but not enough" 37th Inaugural Lecture. Abia State University Uturu, Abia State Nigeria. Abia State University Press; 2018.
- Digha ON, Abua MA. Assessment of pollution status of Ikwette stream at Obudu Cattles Ranch Bottom hill, Cross River state, Nigeria. International Journal of Environment and Pollution Research. 2018;6(1):8-12.
- Oketola AA, Osibanjo O, Ejelonu BC, Oladimeji YC, Damazio OA. Water quality assessment of River Ogun around the cattle market of Isheri, Nigeria. Nigeria J. Applied Sci. 2006;6(3):511-517.
- Osibanjo O, Adegbenro PD, Adewale MG. The Impacts of surface water quality of Ona River Alaro in Oluyole industrial estate, in Ibadan. Nigeria Afri. J. Biotechnol. 2012;10(4):696-702.
- 9. Digha ON, Ekenem JO. Effects of population density on water quality in

Calabar municipality Cross River State Nigeria. Journal of Environment and Earth Science. 2015;5(2):7-21.

- 10. Lawson EO. Physico-chemical parameters and heavy metal contents of water from the mangrove swamps of Lagos Lagoon, Nigeria. Advances in Biological Research. 2011;5(1):08-21.
- Adesogan SO, Sasanya BF, Makinde OJ. Assessing the quality of surface water for direct rural water supply: A case study of Osun river, Nigeria. African Journal of Environmental Health Sciences. 2019;6: 1-8.
- 12. Digha ON. Spartial analvsis of groundwater guality using Geographic Information System (GIS) in Ogbia L.G.A., Bayelsa State, Nigeria. Proceedings of the 15th Annual International Conference of Trans African Universities and Allied Institutions Research and Development Network (TAUIRDN). Isaac Jasper Boro College of Education Sagbama, Bayelsa State & University of Buea Cameroon. 2022a:117-140.
- Digha ON. Pollution Assessment of private 13. bore-holes water vlague usina contamination index and contour in Ogbia local government area of Bayelsa state Nigeria. Nigeria Association of Hvdrological Sciences (NAHS) 12^{th} of Proceedings the National Conference. Port Harcourt. Theme: Climate Change: Issues and Challenges for Sustainable Water Management I Nigeria. 10th -14th Oct. 2022. 2022b:103-121.
- Okoro HK, Adeyinka A, Jondiko OE, Ximaba BJ, Kakalanga SJ. Assessment of heavy metal contamination in groundwater: A case study of central industrial district in Ilorin, Kwara state Nigeria. International Journal of Physical Sciences. 2012;7(28):5078-5088.
- Eze BE, Eni DI, Hzoezie AD. (). Spatial assessment of the effect of graveyard on borehole water quality in Calabar metropolis. NAHS 11thAnnual Conference Book of Proceedings, Calabar 9-12 August, 2022. 2021;1:153-158.
- Chima GN, Alozie MC, Digha ON, Enyinna GC. Swamp reclamation for human habituation: Its implication on the sustainability of wetlands (a case of Yenagoa town, Bayelsa states). Int. J.

Biotechol and Allied Sci. 2007;2(3):230-237.

- Egail AO, Edirin A, Digha ON. Comparative assessment of heavy metals pollution in surface water in Ekole river and Epie creek in Yenagoa metropolis using geographical information system. Journal of Geographical Research. 2022;5(3):49-62.
- Oyegun CU. "Climate, relief and drainage" in Alagoa, T. E. (ed), L. and People of Bayelsa State. Central Niger Delta. Onyoma Research Publications. 1999:31-43.
- Horton RK. An index number system for rating water quality. J. Water Pollu. Cont. Fed. 1965;37(3):300 -305.
- Brown RM, Mccleland CR, Deininger RA, Tozer RG. "A water quality index – do we dare" water and sewage works october. 1970:339-343.
- Tyagi S, Sharma B, Singh P, Dobhal R. Water quality assessment in terms of water quality index American Journal of Water Resources. 2013;1(3):34-38.
- 22. Kapoor BB, Inam F, Deo SS. Assessment of physical-chemical quality of groundwater in some rural areas receiving industrial wastewater discharges in Nagpur district, Maharashtra State, India. TIJST. 2016;4(5).
- 23. Ramakishnaiah CR, Sadashivaiah C, Rarigonna G. Assessment of water quality index for groundwater in Tamkur Taluk, Karanataka state, India. E-Journal of Chemistry. 2009;6(2):523-530.
- 24. United Nations (UN). Glossary of Environment Statistics, Studies in methods, Series F. No. 67; 1997.
- 25. Jonathan Y, Tijani OJ, Obiemi MO. Underground water assessment in Minna using water quality index. Journal of Environment. 2012;2:36-30.
- Austin OO, Ayibawari OE. Spatial analysis of groundwater quality indices across Yenagoa communities in Bayelsa state Southern Nigeria. Asian Journal of Geological Research. 2020;3(4):54 – 63.
- 27. Buba S, Sumaila Koud, Marcus ND. Impact of goal mining on water quality in Maignga, Akko L.G.A. Gombe state, Nigeria. Gombe Journal of Geography and Environmental Studies. 2019;1(2):163-168.

Nicholas; Int. J. Environ. Clim. Change, vol. 13, no. 9, pp. 1961-1977, 2023; Article no.IJECC.102751

- 28. Goel PK. Water pollution, causes, effects and control. Second Revised Edition New Age International Publishers; 2006.
- 29. Hwankwoala HO, Udom GJ, Ugwu SA. Some heavy metal investigations in groundwater sources in Yenagoa, Bayelsa state, Nigeria. Nigerian Journal of Applied

technology in Environmental Sanitation. 2011;1(2):163-170.

 Olatunji JA, Odediran OA, Oboro RI, Olaschinde PI. Assessment of groundwater of Ilorin metropolis using water quality index approach. Nigerian Journal of Technological Development. 2015;12(1):18-21.

© 2023 Nicholas; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/102751