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ABSTRACT 
 

The combined effects of temperature and salinity on percent hatching, normal larval rate at 
hatching, and survival of fasting larvae after hatching (survival activity index; SAI) of the commercial 
species of collector sea urchin, Tripneustes gratilla were investigated in a captive laboratory 
condition. The study was conducted by setting different levels of temperatures (24°C to 36°C) and 
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salinities (38‰ to 23‰). Within the range of temperature from 24 to 36°C and at 32‰ salinity, 
hatching and normal larval rates, and SAI values were highest at 24 and 27°C. The highest hatching 
and normal larval rates were found at 35 and 38‰ within the salinity range of 23-38‰; however, SAI 
value was the highest at 26‰. The results of the experiments in each level of temperature (24, 27 
and 30°C) with each salinity (32, 35 and 38‰) indicated interactive effects of temperature and 
salinity, and within the experimental protocols of 24°C at 38‰ gave an optimal combination for 
highest hatching and survival of T. gratilla. The findings obtained from the present research would 
not only be immensely helpful towards the understanding of the suitable temperature-salinity 
interactions but also facilitate the development of captive breeding, larval raising and mass seed 
production of this high-valued sea urchin for commercial aquaculture. 
 

 

Keywords: T. gratilla; temperature; salinity; hatching rate; normal larval rate; survival activity index. 
 

1. INTRODUCTION 
 

Among the environmental factors, seawater 
temperature and salinity are the critical abiotic 
factors that have the greatest effect on the whole 
life history of fishes [1,2] and echinoderm sea 
urchins (see the references below). In particular, 
at embryonic and early larval stages, water 
temperature and salinity independently and/or 
interactively affect survival by influencing the 
physiological states [3,4]. Among the abiotic 
factors, temperature and salinity are considered 
as the most vital factors in embryonic 
development of purple sea urchin, Paracentrous 
lividus [5]. Besides that, several former studies 
showed that the salinity has significant effects on 
survival, embryonic and larval development of 
sea urchins [6,7,8]. Kashenko [9] stated that 
increasing salinities have affected the time 
needed for embryonic development of 
Echinocardium cordatum in the same 
temperature. Metaxas [7] observed that 
decreasing salinities slowed larval development 
of Echinometra lucunter. Allen and Pechenik [10] 
reported that fertilization envelope of eggs rarely 
rises and even successfully fertilized eggs do not 
cleave after presenting to low salinity seawater. 
In regards of larvae, the range of salinity 
tolerance can be broader or narrower than their 
adults. The larvae of Atlantic sea urchin 
(Echinometra lucunter) are more sensitive to 
salinities and can tolerate narrower ranges of 
salinities than those of their adults [7]. The low 
salinity condition reduces feeding rate, 
decreases growth performance and 
consequently limits the size of ectoderms [9]. 
Decreasing salinity caused the reduction of 
viability and also yielded mass mortality of adult 
sea urchin, Lytechinus variegatus at Florida [11].  
 
Early life stages of broadcast-spawning marine 
invertebrates from the phylum Echinodermata 
has been used to assess the effects of 
increasing surface temperature on marine biota 

[12,13]. Over the past century, the fertilization of 
eggs of echinoderms was well categorized due to 
use in comparative embryological research [14]. 
Early life stages of echinoderms, especially sea 
urchins are also recognized to be highly sensitive 
to a wide range of environmental contaminants 
and stressors [15], and thus making them as an 
ideal state for assessing impacts of climate-
change. In addition, the egg fertilization and 
larval development of sea urchin have previously 
been shown only to happen within distinct 
temperature ranges for some species [16,17]. 
So, the ocean warming largely affects these life 
stages. 
 

The heart-shaped irregular sea urchin, 
Echinocardium cordatum (Pennant) occurs in 
temperate latitudes of the Pacific and the Atlantic 
[18,19] and also the Peter Great Bay in Russian 
waters [20]. According to Kashenko [21], the 
lower limit of salinity tolerance of the adult            
heart-shaped sea urchin was 28‰, which 
corresponded to its regular habitat in such a 
depth of the marine ecosystem. The animals 
those were placed on firm substrate without 
having any opportunity to burrow, could even 
survive for 3 days within the salinity levels of 28–
33‰, but all of them were dead at the end of the 
8th day, however, upon a salinity drop to 20‰ or 
lower, all of them were dead within a day. 
 
From the fertilization to formation of the pluteus 
larval stage, the early development of heart-
shaped sea urchin has been described in detail, 
however, the times needed for reaching different 
developmental stages varied to some extent 
according to the studies of different authors [22]. 
The sequence of the developmental events of 
the sea urchin, inhabiting the Vostok Bay in the 
Sea of Japan, was determined by Kashenko [23]. 
In discrepancy to the bottom-dwelling adult sea 
urchin, the early development occurs in the water 
column. During the monsoon weather, the 
suddenly fluctuating temperature and salinity of 



sea water could terribly impact on the larvae of 
marine invertebrates.  
 
To determine the survival rates and development 
of larvae of marine benthic invertebrates, the 
importance of temperature and salinity have not 
been completely characterized. Several previous 
studies have done on different invertebrate taxa 
and found that deviations in temperature and 
salinity from ambient values had caused 
increased mortality and/or delayed development 
(e.g. barnacles: [24,25]; bivalves:
echinoderms: [6]; polychaetes: [28,29]), while 
others observed that salinity is not an impo
factor in determining larval survival [30
 
In addition, data on environmental control for the 
improvement of the hatching rate and larval 
development will potentially be applicable to high 
density intensive egg management systems for 
mass larval production. Therefore, our study 
aimed to contribute information on the suitable 
egg incubation and early larval rearing 
environment for the development of sea urchin 
aquaculture technology as well as to obtain 
appropriate information on sea urchin, 
early life history. This study examined the rates 
of hatching and normal larval development, and 
the survival activity index (SAI) of 
larvae by rearing under various temperatures 
and salinities after the blastula stage. SAI values 
can be used as a practical indicator to evaluate 

 

 
Fig. 1. Sampling area of T. gratilla
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sea water could terribly impact on the larvae of 

To determine the survival rates and development 
of larvae of marine benthic invertebrates, the 
importance of temperature and salinity have not 
been completely characterized. Several previous 
studies have done on different invertebrate taxa 

at deviations in temperature and 
salinity from ambient values had caused 
increased mortality and/or delayed development 
(e.g. barnacles: [24,25]; bivalves: [26,27]; 

lychaetes: [28,29]), while 
others observed that salinity is not an important 
factor in determining larval survival [30-32]. 

In addition, data on environmental control for the 
improvement of the hatching rate and larval 
development will potentially be applicable to high 
density intensive egg management systems for 

production. Therefore, our study 
aimed to contribute information on the suitable 
egg incubation and early larval rearing 
environment for the development of sea urchin 

well as to obtain 
appropriate information on sea urchin, T. gratilla 
early life history. This study examined the rates 
of hatching and normal larval development, and 
the survival activity index (SAI) of T. gratilla 
larvae by rearing under various temperatures 
and salinities after the blastula stage. SAI values 

used as a practical indicator to evaluate 

the larval tolerance to varying environmental 
conditions [33,34].  
 

2. MATERIALS AND METHODS
 

2.1 Sample Collection and Conditioning
 

Around 56 matured adults of T. gratilla, 
from 165 to 256 g in live weight and 84 to 122 
mm in test diameter, were collected
Bum Island (5°66ʹN, 100°28ʹE), Semporna, 
Sabah, Eastern Malaysia (Fig. 1) at low tide 
during their natural breeding season 
January to May, 2016. The specimens were then 
transferred with aerated plastic bucket to the 
laboratory of the Institute of Bioscience, 
Universiti Putra Malaysia (UPM), where they 
were maintained in an outdoor tank with flow
through seawater and fed with a diet of brown 
macroalgae (Sargassum sp.).  
 

2.2 Spawning and Fertilization 
 
Most of the urchins were used for this experiment 
within a week after collection. The Aristotle’s 
lantern was removed from the healthy specimens 
by using scissors and forceps, and then rinsed 
thoroughly with sterilized filtered sea water 
(SFSW), which was first prepared on Advantec 
qualitative filter paper (Toyo Roshi Kaisha, 
Japan) and then autoclaved 10 minutes for 
sterilization. Gametes were obtained from each

T. gratilla in Pulau Bum Bum (Bum Bum Island), Semporna, Sabah, 
Eastern Malaysia
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sea urchin after the injection with 2-3 ml of 0.5M 
KCl solution into the coelomic cavity. Eggs were 
collected by inverting the gravid female urchin on 
a glass beaker filled with SFSW. “Dry” sperm (in 
the most concentrated form of sperm, released at 
the time of spawning using the above KCl 
method) were then pipetted off the genital pores 
and kept in a refrigerator at 4-5°C for not more 
than 3-4 hours, while the eggs were placed in a 
glass beaker containing SFSW and maintained 
at normal room temperature (28-30°C). 
 
Fertilization was done by adding two drops of 
diluted sperm into a petri dish containing 15 mL 
egg suspension (300 eggs/mL). Sperm 
concentration was maintained at 10

-5
 dilution of 

“Dry” sperm [35,36]. The sperm was kept              
with eggs for 5-10 minutes and then sperm in 
excess was cleaned by 3-4 successive washes 
with SFSW [35,36]. Three replicate             
fertilization experiments were performed using 
fresh gametes from new specimens in each time. 
 
2.3 Experimental Procedure 
 
In this experiment, near about one thousand 
fertilized eggs from the incubation containers, 
were transferred to 1 L beakers filled with 800 
mL of filtered seawater and maintained at the 
experimental temperatures and salinities. In 
regards of the single factor experiment studying 
the effect of temperature, treatments were 
adjusted to 24, 27, 30, 33, and 36°C with a 
salinity level of 32‰ (approximately equal to the 
spawning salinity at the Laboratory of Marine 
Biotechnology, Institute of Bioscience, UPM). For 
salinity trial, the treatments were adjusted to 23, 
26, 29, 32, 35 and 38‰ with a temperature of 
30°C (approximately equal to the spawning 
temperature at the same laboratory). In respect 
of the combined two-factor treatment with water 
temperature and salinity, three different 
temperatures of 24, 27 and 30°C were combined 
with three different salinities of 32, 35 and 38‰ 
for incubation. The experimental treatments were 
conducted in three biological replicates, 
corresponding to the three different spawning 
trials. All single and two-factor experiments were 
carried out with three replicates for each. Water 
was not changed and aeration was not provided 
in beakers during the experiment. Each 
experimental temperature was maintained in a 
water bath using heaters (Seapalex300, Nisso, 
Japan) and chillers (DSHP-4-WC, Aqua Logic 
Inc., USA). Each salinity trial was maintained by 
using mixtures of artificial sea salt powder (Sea 
life, Marine Tech Co. Ltd, Japan) and 

groundwater (salinity level ≤0.2‰). The dissolved 
oxygen contents in the treated water were 
measured at the start of egg stocking and after 
removing all dead larvae; the values (mean± SD; 
n = 3) for these stages were 83.76 ± 4.20% and 
83.10 ± 1.50%, respectively. 
 

2.4 Data Calculation 
 
In regards to the estimation of larval survival 
activity index (SAI), all the surviving gastrula 
larvae after hatching were used to obtain the SAI 
value in the same beakers of the incubation 
trials. From one day after hatching (DAH), all the 
dead larvae and larvae with morphological 
abnormalities were carefully removed daily from 
each beaker using a pipette and their number 
was counted. The hatching rate, normal larval 
rate, and SAI were calculated by the following 
equations [37]: 
 

Hatching rate (%) = 
�

����
	�	100            (i) 

 

Normal larval rate (%) = 
���

����
	�	100        (ii) 

 

SAI =
∑ (����)	���
���

�
             (iii) 

 
Where, 
 
N = Total number of larvae,  
UE = The number of unhatched eggs at 14 h 

after the start of hatching,  
M = The number of morphologically abnormal 

larvae,  
hi = The accumulated mortality by the i-th day 

and  
k = The number of days elapsed until total 

larval mortality under fasting conditions. 

 
2.5 Statistical Analyses 
 
The percentage data are presented as mean ± 
SD (N = 3) in the figures and tables. For 
statistical analysis, all percentage data from each 
experiment were arcsine transformed [36]. 
Hatching rates, normal larval rates, and SAI 
values obtained from the single factor 
experiments were statistically analyzed by one-
way analysis of variance (ANOVA), while the 
values from the two-factor experiment were 
analyzed, using a two-way ANOVA. Where 
significant differences (p < 0.05) were found 
using Levene’s test for homogeneity of variance 
in any experiment by one-or two-way ANOVA, 
the values of one-factor experiments were tested 
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post hoc by the Tukey test (p < 0.05). If a 
significant interaction (p < 0.05) between 
temperature and salinity by two-way ANOVA was 
observed, the simple main effect in each factor 
was then analyzed to determine the individual 
mean differences by the Tukey test (p < 0.05). All 
statistical analyses were carried out using the 
computerized SPSS version 20 (IBM SPSS Inc., 
Chicago, USA) for Windows 10. 
 

3. RESULTS  
 
In the single factor experimental treatment with 
temperatures (conducted in the laboratory at 
32‰ salinity), the significantly highest (p < 0.05) 
rates of hatching, normal larval development and 
SAI of T. gratilla were obtained at 24°C and 27°C 
than those at the spawning temperature (30°C), 
while the values were the lowest at 36°C           
(Table 1). 
 
While examining the effects of salinity in the 
single factor experiment (conducted at 30°C 
temperature), salinities 35‰ and 38‰, among 
the treatments, exhibited the significantly highest 
(p < 0.05) hatching success of 84.97±4.07% and 
96.39±2.68% and the normal larval survival of 

78.91±3.78% and 92.97±2.59%, respectively. 
However, the hatching and normal larval rates of 
46.44-58.85%, and 10.68-43.9% at the salinity 
levels of 23-32‰, respectively were considerably 
low compared to the above values (Table 2). 
Furthermore, the SAI value was significantly 
higher (p < 0.05) at 26‰ (17.28±0.50%) than 
other salinities tested (≤11.70±0.68%). 

 
In the two-factor experiment, the temperatures 
(24, 27, and 30°C) and salinities (32, 35, and 
38‰) that showed higher hatching and normal 
larval rates in the single factor experiment, were 
selected for further study. In this trial, the highest 
rates of hatching (100.0±0.0%) and normal larval 
development (99.7±0.5%) were observed at 
24°C and 38‰, among the combinations of the 
two factors evaluated (i.e. temperature and 
salinity) (Figs. 2 and 3). 

 
Hatching began within 6 h post-fertilization in all 
water temperatures where >95% of eggs were 
hatched by 18 h at 27°C and 30°C, while >95% 
of the eggs hatched by 24 h at 24°C (Fig. 4). A 
significant interaction (p < 0.05) was observed 
between water temperature and salinity on the 
hatching of T. gratilla (Fig. 4). 

 
Table 1. Hatching rate, normal larval rate (NLR), and survival activity index (SAI) of the tropical 
sea urchin (T. gratilla) at different experimental temperatures in the laboratory at 32‰ salinity 

 
Water 
temperature 

Hatching rate 

(HR %) 

Normal larval rate  

(NLR %) 

Survival activity index 
(SAI) 

36°C 18.92±6.25
a 
(13.50-25.75) 1.95±0.64

a 
(1.39-2.65) 1.38±0.45

a 
(0.98-1.87) 

33°C 43.17±8.13
b 
(35.5-51.75) 29.00±5.48

b 
(23.85-34.77) 10.20±1.93

b 
(8.38-9.98) 

30°C 76.86±8.73
c 
(69.55-86.52) 69.98±7.94

c 
(63.33-78.78) 11.80±1.34

b 
(10.68-13.28) 

27°C 96.06±2.95
d 
(92.75-98.55) 89.15±2.78

d 
(86.08-91.44) 19.31±0.60

c 
(18.65-19.81) 

24°C 98.80±1.23d (97.55-100) 96.03±1.19d (95.2-97.2) 23.41±0.29d (23.2-23.7) 
All values represent mean ± SD with ranges in parentheses. Mean values in the same column with different 

superscripts are significantly different (p < 0.05) 

 
Table 2. Hatching rate, normal larval rate (NLR), and survival activity index (SAI) of the tropical 

sea urchin (T. gratilla) under different salinities in the laboratory at 30°C temperature 

 
Salinity Hatching rate  

(HR %) 

Normal larval rate  

(NLR %) 

Survival activity index  

(SAI) 

38‰ 96.39±2.68
d 
(93.55-98.88) 92.97±2.59

f 
(90.22-95.36) 8.57±0.23

b 
(8.31-8.79) 

35‰ 84.97±4.07
c 
(80.54-88.55) 78.91±3.78

e 
(74.79-82.23) 9.80±0.47

c 
(9.34-10.28) 

32‰ 58.34±2.47
b 
(55.65-58.85) 42.31±1.79

d 
(40.36-43.90) 5.55±0.23

a 
(5.29-5.79) 

29‰ 49.20±2.88
a 
(46.52-48.48) 34.87±2.04

c 
(32.96-37.02) 11.70±0.68

d 
(11.05-12.41) 

26‰ 44.68±1.96
a 
(44.55-46.65) 20.92±0.92

b 
(20.86-21.84) 17.28±0.50

e 
(16.92-17.72) 

23‰ 49.23±3.09
a 
(46.44-52.56) 11.36±0.70

a 
(10.68-12.09) 8.97±0.56

b 
(8.46-9.57) 

All values represent mean ± SD with ranges in parentheses. Mean values in the same column with different 
superscripts are significantly different (p < 0.05) 
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Fig. 2. Combined effects of temperature and salinity on the mean hatching (%) of T. gratilla. 
The bar on each diagram indicates standard deviation (±SD); n=3. The letters a, b and c show 

significant differences within the same temperature (p < 0.05), while A, B, C indicate significant 
differences among temperatures within the same salinity (p < 0.05) 

 

 
 

Fig. 3. Combined effects of temperature and salinity on the mean natural larval survival (%) of 
T. gratilla. The bar on each diagram indicates standard deviation (±SD); n=3. The letters a, b 
and c show significant differences within the same temperature (p < 0.05), while A, B and C 

indicate significant differences among temperatures within the same salinity (p < 0.05) 
 

Table 3. The effects of combinations of salinity and temperature on the hatching rates of the 
sea urchin, T. gratilla by two-way ANOVA 

 
Sources of 
variation 

SS df MS F-ratio 5% F-limit (or the 
tabulated value) 

Temp (T) 2 1645.1283 822.56413 60.53 <0.0001 
Salinity (S) 2 112.61616 56.308078 4.14 0.0331 
T x S 4 2196.4201 549.10503 40.41 <0.0001 

SS = Sum of squares; df = degree of freedom; MS = mean of square 
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Fig. 4. Comparisons of hatching success of T. gratilla eggs at different temperatures under 
different salinity treatments 

 
Table 4. The effects of combinations of salinity and temperature on the normal larval rates of 

the sea urchin, T. gratilla by two-way ANOVA 
 

Sources of 
variation 

SS df MS F-ratio 5% F-limit (or the 
tabulated value) 

Temp (T) 2 1785.4678 892.73388 71.45 <0.0001 
Salinity (S) 2 2767.0298 1383.5149 110.73 <0.0001 
T x S 4 2559.6509 639.91273 51.21 <0.0001 

SS = Sum of squares; df = degree of freedom; MS = mean of square 
 

 
 

Fig. 5. Comparison of survival activity index (SAI) of T. gratilla larvae under different 
combinations of temperature and salinity. The bar indicates standard deviation (±SD); n=3. The 
letters a, b and c show significant differences within the same temperature (p < 0.05), while A, 

B and C indicate significant differences among temperatures within the same salinity (p < 0.05) 
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Table 5. The effects of combinations of salinity and temperature on the SAI of the sea urchin, 
T. gratilla by two-way ANOVA 

 

Sources of 
variation 

SS df MS F-ratio 5% F-limit (or the  
tabulated value) 

Temp (T) 2 1876.2774 938.13872 228.75 <0.0001 
Salinity (S) 2 133.4977 66.748848 16.28 <0.0001 
T x S 4 112.40877 28.102193 6.85 0.0016 

SS = Sum of squares; df = degree of freedom; MS = mean of square 
 

Temperature, salinity and their combined trials in 
this study confirmed to have significant effects (p 
< 0.05) on the hatching and normal larval rates 
by two-way ANOVA (Table 3 and 4). 
Temperature exclusively (p < 0.000) and 
combinations of both temperature and salinity 
have significantly (p = 0.032) affected the SAI 
values (Table 5).  Furthermore, there were no 
significant (p > 0.05) differences recognized at 
24°C among the examined salinities by simple 
main effect analysis (Fig. 5). 
 

4. DISCUSSION 
 

It has been established that larvae of many sea 
urchin species are stenohaline and their survival 
and growth are greatly affected by salinity 
changes [10,38,39]. In this experiment, the 
effects of environmental factors on the 
fertilization and embryonic development of the 
collector sea urchin within the ranges of 
temperature and the salinity were chosen that 
correspond to those in various habitats of this 
species, e.g., the surface and bottom water 
layers of the Indo-Pacific Ocean. Our research 
demonstrated that the fertilization was successful 
in T. gratilla within a wide range of temperatures 
from 24 to 36°C that met the temperature 
requirements of this species to start spawning. A 
decrease in salinity depressed the fertilization 
ability of the collector sea urchin, especially in 
combination with the lowest (24°C) and the 
highest (36°C) temperatures, while a salinity of 
23‰ inhibited it. However, fertilization was still 
possible in this minimal salinity (i.e., 23‰) that 
matched with the lower limit of resistance of adult 
individuals of the collector sea urchin [40,41]. A 
similar phenomenon was also recorded in other 
echinoderms, such as cucumaria sea cucumber 
(Eupentacta fraudatrix), and sea stars (Asterias 
amurensis and Asterina pecinifera), although 
fertilization in these species was still observed at 
the minimum salinity levels (20‰ and 18‰, 
respectively), which were lower than in T. gratilla 
[42,43,44,45]. However, in the present study, the 
fertilization success of T. gratilla was normally 
occurred at the temperatures from 24°C to 36°C 
within a salinity range from 23‰ to 38‰. 

After the completion of blastopore stage of many 
fish species including Pacific Bluefin tuna (PBT) 
Thunnus orientalis [46], eggs are reported to 
have a higher tolerance to variations in 
environmental conditions compared to the 
blastomere stage [45,47]. Though the effects of a 
sudden changes of environmental conditions on 
hatching and normal larval rates in each 
development stage of fertilized eggs of T. gratilla 
have not been detailed in the literature, the 
effects may be similar to the observed results in 
the congeneric scombrid species of PBT [48]. In 
a view for mass seed production of T. gratilla, the 
collection of blastula stage eggs from a sea 
urchin bloodstock tank or a net cage is 
considered to be difficult to enable various 
procedures (eliminate impurities, sterilization, 
rinse, removal of unfertilized eggs, counting, etc.) 
for egg management as T. gratilla eggs have a 
fast development speed. Therefore, the fertilized 
eggs in the blastula stage, which are assumed to 
have low environmental tolerance may be 
unsuitable for egg management procedures, and 
the obtained results using Kupffer’s vesicle-
disappearance stage of fertilized eggs would be 
more appropriate for various procedures towards 
the mass seed production of T. gratilla; however, 
this requires further investigations.  
 

The optimal temperature ranges for hatching 
success and normal larval development rate 
were reported to be 23-26°C in yellow fin tuna 
(YFT) by Harada et al. [49], who obtained the 
highest hatching rate (≥78%, including dead and 
deformed larvae) and normal larval development 
rate (≥58%) at a temperature range of 26.4-
27.8oC without information on salinity. Although it 
is not possible to elucidate correctly the cause of 
this difference, it may be attributable to 
differences in the experimental methods, e.g., 
differences in the fertilization process (artificial 
and natural), stability of the treatment 
temperature, whether the beakers were aerated 
or not, the egg development stage at each 
treatment, and differences between the brood 
fish groups used (genetic, age, dietary factors, 
etc.). Regarding larval survival, the SAI values in 
our study were significantly higher at 24°C and 
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27°C than those in other higher temperature 
groups. The results of this study are similar to 
that obtained by Harada et al. [49]. 

 
In the present study, optimal range of hatching 
and normal larval development rates were 
observed within the salinity levels of 35‰-38‰ 
and was higher than that of the brood stock 
spawning. The previously observed positive 
effect of higher salinity during YFT embryonic 
development was related to the prevention of 
their sedimentation and better dispersion of 
floating eggs by increased buoyancy in the 
higher salinity water [50,51], which has a positive 
effect on the survival of embryos and larvae [52]. 
Adverse effects on hatching and normal larval 
development in the lower salinity water has been 
reported in many other species [53,54,55]. The 
salinity in the YFT’s main habitats (fishing 
grounds) and spawning grounds in the Pacific 
and the Indian oceans have been known to 
range from 34.8 to 35.0‰ and 35.3 to 35.7‰, 
respectively [56,57]. These ranges are similar to 
the optimum range observed in this study.  

 
In experiment with the combined effect of 
temperature and salinity, the hatching rate and 
normal larval rate of T. gratilla at 38‰ salinity 
consistently showed the highest values 
(96.39±2.68% and 92.97±2.59%, respectively) 
compared to those at 32‰ (58.34±2.47% and 
42.31±1.79%, respectively) and at 35‰ 
(84.97±4.07% and 78.91±3.78%, respectively) 
regardless of the temperature treatment. The 
hatching rate (98.80±1.23%) and the normal 
larval rate (96.03±1.19%) at 24

o
C was 

significantly higher than that (18.92±6.25% and 
1.95±0.64%) at 30°C. On the other hand, the SAI 
at 23°C showed the highest values in all the 
tested salinities. These results revealed that 
within the ranges tested, the combination of 38‰ 
and 24°C was found to be the most effective and 
optimal water temperature and salinity 
combination for improving/increasing the 
hatching and survival rates of the fertilized eggs 
of T. gratilla. Furthermore, the sensitivity to the 
temperature and salinity during the embryonic 
period and that for hatching larvae of T. gratilla 
seem to differ among each life stage. That is, in 
the embryonic period, combined effects of 
temperature and salinity occurred, while hatching 
larvae were affected solely by temperature (that 
is, larval stage had relatively higher salinity 
tolerance than the embryonic stage). In regards 
of the T. gratilla seed production, these results 
(preference for low water temperature) may be 
applied to the development of technology to 

reduce occurrences of mass mortality during the 
early stage of sea urchin larvae [58]. 
 
Although the highest survival rate and smallest 
number of abnormal forms were recorded at 
24°C, larvae reached to the hatching (gastrula) 
stage at normal salinity, while at 30°C to 36°C, 
they developed very slowly and only attained to 
the blastula stage. A decrease in temperature 
combined with a decrease of salinity delayed 
development and upon an increase of 
temperature, the range of salinity in which the 
larvae developed normally was narrowed. Thus, 
free swimming blastulae of the sea urchin, T. 
gratilla have adaptive abilities that enabled larvae 
to survive and develop for several days in the 
unstable condition of the surface water layer in a 
wide range of temperatures (from 24°C up to 
36°C) and salinity (from 38‰ to 23‰). A sharp 
increase in the resistance of larvae at the stage 
of the free-swimming blastula with the variation 
of the environmental parameters was also the 
characteristics of other echinoderm species [42, 
44,45,59]. Significant resistance of larvae to a 
decrease in salinity at various stages of 
development could be higher than adult 
individuals, which are also the characteristics of 
other invertebrates and most likely related to 
ecological features upon passing these stages 
[60,61,62,63]. 
 

5. CONCLUSION 
 

From the present findings, it could be concluded 
that the significantly higher hatching and normal 
larval rate, and survival of fasting larvae after 
hatching (survival activity index, SAI) were 
observed at the lower experimental temperature 
and higher salinity, respectively. In respect of sea 
urchin hatchery production, the interactions of 
these environmental factors can be considered 
not only as the standard parameter for induced 
breeding and larval rearing of T. gratilla, but also 
will facilitate us to develop the appropriate 
techniques for mass seed production and 
commercial aquaculture of this important sea 
urchin fishery to a greater extent. 
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