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ABSTRACT 
 

Synthetic Pyrethroids are considered to be safe over other insecticides; however, data indicate that 
their use may pose risk to environmental biota, especially, aquatic organisms. Therefore, the aim of 
the present study was to investigate the effect of cypermethrin, a widely used insecticide and one 
of the most common contaminants in freshwater aquatic system on the oxidative stress biomarkers 
of the freshwater ciliate Paramecium tetraurelia. 
After the treatment of paramecium cells with increasing concentrations of cypermethrin (0.05, 0.5,1, 
2µg/l), we followed up the growth kinetics, generation time and the response percentage. Also, we 
studied the variation in biomarkers of stress such as: Proteins, GSH content, GST and CAT 
activities. 
Our results showed a significant decrease in the proliferation of cell, we denote a difference of 
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nearly 1,900 cells between the control cells and those treated with (2µg/l) at the fourth day of 
treatment. This finding is correlated by the decrease in generation number and velocity and the 
increase in generation time. Also, we noted an inhibition in the response percentage: It varies from 
(20%) to (54%) for 0.5µg/l and 2µg/l respectively.  
The rate of total proteins increased in dose dependent manner and very highly significant for the 
tow highest concentrations (1 and 2µg/l). 
The monitoring of biomarkers revealed a depletion in GSH content in a proportional and dose 
dependent manner (it is 7.34188758µmol/mg Pro for the control whereas it is 2.41682134µmol/mg 
Pro for 2µg/l ) accompanied by an increase in the GST activity (we note an increase of the order of 
1.62932472µM/min/mg Pro for the highest concentration compared to the control which is of the 
order of 0.59883133µM/min/mg Pro) .In parallel, a strong induction of the CAT activity was noted  
specially for the highest dose. 
 

 
Keywords: Cypermethrin; Paramecium tetraurelia; growth; oxidative stress; GST; GSH; CAT. 
 

1. INTRODUCTION  
 
The long-term ecological hazard associated with 
the use of organochlorine, organophosphate and 
carbamate compounds propelled the introduction 
of new generation of pesticides with a lesser 
degree of persistence. As a consequence, the 
use of pyrethroids as insecticidal and anti-
parasitic formulations has markedly increased as 
a viable substitute and currently accounts for 
over 30% of insecticides used globally [1]  
 
Indeed, synthetic pyrethroids are synthetic 
chemical analogs and derivatives of pyrethrins, 
they represent the third largest class of chemical 
insecticides after organophosphates and 
chloronicotinyl insecticides [2]. The pyrethroids 
have been divided into two types (type I and type 
II) on the basis of their chemical structure and 
toxic manifestation. In fact, type I pyrethroids are 
those which lack α-cyano moiety and give rise to 
the tremor syndrome (T syndrome) while type II 
pyrethroids are those which contain α cyano 
moiety and cause choreoathetosis/ salivation 
(CS)syndrome [3]. Their general site of action is 
biological membranes by alteration of sodium 
transport but they also affect chloride and 
calcium channels [4]. 
 
Several studies have indicated that this class of 
insecticides is highly toxic to a number of non-
traget organisms such as: Bees, fish and aquatic 
invertebrates [5-14]. For instance, these 
pesticides have been found to induce alterations 
in the hematological profiles of Channa 
punctatus and Prochilodus lineatus [15-16], 
reproduction and physiology of Cyprinus carpio 
[17] and Atlantic salmon [18]. Furthermore. [19] 
demonstrated that type II pyrethroids could 
increase SOD activity in zebrafish larvae after 8h 
exposure, which suggest that oxidative stress 

could be induced and played an important role in 
developmental toxicity in fish. 
 
Cypermethrin (CYP), the alpha-cyano-3-
phenoxybenzyl ester of 2,2-dimethyl-3-(2,2-
dichlorovinyl)-cyclopropane-carboxylic acid is  
the most widely used type II pyrethroid 
insecticide, it is  commonly used in urban and 
agricultural environments [20]. 
 
Cypermethrin is very highly toxic to fish and 
aquatic invertebrates. Many studies reported that 
this compound is metabolized and eliminated 
significantly more slowly by aquatic organisms 
than by mammals or birds [21]. 
 
The environmental contaminants affect aquatic 
ecosystems by inducing oxidative damage as a 
sensitive and specific biomarker and causing cell 
death, via the enhancement of intracellular 
reactive oxygen species (ROS) and perturbation 
of antioxidant efficiency [22]. 
 
Cypermethrin produces drastic effects on both 
invertebrates [23] and vertebrates [24,25] 
reported its potential to induce hepatic oxidative 
stress, DNA damage and apoptosis in adult 
zebrafish Danio rerio. As well, [20] indicated the 
behavioral morphological deformities and the 
induction of biomarkers of oxidative damage due 
to sublethal concentration of cypermethrin on 
tadpoles of D. melanostictus. Also, experiments 
conducted with Ceriodaphnia dubia showed the 
increase of the toxic effect with increasing 
concentrations and exposure time [26]. 
Moreover, Brachionus calyciflorus and 
Thamnocephalus platyurus have, also, 
demonstrated high sensitivity to permethrin, 
resmethrin and cypermethrin [27]. 
The use of Paramecium species as a model of 
survey has been reported by several authors in 
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some disciplines; in genetic, because its 
sequencing genome is well known, researchers 
used Paramecium tetraurelia for genetic 
analyses, gene expression and mutation [28,29]. 
In physiology, paramecia is used in general for 
studying the role, the function and the cell 
organization [30]. In ecotoxicology: Paramecium 
species were used to study environmental 
qualities and toxic effects of industrial, domestic 
and agricultural chemicals [31-38]. Further, the 
unicellular ciliate facilitates the study of 
physiological process and cytotoxicity of 
pollutants, that’s why, they are well suited to 
being included in the increasing panel of 
organismic systems that could meet the 3Rs 
(aimed at Reducing, Refining and Replacing 
tests on vertebrate organisms in toxicological 
studies) and sensitive to such environmental 
compounds. This sensitivity is due to their simple 
eukaryotic single-cell and organism organization 
which exposes their receptors to external 
environment, making them respond to 
environmental stimuli [39]. Moreover, their easy 
culture and maintenance and their short cell-
cycle provide results in a short time. For all these 
reasons, ciliates, especially Paramecium 
species, have been exploited as excellent tools 
for environmental biomonitoring, either as 
bioindicators of pollution or bioassays to evaluate 
the effect of toxic compounds [40-43].  
 

Thus, the present work was carried to investigate 
the cytotoxicity of cypermethrin at different sub 
lethal concentrations on population growth and 
some biomarkers of oxidative stress of the 
ciliated protozoan Paramecium tetraurelia. 
 

2. MATERIALS AND METHODS  
 

2.1 Test Organisms 
 

The biological model used in our study is a 
unicellular microorganism Paramecium 
tetraurelia. 
 

2.2. Test Chemical 
 

The insecticide used for our experiments is 
cypermethrin (Fig. 1) that belongs to the 
chemical family of pyrethroids type II. 
 

 
 

Fig. 1. Chemical structure of cypermethrin 

2.3 Treatment 
 
The habitual culture of Paramecium tetraurelia 
was done in the culture medium described by 
[35] at Ph 6.5 and 28±2°C. 
Cells were transplanted each three days for 
keeping the youthful state of culture [35,36,38]. 
 
Paramecium tetraurelia were incubated with the 
tested insecticide concentrations in aliquots of 
10ml, the retained concentrations were 0.05, 0.5, 
1 and 2µg/l. 
 
Two modes of treatment have been adopted: For 
growth kinetics, the insecticide treatment was 
performed before the transplantation of 
Paramecium cells (at t=0). For the enzymatic 
assays, the treatment was carried at the end of 
the exponential growth phase (t=96H) [44]. 
 

2.4 Parameter Measurement 
 
2.4.1 Growth kinetic  
 
For growth experiments, the culture was done at 
28°C in test tube using 10ml of culture medium. 
For each tube we added 13 cells of paramecia. 
The growth kinetic study was realized by the 
daily cell counting after fixation with lugol under 
optic microscope type LEICA DM 1000.  
 
Based on the data, the number, the time and the 
velocity of generation were calculated by the 
following formula: 
 

N = (log Nt – log N0)/ log2 
 

k  = n/t 
 

g  = 1/k 
 
Where n is the number of generation, Nt is the 
population in time t, N0 is the initial number of 
cells, k is velocity of generation and g is the 
generation time. 
 
2.4.2 Response percentage 
 
The response percentage was calculated to 
evaluate the toxicity of xenobiotics via the 
inhibition of cell growth after 96H of exposure. 
 
Positive values indicate an inhibition of growth 
while negative values indicate a stimulation of 
growth [45]. 
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The assessment of the response percentage is 
calculated according to the following formula: 
 

          (Nc-Ne) 
Response (%) =  x 100 

           Nc 
 

Where Nc is the number control cells, Ne is the 
number of treated cells. 
 
2.4.3 Total protein estimation  
 
Total protein is determined by the method of [46]. 
It is a colorimetric method using BSA as 
standard. The absorbance is measured at a 
wavelength of 595nm using spectrophotometer 
type Jenway 3600. 
 
2.4.4 Estimation of Glutathione (GSH) content 
 
GSH content was quantified using the method of 
[47]. Cells are mixed in 1ml EDTA (0,02M). 0,2ml 
of ASS was added to 0,8ml of homogenate. After 
agitation, the homogenate was centrifuged. The 
assay mixture contains 1ml tris/EDTA buffer 
(0.02M, pH 9,6), 0.025ml of 5,5’-dithiobis-2-
nitrobenzoic acid (DTNB) and the paramecium 
sample. The reaction was monitored at 412nm 
and the amount of GSH was expressed as 
µmol/mg of proteins. 
 
2.4.5 Determination of Glutathione S-

transferase (GST) activity 
 
The GST activity was measured according to the 
method of [48]. The homogenization of samples 
was done in 1ml of phosphate buffer (0,1M, pH 
6) and centrifuged (14000rpm/30min). The final 
reaction contain 1,2ml CDNB (1mM)/GSH (5mM) 
and the sample. The absorbance was measured 
spectrophotometrically at 340nm. The result was 
expressed as µmol/min/mg of proteins. 
 
2.4.6 Determination of Catalase (CAT) activity 
 
The CAT activity was determined 
spectrophotometrically at 240nm by calculating 
the rate of degradation of H₂O₂ [49]. Samples 
are mixed in 1ml of phosphate buffer then 
centrifuged at 15000g. At 0,025ml of supernatant 
we added 0,75ml of phosphate buffer and H₂O₂. 
The result was expressed as µmol/min/mg of 
proteins. 

 

2.5 Statistical Analysis 
 
The obtained results are represented by the 
average ± Standard Error. Statistical analysis of 
data is performed using Minitab student t-test. 
 

3. RESULTS  
 
3.1 Effect of Cypermethrin on Growth 

Kinetic 
 
The growth kinetic provides information about the 
toxic effect of a specific substance. Fig. 2 
represents the effect of cypermethrin on the 
variation of paramecium cells number (control 
and treated) versus time. 
 
Different chosen concentrations inhibited the 
population growth in a dose-dependent manner 
especially for the highest concentration that 
inhibits strongly after 4 days of treatment. 
Indeed, we denote a difference of nearly 1,900 
cells between the control cells and those treated 
with this concentration (2µg/l) at the fourth day of 
treatment. 
 
The proliferation of Paramecium tetraurelia was 
significantly affected by the action of 
cypermethrin as the generation number and 
concentration of cypermethrin are inversely 
proportional (Table 1). The generation time 
gradually increased with the increase of 
Cypermethrin concentrations.  
 

The decrease in the velocity of generation 
compared to the control shows the negative 
response of Paramecium tetraurelia to the 
increasing concentrations of cypermethrin      
(Fig. 3). Result revealed that insecticide has 
slowed the generation velocity of exposed 
paramecia in a dose dependent manner. 
 

3.2 Response Percentage 
 

The results obtained concerning the response 
percentage confirm those of kinetics growth. 
 

We denote that the inhibitory effect was dose-
dependent and proportional to the increasing 
concentrations (Fig. 4).  
 
 



 

 

Fig. 2. Effect of cypermethrin 

Control        0,05

 
Thus, the response percentage was positive and 
show a strong inhibition of microorganisms 
growth. In fact, it varies from (20%) to (54%) for 
0.5µg/l and 2µg/l in which more than half of 
population is inhibited. 
 

3.3 Protein Estimation 
 
According to the table 2, we n
dependent increase of total protein rate in the 
presence of xenobiotic. The statistical analysis 
indicates very highly significant differences 
(P<0.001) for the two highest concentrations (1 
and 2µg/l). 
 

Table 1. Effect of cypermethrin on 
Paramecium tetraurelia generation number 

(n) and generation time (g) at 96
 

Cypermethrin 
concentrations 
(µg/l         

Generation 
number 
(n)±SE                                          

Generation 
time 

Control    8.07±0.10                                     11.90±0.15
0.05                                                       7.75±0.04                                     12.40±0.06
0.5                                                         7.70±0.04                                     12.47±0.07
1 7.54±0.16                                     12.74±0.28
2 6.90±0.20                                     13.85±0.41
Each value is mean of four assays ± Stander Error
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cypermethrin on Paramecium tetraurelia growth (T 28ºC pH: 6.5)

 
0,05µg/l         0,5µg/l         1µg/l       

response percentage was positive and 
show a strong inhibition of microorganisms 
growth. In fact, it varies from (20%) to (54%) for 

g/l in which more than half of 

According to the table 2, we note a dose 
dependent increase of total protein rate in the 
presence of xenobiotic. The statistical analysis 
indicates very highly significant differences 

<0.001) for the two highest concentrations (1 

Table 1. Effect of cypermethrin on 
generation number 

on time (g) at 96H 

Generation 
time (g)±SE      

11.90±0.15 
12.40±0.06 
12.47±0.07 
12.74±0.28 
13.85±0.41 

Each value is mean of four assays ± Stander Error 

Table 2. Effect of cypermethrin on the rate of 
total proteins in Paramecium tetraurelia

versus time  
 

Cypermethrin 
concentrations µg/l 

Rate of total proteins 
µM/mg of tissues±SE

Control 0.283±0.011
0.05 0.294±0.009
0.5 0.339±0.009
1 0.620±0.022  ***p
2 0.772±0.019  ***p

***P =0.001 

 

3.4 Estimation of Glutathione (GSH) 
Content 

 
Fig. 5 illustrates the variations of total GSH 
content in Paramecium tetraurelia 
increasing concentrations of cypermethrin.
 
The result shows that this nonenzymatic 
antioxidant tends to decrease in dose dependent 
manner. Thus, the GSH rate is 
(7.34188758µmol/mg Pro) for the control 
whereas it is (2.41682134µmol/mg Pro) for 
paramecia treated with the highest concentration 
(2µg/l) ie three times less. 
 
The statistical analysis reveals a significant 
difference (P<0.050) for the highest 
concentration compared to the control.

 

48H 72H 96H 120H
Time (H)
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pH: 6.5) 

2µg/l 

Table 2. Effect of cypermethrin on the rate of 
Paramecium tetraurelia 

Rate of total proteins 
M/mg of tissues±SE 

0.283±0.011 
0.294±0.009 
0.339±0.009 
0.620±0.022  ***p 
0.772±0.019  ***p 

Estimation of Glutathione (GSH) 

5 illustrates the variations of total GSH 
Paramecium tetraurelia exposed to 

increasing concentrations of cypermethrin. 

The result shows that this nonenzymatic 
antioxidant tends to decrease in dose dependent 
manner. Thus, the GSH rate is 

mol/mg Pro) for the control 
mol/mg Pro) for 

paramecia treated with the highest concentration 

The statistical analysis reveals a significant 
<0.050) for the highest 

concentration compared to the control.
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Fig. 3. Effect of cypermethrin on the velocity of generation of Paramecium tetraurelia (t=96H) 

 

 
 

Fig. 4. Effect of cypermethrin on the response percentage at 96H (n= 4)  
Response percentage 

 

3.5 Determination of Glutathione S-
Transferase (GST) Activity 

 
The results concerning the variation rate of GST 
is represented in Fig. 6, it reveals a strong 
induction of the activity of this enzyme 
particularly for the highest concentration. Indeed, 
this induction is in dose-dependent manner: We 
note an increase of the order of 
(1.62932472µM/min/mg Pro) for the highest 
concentration compared to the control which is of 
the order of (0.59883133µM/min/mg Pro), that is 
to say, three times higher. 
 

The statistical study show a significant difference 
(P<0.050) for the highest dose compared to the 
control. 
 

3.6 Determination of Catalase (CAT) 
Activity 

 
The effect of cypermethrin on CAT activity is 
illustrated in Fig. 7. The results show a significant 
increase for the second concentration (0.5µg/l) 
and a very highly significant increase (P<0.001) 
of the activity of CAT in cells treated with the 
highest concentration (2µg/l) compared with the 
control. 
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Fig. 5. Variations of GSH content in Paramecium tetraurelia  exposed to increasing 
concentrations of cypermethrin 

GSH    * P<0.05 

 

 
 

Fig. 6. Variations of GST activity in Paramecium tetraurelia exposed to increasing  
concentrations of cypermethrin  

GST    * P<0.05 
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Fig. 7. Variations of CAT activity in Paramecium tetraurelia exposed to increasing 
concentrations of cypermethrin 

CAT   * P<0.05   *** P<0.001 
 

4. DISCUSSION  
 
The problem of environmental contamination by 
the excessive use of pesticides cannot be 
neglected [50]. Extensive application is usually 
companied with serious problems and health 
hazard. It is established that many chemicals, in 
common use, can produce some toxic effects on 
biological systems when tested on various type 
of experimental models through their mode of 
action or by production of free radicals that 
damage all cell compounds [51]. In fact, these 
chemicals act as pro-oxidants [52-58]. 
 
Oxidative stress is believed to occur when there 
is an imbalance in the biological oxidant-to-
antioxidant ratio; this can result in oxidative 
damage to lipid, proteins, carbohydrates and 
nucleic acids. In most cases, the abnormal 
generation of ROS, which can result in significant 
damage to cell structure, is considered an 
important signal of oxidative damage [59].  
 
Pyrethroids group of pesticides is the most 
commonly used in agriculture today [2]. 
However, it have been reported by several 
investigations conducted in various animal 
species that this pesticides cause oxidative 
damage [60-62] through the generation of ROS 
and can alter the antioxidants or free oxygen 
radical scavenging enzymes systems in animals, 
especially, in aquatic organisms [63].  

Cypermethrin, is probably the most used 
pyrethroid. Studies showed that the excessive 
use can adversely affect most physiological 
processes [64]. 
 
Protists are eukaryotic unicellular organisms and 
their position in the food web makes them 
excellent models for predicting the effects of 
chemicals on aquatic communities. Ciliated 
protozoa represent a basic component of aquatic 
environment, where they play critical roles both 
quantitatively and qualitatively [65]. 
 
In this context, the ciliate assay has become a 
valuable tool for detection of environmental 
disturbance and for assessment of the trophic 
state [65-66]. 
 
Paramecium is one of the most commonly used 
ciliated for laboratory research to investigate the 
direct toxicity of compounds [32,35,67-69]. 
 
That is why we chose Paramecium tetraurelia as 
a biological model for elucidating cypermethrin 
toxicity. 
 
In this study, we were interested in the first time 
at the effect of cypermethrin on population 
growth. Our result showed an inhibition in the 
growth of microorganisms especially for the 
highest concentrations. Similar results were 
reported in studies [35,36,70] that investigate the 
effect of different chemicals on the physiology 
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and morphology of Paramecium sp.. [31] Reports 
that toxics may affect the survival of protozoa in 
a variety of ways, as the concentration of 
toxicants in the cell membrane increase and 
destroy their integrity causing cell death. Toxic 
affects freshwater ciliates; these effects are 
perceptible at the population level by reducing 
the number of cells and on the cellular level by a 
structural behavioral and physiological damage. 
 
The findings concerning growth kinetics were 
confirmed, on the one hand, by the decrease in 
generation number, the decrease in velocity as 
well the increase in generation time which mean 
that the proliferation and cellular metabolism 
were affected [33,71-74]. On the other hand, the 
positive value of response percentage 
demonstrated the inhibitory effect of 
cypermethrin. Indeed, cypermethrin as a 
lipophilic compound can penetrate into cell, 
disturbing phospholipid orientation and causing 
changes in fluidity of membrane [75]. 
 
Proteins are one of the major energy reserves 
present in all organisms, these reserves will be 
affected by toxicant exposure [20]. In this work, 
we noted an increase of total protein rate in a 
dose dependent manner and very highly 
significant for 1µg/l and 2µg/l. This finding is in 
agreement with those of [76,77] who showed an 
increase in the rate of total proteins of paramecia 
treated with increasing concentrations of 
Bifenazole and Proclaim. 
 
Our hypothesis is that this increase could be 
related to the induction of the detoxification 
process elaborated by this control system which 
is composed of enzymes, proteins and 
antioxidant molecules [78]. 
 
The antioxidant defense systems are present in 
all aerobic cells and neutralize the intermediate 
chemical reactions produced endogenously 
and/or metabolism of xenobiotics. The 
antioxidant system activity may undergo an 
increase or depletion under the effect of a 
chemical stress [79]. The cells are equipped with 
both the enzymatic and nonenzymatic 
antioxidants for combating oxidative stress, 
which may be either due to increased production 
of free radical or impaired antioxidant defense or 
both [80]. 
 
Alteration of antioxidant enzymes by 
cypermethrin has also been reported to be one of 
the mechanisms of toxicity.  

The Glutathione is the major non enzymatic 
radical scavenger in the animal cells; it is the 
most abundant thiol, which scavenges residual 
free radicals resulting from oxidative metabolism 
and escaping decomposition by the antioxidant 
enzymes [81]. During the metabolic action of 
GSH, its sulfhydryl group becomes oxidized 
resulting with the formation of the corresponding 
disulfide compound, GSSG (oxidized form) 
[2,82]. In this work, we noted a significant 
depletion in a concentration and dose dependent 
manner. The decrease in total GSH level may be 
due to the presence of free radicals produced by 
the insecticide [2,44,77]. In addition, GSH also 
participates in the detoxification of xenobiotics as 
a substrate for the enzymes GST and GPX 
(glutathione peroxidases), so, it plays a crucial 
key role in cellular defense against pesticides 
toxicity [83]. 
 
The GST plays an important physiological role in 
the protection of cells against toxics and in the 
initiation of detoxifying against potential agent 
Alkylation [84,85]. It is enzyme of 
biotransformation that catalyzes the conjugation 
of electrophilic substrates to the thiol group of 
GSH, producing less toxic forms and also lipid 
peroxides [86,87]. In our study, the increase in 
GST activity was in dose dependent manner and 
significant for the highest concentration (2µg/l). 
The induction of GST activity may be beneficial 
to handle a stress condition and indicates 
protection against cypermethrin. [20] Reported 
an increase in the GST activity by cypermethrin 
in tadpoles of D. melanostictus. [88] Suggested 
that increase in GST activity is involved in 
metabolic detoxification of butachlor in Rhamdia 
quelen. Also, [89] reported that this enzyme 
seems to be implicated in the detoxification of 
cypermethrin in amphibian larvae.  
 
Catalase is the most important mechanisms 
against toxic effects of oxygen metabolism. It 
catalyzed the conversion of hydrogen peroxide 
into water. This antioxidant enzyme can, 
therefore, alleviate the toxic effect of ROS [87]. 
Present study clearly showed a dose-frequency-
dependent increase in catalase activity in 
individuals treated by different concentrations 
probably due to the intensification of antioxidant 
activity in Paramecium. CAT is one of the most 
active enzymes and its level change first 
following induction of oxidative stress [80]. The 
present result is consistent with those of 
[53,54,72] who reported intensification in the 
Catalase activity in many animal models when 
treated by pesticides. These results indicate the 
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activation of protective mechanisms necessary 
for the scavenging of the produced reactive 
oxygen radicals. 
 
Cytochrome P450 monooxygenases heme-
thiolate enzymes catalyzing various reactions, 
but are best known for their monooxygenase 
activity, inducing reactive or polar groups into 
xenobiotics or endogenous compounds [90]. 
Insect genomes revealed a large expansion of 
the P450 gene family. Elevated level of P450 
activity has frequently been observed in 
pyrethroid resistant insects populations [91]. 
Several CYP genes were also linked to 
pyrethroid resistance [92,93]. These findings 
validates many P450 as pyrethroid metabolizers 
[94-97]. The living cell, Paramecium tetraurelia, 
contains a large number of gene families that are 
involved in processes associated with sensing 
and responding to environmental cues, such as: 
P450. Our hypothesis is that CYP450 enzymes 
are also implicated in the detoxification process 
of pyrethroids in Paramecium but this requires 
extensive studies to accurately determine this 
implication and its mechanisms.     
 
Type II pyrethroids seems be toxic to 
Paramecium tetraurelia, an organism that does 
not poses a voltage sensitive sodium channel. 
Likewise, it is established that type II pyrethroids 
stimulated Paramecium tetraurelia back-
swimming behavioral, an avoidance behavioral 
response that is controlled exclusively by Ca++ 
uptake via voltage sensitive calcium channels 
associated with the cilia: [98] have characterized 
the action of pyrethroids on ciliary calcium 
channel in Paramecium tetraurelia. The study 
was conducted with deltamethrin, the results 
revealed that the toxic effect of deltamethrin is 
structurally related, dose dependent and 
enhanced by depolarization and provide 
substantial evidence that type II pyrethroids act 
as potent calcium channel agonists on the ciliary 
voltage sensitive channel of Paramecium 
tetraurelia. Furthermore, the effect could be due 
to the Ca++ accumulation in the cell which leads 
to free radical mediated cell damage [97]. 
 

5. CONCLUSION 
 
In summary, under the current experimental 
conditions, cypermethrin is toxic to the 
freshwater ciliate Paramecium tetraurelia. 
Exposure to low concentrations of cypermethrin 
showed significant adverse on growth 
accompanied with the induction of oxidative 
damage supported by the decrease in GSH 

content and the intensification of the antioxidant 
enzymes such as GST and CAT. It showed be 
mentioned that other biomarkers of oxidative 
stress and lipid peroxidation have to be 
measured, it is the same for the detection and 
estimation of ROS. A genotoxic study may 
provide more answers concerning the effects of 
cypermethrin on Paramecium tetraurelia.  
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