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Abstract: We use reinforcement learning models to investigate the role of cognitive mechanisms in the emer-
gence of conventions in the repeated volunteer’s dilemma (VOD). The VOD is amulti-person, binary choice col-
lective goods game in which the contribution of only one individual is necessary and su�icient to produce a
benefit for the entire group. Behavioral experiments show that in the symmetric VOD,where all groupmembers
have the same costs of volunteering, a turn-taking convention emerges, whereas in the asymmetric VOD,where
one “strong” group member has lower costs of volunteering, a solitary-volunteering convention emerges with
the strong member volunteering most of the time. We compare three di�erent classes of reinforcement learn-
ingmodels in their ability to replicate these empirical findings. Our results confirm that reinforcement learning
models canprovide aparsimonious account of howhumans tacitly agreeonone course of actionwhenencoun-
tering each other repeatedly in the same interaction situation. We find that considering contextual clues (i.e.,
reward structures) for strategy design (i.e., sequences of actions) and strategy selection (i.e., favoring equal dis-
tribution of costs) facilitate coordinationwhenoptimaare less salient. Furthermore, ourmodels producebetter
fits with the empirical datawhen agents actmyopically (favoring current over expected future rewards) and the
rewards for adhering to conventions are not delayed.

Keywords: Conventions, RepeatedGames, Volunteer’sDilemma, Agent-BasedSimulation, ReinforcementLearn-
ing, Cognitive Modeling

Introduction

1.1 Conventions solve coordination problems that occur in everyday life, fromhow to greet eachother in the street,
to what to wear at a black-tie event, to what citation style to use in a paper. Conventions can be deliberately
introduced (e.g., citation styles), but they can also emerge tacitly, as a consequence of individual actions and
interactions (Centola & Baronchelli 2015; Lewis 1969; Sugden 1986; Young 1993). Results from experiments with
economic games show that incentives matter for the conventions that can emerge in repeated social interac-
tions (Diekmann & Przepiorka 2016). That is, individuals engagemore in certain behaviors the less costly it is to
do so. However, how cognitive processes, such as learning, interact with structural properties of the situation
in the emergence of conventions is less well understood (Przepiorka et al. 2021; Simpson &Willer 2015).

1.2 Here, we use agent-based simulations to investigate the role of learning in the emergence of conventions in the
repeated, three-person volunteer’s dilemmagame (VOD). The VOD is a binary choice, n-person collective goods
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game in which a single player’s volunteering action is necessary and su�icient to produce the collective good
for the entire group (Diekmann 1985). For example, a couple awakenby their crying baby face a VODwith regard
towho should get up and calm the baby. A group of friendswanting to go out in townon Friday night face a VOD
with regard to who should drive and abstain from drinking alcohol. Themembers of a work team that embarks
on a new project face a VOD with regard to who should take the lead. In all these situations, every individual
prefers to volunteer if no one else does, but prefers having someone else do it evenmore.

1.3 An important distinction can be made between symmetric and asymmetric VODs (Diekmann 1993). In a sym-
metric VOD, all players have the same costs and benefits from volunteering. In an asymmetric VOD, at least two
players have di�erent costs and/or benefits from volunteering. Previous research shows that a turn-taking con-
vention, in which each player incurs the cost of volunteering sequentially, can emerge in the symmetric VOD.
In an asymmetric VOD, in which one player has lower costs of volunteering, a solitary-volunteering convention
emerges bywhich the individualwith the lowest cost volunteersmost of the time (Diekmann&Przepiorka 2016;
Przepiorka et al. 2021).

1.4 Following the concept of “low (rationality) game theory” (Roth & Erev 1995, p.207), we conduct simulation ex-
perimentswith adaptive learning (rather than “hyperrational”) agents to explain experimental data. That is, we
compare three classes of reinforcement learningmodels to study how theprocess of learning contributes to the
emergence of the turn-taking convention and the solitary-volunteering convention in the repeated symmetric
and asymmetric VOD, respectively. Through simulation experiments and validation with human experimental
data, we gain insights into potential mechanisms that can explain how individuals learn to conform to the ex-
pectations of others. Specifically, we address two research questions (RQs): (1) Howwell do di�erent classes of
reinforcement learningmodels fit the human experimental data? (2) Whichmodel properties a�ect the fit with
the experimental data?

1.5 By addressing these questions, we expect to learnwhether reinforcement learningmodels can provide a cogni-
tive mechanism that can explain the emergence of conventions (RQ1) and what parameter settings are needed
to simulate human behavior (RQ2). Reinforcement learning models are widely used in cognitive modeling and
cognitive architecture research. Having such an existing mechanism as a candidate explanation for a wider
range of problems, is preferred over introducing new mechanisms to explain behavior (cf. Newell 1990). Our
work provides such a critical test.

1.6 The remainder of the paper is structured as follows. We first review literature that has used cognitivemodeling
to explain the emergence of conventions in humans and outline the contribution our paper makes to this liter-
ature by focusing on the repeated, three-person VOD. We then recap the principles of reinforcement learning
models and introduce the threemodel classes thatwe focus on in this study. The next three sections outline the
simulation procedures, list and describe the parameters we systematically vary in our simulation experiments,
and describe our approach to the analysis of the data produced in our simulation experiments. The results
section presents our findings, and the final section discusses our findings in the light of previous research and
points out future research directions.

Previous Literature

Reinforcement learning as cognitive mechanism of convention emergence

2.1 Cognitive science has shown a growing interest in the role of cognitive mechanisms in the emergence of social
behavior. A review article by Hawkins et al. (2019) points out that a potentially fruitful area for cognitive science
research is ‘the real computational problems faced by agents trying to learn and act in the world’ (p. 164). Spike
et al. (2017) identify three important factors to address this gap: (1) the availability of feedback and a learning
signal, (2) having amechanism to copewith ambiguity, and (3) amechanism for forgetting. Cognitivemodeling
studiesof conventionshave so far focusedmainlyon themechanismofmemoryand forgetting in two-player so-
cial interaction games (e.g., Collins et al. 2016; Gonzalez et al. 2015; Juvina et al. 2015; Roth & Erev 1995; Stevens
et al. 2016). These models showed that learning to play the game requires fine-tuning of associated cognitive
mechanisms (e.g., parameters for learning, forgetting), and that learned behavior can, within limits, transfer to
other game settings (Collins et al. 2016).

2.2 Herewe focus ona factor that has beenunder-explored, namely the role of feedback anda learning signal. More
specifically, we investigate whether social decision-making observed in a computerized lab experiment with
the three-person VOD can be explained based on reinforcement learning models of cognitive decision-making
(RQ1), and what characteristics such reinforcement learning models should have (RQ2).
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2.3 Thebasic taskof a reinforcement learningagent is to learnhow toact in specific settings, so as tomaximize anu-
meric reward (Sutton & Barto 2018). Reinforcement learning models have been used in two ways to study the
emergence of conventions. The first family of reinforcement learning models takes an explanatory approach
and are designed to study how empirical data comes about. Roth & Erev (1995), for example, used adaptive
learning agents to study data collected in experiments on bargaining andmarket games. In a very abbreviated
form, agents select actions based on probabilities for these actions, while probabilities are derived from the av-
eraged rewards obtained for these actions in thepast. Roth&Erev (1995) showed that thedominant experimen-
tal behavior of perfect equilibrium play is in principle explainable by reinforcement learning. However, agents
required more than 10,000 interactions before patterns stabilized. Other studies demonstrated how conven-
tions can emerge from the interaction between reinforcement learning and other cognitive mechanisms, such
as declarative memory (Juvina et al. 2015). However, these models also required the introduction of separate,
novel cognitive mechanisms (e.g., ‘trust’) to provide a good fit with empirical data (see also Collins et al. 2016).
Introduction of new mechanisms to fit results from a new context (e.g., the VOD) is at odds with the general
objective of cognitivemodeling to have a fixed cognitive architecture that can explain performance in a variety
of scenarios (Newell 1990).

2.4 The second family (e.g., Helbing et al. 2005; Izquierdo et al. 2007, 2008; Macy & Flache 2002; Sun et al. 2017;
Zschache 2016, 2017) uses reinforcement learning to identify what the objectively best policy is to handle sce-
narios. Such models allow one to identify whether humans apply the optimal strategies for solving a learning
problem, or to compare whether (boundedly) rational agents opt for strategies predicted by game-theoretical
considerations. Sun et al. (2017), for example, studied tipping points in the reward settings of a Hawk-Dove
game variant beyond which conventions can be expected to emerge. Izquierdo et al. (2007, 2008) found that
settings with high learning and aspiration rates move quickly from transient regimes of convention emergence
to asymptotic regimes of stable conventions. Zschache (2016, 2017) showed that an instance of melioration
learning, namely Q-Learning (Watkins & Dayan 1992), produces stable patterns of game-theoretical predictions
and that thesepatterns emergemuchquicker (∼ factor 100) than in theRoth-Erevmodel. In contrast to explana-
tory models (e.g., Roth & Erev 1995), this family of models takes an exploratory approach to study the general
conditions that contribute to the emergence of conventions.

2.5 In ourpaper,we followanexplanatory approach (family 1), while avoiding theadditionof a separatemechanism
(e.g., trust), to investigate whether (RQ1), and under what conditions (RQ2), reinforcement learning alone can
explain the emergence of conventions in the repeated three-person VOD. We explore three di�erent classes
of reinforcement learning models to investigate how generalizable results are across models and parameter
settings. We evaluate our models against a previously reported empirical dataset collected by Diekmann &
Przepiorka (2016), described briefly at the end of this section.

The use of economic games to study convention emergence

2.6 In behavioral and experimental social science, the emergence of conventions is o�en observed in laboratory
experiments with economic games inwhich the same group of participants interact with each other repeatedly
(Camerer2003). The structureof thegamethatemulates the interaction situation inone roundcanvary in terms
ofpayo�sof individual groupmembersandhowthesepayo�sare reachedcontingenton thesegroupmembers’
actions (i.e., strategies). The bulk of the experimental research uses symmetric games, i.e., games in which the
roles of players are interchangeable because all players face the samepayo�s from their actions. More recently,
however, it has been recognized that asymmetric games may better capture the individual heterogeneity that
occurs in real-life settings (Hauser et al. 2019; Kube et al. 2015; Otten et al. 2020; Przepiorka & Diekmann 2013,
2018; van Dijk & Wilke 1995). In asymmetric games, players di�er in their payo�s and their roles are therefore
not interchangeable.

2.7 Moreover, the experimental literature on the emergence of cooperation in humans has mostly used linear col-
lective goods games, in which each unit a player contributes increases the collective good by the same amount
(Andreoni 1995; Fischbacher et al. 2011; Chaudhuri 2011). With a few exceptions, only more recently, threshold
and step-level collective good games are used in experimental research (Rapoport & Suleiman 1993; van de
Kragt et al. 1983; Milinski et al. 2008; Dijkstra & Bakker 2017).

2.8 The VOD falls into the realm of step-level collective good games, and a distinction can be made between the
symmetric and an asymmetric VOD. Figure 1 presents a three-person version of the VOD in normal form. In
the symmetric VOD, all three players have the same costs of and benefits from volunteering (b = 30), while in
the asymmetric VOD, one “strong” player has lower costs of volunteering, which manifests itself in higher net
benefits for that player (80 > b > 30; e.g., b = 70). The game has three Pareto optimal, pure-strategy Nash
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equilibria (circled in red in Figure 1), in which only one player volunteers while the other two players abstain
from volunteering. Furthermore, it has onemixed-strategyNash equilibrium inwhich all players volunteerwith
a certain probability (Diekmann 1985, 1993). In the asymmetric VOD, rational players can tacitly coordinate on
the pure strategy Nash equilibrium in which only the strong player volunteers, even if the game is played only
once (Diekmann 1993; Harsanyi & Selten 1988). In the symmetric VOD, tacit coordination on one of the pure-
strategy equilibria ismore di�icult. If, however, the symmetric game is repeated over an indeterminate number
of rounds, turn-taking among all three players becomes a salient, Pareto optimal Nash equilibrium (Lau & Mui
2012). Although solitary volunteering by the strongplayer remains a salientNash equilibrium in the asymmetric
game if the game is repeated, it leads to an inequitable distribution of payo�s as the strong player obtains a
lower payo� than the other two in every round (Diekmann & Przepiorka 2016).

Figure 1: The three-person VOD in normal form. In the three-person VOD, three players decide simultaneously
and independentlyof eachotherwhether tovolunteer (choosev) andproduceacollectivegoodornotvolunteer
(choose ¬v). For example, if player 1 chooses v, the payo� is b, regardless of what the other two players do. If
player 1 chooses¬v, then the payo� depends onwhat the others do. If at least one of the other players chooses
v, then player 1 will receive a payo� of 80. However, if all players choose ¬v, all will receive a payo� of 0 since
in this case the collective good will not be produced.

2.9 In their experiment, Diekmann & Przepiorka (2016) matched participants randomly in groups of three and as-
signed them to either the symmetric VOD or an asymmetric VOD condition. In all experimental conditions,
participants interactedwith the same groupmembers in the VOD for 48 to 56 rounds. In each round, they faced
the same VOD, made their decisions individually and independently from each other and were provided with
full information feedback on the decisions each groupmember took and these groupmembers’ corresponding
payo�s (see Figures 8 and 9 in the Appendix). The payo�s each participant gained in each roundwere summed
and converted into money that participants received at the end of the experiment. Diekmann & Przepiorka
(2016) found that in the symmetric VOD, a turn-taking convention emerges, whereas in an asymmetric VOD, a
solitary-volunteering convention emerges. While in turn-taking each group member volunteers and incurs a
cost sequentially, in solitary-volunteering the group member with the lowest cost of volunteering, volunteers
most of the time. This finding has been replicated in several follow-up experiments (Przepiorka et al. 2021,
2022).

2.10 Our paper contributes to the research on step-level collective good games by investigating how di�erences in
emergent conventions are reflected in cognitive models to better understand how conventions come about
(Guala & Mittone 2010; Tummolini et al. 2013; Young 1993). In order to drawmeaningful conclusions about how
humans learn to coordinate in social settings, and thus how conventions emerge, our research uses reinforce-
ment learning models to explain the empirical observations made by Diekmann & Przepiorka (2016) in their
behavioral lab experiment.

Methods

Reinforcement learningmodels

3.1 Generally speaking, reinforcement learning agents learn what actions to pick based on the rewards that their
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actions result in. Reinforcement learning has a solid theoretical basis in behavioral psychology (Herrnstein &
Vaughan 1980) and neuroscience (e.g., Schultz et al. 1997), generates empirically validated predictions (e.g.,
Herrnstein et al. 1993; Mazur 1981; Tunney & Shanks 2002; Vaughan Jr 1981), and finds applications in multi-
ple cognitive architectures (e.g., Anderson 2007; Laird 2012). From the available realizations of reinforcement
learning models, we consider Q-Learning (Watkins & Dayan 1992) as the prime candidate for our study. That is
because, on the one hand, Q-Learning has been proven informative and e�icient in previous game-theoretic
contexts of convention emergence (Zschache 2017). On the other hand, Q-learning models are parsimonious
in that they do not require additional mechanisms nor a full representation of their environment, but only a
defined state they are in at a certain time (st) and the available actions in that state (at). Given that there is
no need for a detailed model of the world, these Q-learning models are also referred to as model-free. Quality
values (Q-values) for state-action pairs (Q(st; at)) track how rewarding an action was at a given state, and form
the basis of the decision making process. That is, the most rewarding action in a given state (max Q(st; at))
is typically given priority. Moreover, Q-values are constantly updated based on the sum of their old values and
anticipated new values (Sutton & Barto 2018):

Q(st; at)← Q(st; at) + α[rt+1 + γmaxaQ(st+1; a)−Q(st; at)] (1)

3.2 NewQ-values are composed of the actual reward rt+1 received a�er action at in state st and themaximum ex-
pected reward in a future state (st+1) from all available actions (maxaQ(st+1; a)). In our models, expectations
depend on agents’ social preferences and are set to be the same for all agents at the beginning of a simulation
run. Furthermore, setting expectations to high but achievable rewards ought to minimize the time of conven-
tion emergence (Izquierdo et al. 2007, 2008). Selfish agents, therefore, expect to receive the reward for the
optimal individual action, while altruistic agents expect to receive the reward for the optimal collective action.

3.3 The impact of future rewards on Q-value updates is moderated by a discount factor and a learning rate. The
discount factor (0 ≤ γ ≤ 1) parameterizes the importance of expected future Q-values relative to immediate
rewards. Smaller γ values make the agent more ‘short-sighted’ and rely more heavily on immediate rewards
(rt+1), whereas larger γ values placemore weight on long-term rewards (Q(st; at)). The learning rate (0 < α ≤
1) defines the extent of new experiences (both rt+1 and Q(st+1; at)) overriding old information. Models with
smaller α values adjust their Q-values more slowly, and as a result, rely more heavily on experience than on
most recent rewards.

3.4 Action selection typically considers a process to balance between exploitation of (currently) most rewarding
actions (highest Q-value) and exploration of alternatives (lower Q-values that might also lead to success). A
common approach for this is ε-greedy, which defines a probability ε for the selection of a random action, while
themost rewarding action is selectedwith probability 1− ε. This is especially useful in changing environments,
so that low rewarding actions are still considered and may become more rewarding when conditions change.
In our scenario, however, conditions do not change over time, so that there is no reason for agents to change
strategieswhen there is one superior strategy. Furthermore, patterns in theexperimentweremostly stable once
they emerged, so that humans seem to stick to clearly best performing actions. To account for the stability of
conditions and human behavior, we add noise to the calculated Q-values (Qnoisy) each time that an action is
decided, rather than taking an ε-greedy approach.

3.5 In our models, the noise is drawn from a continuous uniform distribution with parameter η. Each time that a
Qnoisy-value is calculated, a value within the range [−η, η] is randomly drawn andmultiplied with the original
Q-value. The action that is associatedwith the highestQnoisy-value is then selected for executionby themodel.
Mathematically, this can be expressed as:

max Qnoisy(st+1; a), with

∀a : Qnoisy(st; a)← Q(st; a) + [Q(st; a)× ρ], and
ρ ∼ U [−η, η]

(2)

For example, imagine there are two Q-values (Q1 = 60, Q2 = 50). If η = 0.2, then each Q-value is assigned
a random ρ value between -0.2 and +0.2 and an updated Q-value is calculated. For example, Qnoisy1 = 60 +
60 × (−0.15) = 51 andQnoisy2 = 50 + 50 × 0.09 = 54.5, where ρ1 = −0.15 and ρ2 = 0.09, respectively. In
this case, the action ofQ2 would be selected, even though originally it had the lower Q-value. In other words,
themodel explores actions that have not yielded the highest rewards in the past. However, if η = 0.1, then the
chance thatQ2 would be selected is a lot smaller as the impact of noise on the Q-value is smaller (i.e.,Qnoisy1

could range between [54, 66] andQnoisy2 between [45, 55]), and the model will exploit past successful actions
more.1

JASSS, 25(1) 7, 2022 http://jasss.soc.surrey.ac.uk/25/1/7.html Doi: 10.18564/jasss.4771



3.6 Consequently, when a Q-value of one action is clearly superior, the corresponding action will be exploited. In
cases where two or more actions have comparable Q-values, the noise factor regulates the frequency between
exploration and exploitation. That is, the higher the setting for η the more explorative the model.

Model classes

3.7 Within the basic reinforcement learning framework outlined above, we define three model classes that di�er
in their assumptions. We call these model classes ClassicQ, SequenceX, and VolunteerX. This allows us to test
how well the reinforcement learning models work in general, and to what degree they depend on additional
model assumptions. All threemodels follow the concept of Markov chains (Gagniuc 2017). That is, they consist,
first, of well-defined states and, second, of events that define the transition between these states (see Figure 2).

Figure 2: The three model classes represented as Markov chains. For ClassicQ, states are defined by the two
previously performed actions. Consequently, ClassicQ requires two rounds at the beginning of each game to
initialize. Transition events between states are actively selected actions (volunteering, not volunteering) by the
agents, based on how beneficial previously taken actions were in the same state. For SequenceX and Volun-
teerX, states are mostly defined by actions planned to be taken in the coming rounds. Whenever there is no
more action le� to be taken (∅), the agents actively select a sequence of actions based on how beneficial pre-
viously selected action sequences were. Actions are then performed without reconsideration in the following
rounds until the sequence ends.

3.8 The ClassicQ model class uses a typical approach for Q-Learning. In the three-person VOD, actions can be to
either volunteer or not volunteer: a ∈ {v,¬v}. States are defined by the actions an agent took in the previous
two rounds: s ∈ {vv, v¬v,¬vv,¬v¬v}. Available Q-values for ClassicQ are therefore: Q(vv; v), Q(vv;¬v),
Q(v¬v; v),Q(v¬v;¬v),Q(¬vv; v),Q(¬vv;¬v),Q(¬v¬v; v),Q(¬v¬v;¬v). Furthermore, ClassicQ requires an
initialization phase of two rounds (Figure 2, top three states). Here, every agent volunteers with a probability of
0.33 in each of the two rounds, as only one of the three agents is required to volunteer for the optimal outcome.
All following actions are selected based on Q-values. Consider, for example, an agent that did not volunteer in
the last two rounds (st = ¬v¬v; Figure 2, bottom right state of the ClassicQ model). Depending on the larger
(noisy) Q-value (see Equation 2) for the currently available state actions pairs (Q(¬v¬v; v) andQ(¬v¬v;¬v)),
the agent decides to volunteer (Figure 2, active transition from state ¬v¬v to state ¬vv) or to not volunteer
(Figure 2, active transition from state ¬v¬v back to state ¬v¬v). As ClassicQ’s actions are influenced by two
past states, we refer to this as a backward-looking perspective.

3.9 By contrast, the SequenceXandVolunteerXmodel classes followa forward-lookingperspective. That is, actions
are defined by sequences of consecutive future actions (Figure 2, orange states), which are automatically and
without reconsideration performed in the following rounds: a ∈ {vvv, vv¬v, v¬vv, . . . }. Agents select a new
action sequence whenever no actions are le� to perform (s = ∅). Our models look forward at most 3 actions.

3.10 SequenceX defines action sequences for the next three actions, independent of what the preceding actions
were. That is, the options are: Q(∅; vvv), Q(∅; vv¬v), Q(∅; v¬vv), Q(∅; v¬v¬v), Q(∅;¬vvv), Q(∅;¬vv¬v),
Q(∅;¬v¬vv),Q(∅;¬v¬v¬v). Consider, for example, an agent that has nomore actions le� to perform (st = ∅).
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The agent selects an action sequence, depending on the largest (noisy) Q-value (see Equation 2) for all action
sequences (e.g., v¬vv – Figure 2, bottom le� state), and performs the corresponding actions in the following
three rounds (at = v; at+1 = ¬v; at+2 = v).

3.11 VolunteerX, in contrast, minimizes the length of action sequences by only defining when to volunteer. We used
a strategy space from “immediately” to “in the third round”: Q(∅; v),Q(∅;¬vv),Q(∅;¬v¬vv). In addition, we
included a strategy to not volunteer in the following round:Q(∅;¬v).

3.12 To summarize, all threemodel classesmake decisions based onQ-values, which are shaped by experience, and
which consider a sequence of up to three states and/or actions. However, the models di�er in whether they
are backward looking (ClassicQ: last two actions determine what Q-learning options are available) or forward-
looking (SequenceX and VolunteerX consider all state-action pairs when deciding the next action). Fromaprac-
tical perspective, each time that ClassicQ needs to determine a next action, it can only choose between two
Q-values out of all eight potential options (e.g., if the last two actions were v and ¬v, then the only choice is
betweenQ(v¬v; v) andQ(v¬v;¬v)). SequenceX and VolunteerX, in contrast, consider all Q-values whenever
a new action sequence is selected (eight options for SequenceX, and four for VolunteerX).

Conditions

3.13 We tested two di�erent payo� conditions, which were identical to the “Symmetric” and “Asymmetric 2” con-
ditions in the experiment by Diekmann & Przepiorka (2016) (also see Figure 1). In the Symmetric condition, all
agents experience the same benefit if the collective good is produced (r1,2,3 = 80) and they incur the same
costs when they volunteer to produce the collective good (K1,2,3 = 50). In the Asymmetric 2 condition (hence-
forth Asymmetric), all agents experience the same benefit when someone volunteers to produce the collective
good (r1,2,3 = 80), however the cost for volunteering is lower for one agent (K1 = 10), compared to the other
two agents (K2,3 = 50).

Simulation procedure

3.14 To test thebehaviorofourmodel classes,wesimulated theexperimental setupofDiekmann&Przepiorka (2016)
with learning agents adopting the role of humanparticipants. Each simulated game lasted 150 rounds2. A single
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round consisted of the following steps:

Algorithm 1: Simulation procedure
1 1. Select action based onmodel class (each agent):
2 if Model class is ClassicQ:
3 if Number of previous actions< 2:
4 v with 0.33 probability
5 ¬v with 0.67 probability
6 else
7 Get Q-values for current state (state: previous two actions,
8 actions: v and ¬v)
9 Return action of highest noisy Q-value using Equation 2
10 if Model class is SequenceX or VolunteerX:
11 if Sequence of actions is empty:
12 Get Q-values (state: empty list of actions, actions: all available sequences of v and¬v)
13 Set sequence of actions to sequence of highest noisy Q-value using Equation 2
14 Remove and return first entry from sequence of actions
15 2. Compute utilities:
16 if no agent selected v:
17 Utility of agents 1,2, and 3 = 0
18 else
19 Utility of agent 1 = 80, if action was ¬v
20 80-50 = 30, if action was v and VOD is “symmetric”
21 80-10 = 70, if action was v and VOD is “asymmetric"
22 Utility of agents 2 and 3 =
23 80, if action was ¬v
24 80-50 = 30, if action was v
25 3. Evaluate action selected in step 1 (each agent):
26 Set expected reward (“max” component of Equation 1):
27 80, if action was ¬v and social preference is “selfish”
28 80 – own costs, if action was v and social preference is “selfish”
29 (80 + 80 + 80 – lowest costs) / 3, if social preference is “altruistic”
30 Update Q-value of action selected in step 1 using Equation 1

Parameter settings

3.15 For eachmodel class, five parameters (see Table 1) were varied systematically:

• Discount rate (γ) describes the importance of expected future rewards relative to immediate rewards. As
there is no consensus in the literature, we tested a wide range of values. This ranged from models that
consider distant rewards equal to immediate rewards (γ = 1), to models that discount future rewards
strongly (e.g., γ = 0.5, rewards that are 1 step away are halved).

• Learning rate (α) defines the extent of new experiences overriding old information. As there is no con-
sensus in the literature, we tested a wide range of values. They ranged frommodels that relied relatively
heavily on previous experience (α close to 0.2) to models that rely more heavily on recent experience (α
close to 0.7).

• Initial Q-values (ι) concern the initial value that each state-action pair gets assigned before running sim-
ulations. If theQ-value deviates a lot from the eventual learned value, the learning trajectory takes longer
(as the new Q-value is impacted by α and γ). Moreover, in such cases the model might get stuck in local
optima earlier (i.e., if an initial action yields a very high reward relative to the expected value, then noise
cannot overcome this selection). Therefore, we tried two values of the initial value: a payo� close to the
theoretic optimum in the symmetric condition of (67.5) and one that is substantially lower (43.33).

• Exploration rate (η) defines the range of how much noise is randomly added to the Q-values before an
action is selected (Equation 2). We distinguish between two scenarios: agents that are either more (η =
0.1) or less conservative (η = 0.2) in exploring new actions as a result of noise.
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• Social preference (S) manipulates how the expected maximum reward (see Equation 1) is composed.
For selfish agents, the expected reward (maxaQ(st+1; a)) corresponds to the highest possible individual
reward. For altruistic agents, the expected reward corresponds to the highest possible collective reward.

Table 1: Parameters varied in simulation experiments within eachmodel class
Variables Possible value range Values tested

Discount rate 0 ≤ γ ≤ 1
γ = {0.50, 0.55, 0.60, 0.65, 0.70, 0.75,

0.80, 0.85, 0.90, 0.95, 1.00}

Learning rate 0 < α ≤ 1
α = {0.20, 0.25, 0.30, 0.35, 0.40, 0.45,

0.50, 0.55, 0.60, 0.65, 0.70}
Initial Q-values ι ≥ 0 ι = {43.33, 67.5}
Exploration rate 0 < η < 1 η = {0.1, 0.2}
Social preference S ∈ {selfish, altruistic} S = {selfish, altruistic}

3.16 The final assumption inourmodel is that theaboveparametersandsettingsare related to thegeneral “cognitive
architecture” (Anderson 2007; Newell 1990) of the agents. In other words, when specific parameter values were
set (e.g.,α = 0.4, γ = 0.9, η = 0.1, ι = 67.5), all three agents in the VOD assumed these parameter values. The
only thing that might di�er between them were the volunteering costs (K) in the asymmetric VOD. Although
in practice di�erent agents might di�er in their cognitive architecture and in the way that they weigh di�erent
types of information (e.g., have di�erent learning rates), keeping the values consistent across agents allowed
us to systematically test how model fit changes in response to parameter changes (RQ2). This in turn helped
us to understand what is more important for a goodmodel fit: a change inmodel class (ClassicQ vs SequenceX
vs VolunteerX) or a change in model parameters (e.g., when each model achieves an equally good fit with its
“best” parameter set).

Data and Analysis

4.1 We had three model classes (ClassicQ, SequenceX, and VolunteerX), tested in two experimental conditions
(symmetric and asymmetric VOD), for two types of reward integration (selfish or altruistic), with 484 (11× 11×
2× 2) parameter combination options (see Table 1). For each unique combination of these parameters, we ran
10 simulations. This resulted in a total of 58,080 (3 × 2 × 2 × 484 × 10) simulation runs. For each run, three
agents interacted in 150 rounds of the VOD game.

4.2 To answer RQ1 (how well each model class fits the human experimental results), we first compute the mean
Latent Norm Index (LNI ; Diekmann & Przepiorka 2016) for the 10 simulation runs per condition and model
class. TheLNIk,m describes the proportion of behavioral pattern k that emerged in a group of sizem in a given
number of rounds. The behavioral patterns that are commonly found in experiments with the repeated three-
player VODare solitary-volunteering (k = 1), turn-takingbetween twoplayers (k = 2), and turn-takingbetween
all three players (k = 3) (see also Przepiorka et al. 2021). Since the empirical data we aim at reproducing are
based on interactions between three participants, we use three agents in our simulation experiments (m = 3).

4.3 Consider, for example, the following sequence of actions inwhich positive numbers denote the index of a single
volunteering player (i.e., player 1, 2 or 3) per round and 0 denotes rounds in which either no or more than one
player volunteered: 1112310123. The game has a single sequence of player 1 volunteering three times in a row
(1112310123). A game of 10 rounds therefore results in 30% solitary-volunteering (LNI1,3 = 30%). It follows fur-
ther that the same sequencemaps to 0% turn-taking between two players (LNI2,3 = 0%) and 70% turn-taking
between all three players (1112310123; LNI3,3 = 70%). Note that to avoid the detection of pseudo patterns,
a pattern needs to be stable for at leastm consecutive rounds to be counted towards the LNI . For a detailed
description of how theLNI is calculated, refer to Diekmann & Przepiorka (2016, p. 1318 f.).

4.4 To answer how well our models match the empirical data, we use root-mean-square errors (RMSE) between
mean LNI of the simulated data and the LNI observed in the empirical data, with lower RMSE indicating a better
model fit.

4.5 To answer RQ2 (which model properties a�ect model fit), we perform multiple linear regressions with RMSE
as dependent variable and the model parameters as independent variables. This allows to understand the
direction and size of the e�ect of each parameter on a model’s fit to the empirical data. We fit a total of six
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regression models: for each of our three model classes we fit one model to the data from the symmetric VOD
condition and one from the asymmetric VOD condition. All parameters are centered at their means and only
main e�ects are considered. We also fittedmodels with interaction e�ects. Since thesemodels did not produce
di�erent insights (i.e., the main e�ects remained the same), we do not refer to them in the text. All regression
model results are presented in the Appendix.

Results

RQ1: Model fit to empirical data

5.1 Figure 3 shows relative frequencies of the di�erent conventions that emerged in the asymmetric VOD condition
(le�) and the symmetric VODcondition (right) in theempirical studyofDiekmann&Przepiorka (2016) (graybars)
and our simulation experiments (colored bars) in terms ofLNIs. The bars in the “Solitary volunteering”, “Turn
taking 2” and “Turn taking 3” panels show average LNI1,3, LNI2,3 and LNI3,3, respectively. The di�erent
colored bars denote the results of the best fitting model instances of each model class (ClassicQ, SequenceX,
and VolunteerX).

Figure 3: Simulation results comparing the relative frequencies of emerging patterns (solitary volunteering,
turn-taking between 2 agents, and turn-taking between 3 agents) between the experimental data (grey bars)
and the best fitting models (yellow, orange, and red bars) in the asymmetric (le�) and symmetric (right) condi-
tion. Error bars show standard errors of the mean.

5.2 In the asymmetric cases, where one agent has lower costs from volunteering, the human data showsmore fre-
quent solitary volunteering. Of the three model classes, the ClassicQ model reproduces the dominant pattern
of the empirical data (solitary volunteering) best. By contrast, in the symmetric case, where each agent has the
same costs and benefits of volunteering, the human data shows frequent turn-taking between all three agents.
ClassicQ is now the worst fitting model, as it hardly shows such turn-taking between three agents. SequenceX
and VolunteerX show comparable results, where the percentage of trials with frequent turn-taking between
three agents is comparable to the human data. As we will see in more detail below, variations in the relative
frequency of patterns are a result of di�erent stabilization times for single emerging patterns (ClassicQ in the
asymmetric VOD, SequenceX and VolunteerX in the symmetric VOD) or multiple emerging patterns (ClassicQ in
the symmetric VOD, SequenceX and VolunteerX in the asymmetric VOD).

5.3 To further study the properties of the model classes, Table 2 reports the best fitting (i.e., lowest mean RMSE)
model instances (unique combination of themodel class, reward integration, andparameter settings)3 per con-
dition. The rows showmeanRMSE per condition. The columns show the best fittingmodel instances permodel
class and condition (e.g., CQ.291 for ClassicQ and asymmetric VODs). Therefore, each model class has poten-
tially three di�erent model instances that produce a best fit. A single model instance of the SequenceX model
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class (SX.145), however, produced best fits in the asymmetric condition and in the combination of both condi-
tions. Model instances that produce best fit permodel class and condition aremarkedwith a grey background.
A ∗ symbol denotes which of the three model classes provided the best overall fit across conditions.

Table 2: RMSE of best fitting models for each model type (columns) when considering data of the symmetric
and asymmetric conditions separately or together (rows)

ClassicQ SequenceX VolunteerX
CQ.47 CQ.291 CQ.110 SX.145 SX.182 VX.157 VX.239 VX.213

Asymmetric
only 4.18 3.87* 35.68 25.02 37.7 15.59 13.47 33.08

Symmetric
only 32.89 36 26.44 17.63 6.77 17.4 16.3 5.11*

Asym. and
sym. 20.07 24.01 32.24 19.57 26.29 16.51* 18.11 23.87

Note: The best fitting models are the models with the lowest RMSE. Within each column,
the RMSE score is highlighted for the model that had the best score within that condition
(e.g., combined, asymmetric and/or symmetric). Per row (combined, asymmetric, symmetric),
the overall best fitting model is marked with a ∗.

5.4 Consistent with Figure 3, a ClassicQ instance (CQ.291) produces the best fit of the three model classes in the
asymmetric condition (RMSE = 3.87), while the instances producing best fits for SequenceX (SX.145 with RMSE
= 25.02) and VolunteerX (CX239 with RMSE = 13.47) produce patterns less consistent with the empirical data.
Further, we find good fits in the symmetric condition for SequenceX (SX.182 with RMSE = 6.77) and VolunteerX
(VX.213 with RMSE = 5.11), while ClassicQ produces the worst fit of all best fittingmodels across both conditions
(CQ.110 with RMSE = 26.44).

5.5 It is striking, however, that all of the models producing best fits in one condition produce comparably low fits
in the other condition (e.g., CQ.291 with RMSE = 3.87 for asymmetric VODs and RMSE = 36.00 for symmetric
VODs). Further, when considering the model instance producing the best fit in the combination of both condi-
tions (VX.157 with RMSE = 16.51), two things become apparent. First, themodel fit is significantly lower than the
models producing best fits per condition (asymmetric: CQ.291 with RMSE = 3.87; symmetric: VX.213 with RMSE
= 5.11). Second, the model fit per condition is also significantly lower than the models producing best fits per
condition (RMSE = 15.59 for asymmetric VODs and RMSE = 17.40 for symmetric VODs). It follows that there is no
single model able to closely replicate the human data in both conditions.

5.6 To gain further insight intoLNI variance and thus the stability of emerging patterns, Figures 4 and 6 show two
representative examples of simulation runs from the best fitting models of each model class. For each model
run, an “x” denotes which of the three agents volunteered in a specific round.4 Furthermore, Figures 5 and 7
show all emerging cycles in the Markov-chains (or stable patterns) for the best fitting models of each model
class that were stable in the last 20 rounds of a simulation run.5

5.7 In the asymmetric VOD (Figure 4), the example rounds of the ClassicQ model instance CQ.291 show that this
model is the first to have consistent volunteering by a single agent (agent 1: the agentwith the lowest costs from
volunteering). The two runs show that between runs, the speed of learning can di�er. Furthermore, Figure 5
shows solitary volunteering by agent 1 and continuous abstention from volunteering by agents 2 and 3 is not
only dominant (most occurring), but the only emerging pattern for ClassicQ in the asymmetric VOD. For the
SequenceXmodel runs, agent 3 also learns to volunteer (Figure 4, SX.145, run 1). However, another agent (agent
2) also occasionally volunteers, thereby limiting the percentage of trials in which there is solitary volunteering.
Furthermore, Figure 5 reveals that the dominant pattern for SequenceX in the asymmetric VOD is a formof turn-
taking between two agents (1: ¬vvv, 2/3: v¬v¬v), as shown in run 2 for SX.145 in Figure 4. Note that this is an
e�icient outcome that is not captured by the LNI . For the VolunteerX model, the dominant pattern is solitary
volunteering by agent 1 (see Figure 4, VX.239, run 1 and Figure 5). However, turn-taking between three agents
can also be found. Therefore, although the forward-looking models (SequenceX, VolunteerX) can, in principle,
learn the pattern, they do not do this consistently.
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Figure 4: Examples of emerged conventions in simulation experiments with the asymmetric VOD.

Figure 5: Emerging cycles represented asMarkov-chains for the best fittingmodels permodel class in the asym-
metric VOD. All cycles shown were stable in the last 20 rounds of a simulation run. Patterns that occurredmost
are referred to as dominant. Superscript numbers denote the agent for which a cycle occurred. These di�er
between agents, as agent 1 has lower costs of volunteering in the asymmetric VOD, thus resulting in di�erent
behavior.

5.8 For the symmetric VOD (Figure 6 and 7), all three models seem to learn some patterns of turn-taking among all
three agents. TheSequenceXandVolunteerXmodels both can learn a (almost) perfect alternation (as is also ob-
served in the behavioral experiment; see Diekmann & Przepiorka 2016). Note that alternation in the SequenceX
model requires three di�erent action sequences (¬v¬vv, v¬v¬v, ¬vv¬v) di�ering in when to volunteer, as
all three agents select a new action sequence at the same time (every third round). In contrast, alternation
in the VolunteerX model requires the agents to coordinate when to start a single action sequence (vvv). Al-
though, turn-taking between three agents it is the only stable pattern emerging for SequenceX and VolunteerX
(see Figure 7), it can take up to 100 rounds to stabilize. That is, although these models produce better fits in
the symmetric condition, they need on averagemore time to learn stable behavior compared to human partic-
ipants. Furthermore, ClassicQ can show turn-taking with an alteration of¬v¬vv (Figure 6, CQ.110, top pattern).
However, this typically does not entail all three agents (see Figure 6, CQ.110, run 1). The dominant pattern for
ClassicQ in the symmetric condition remains some form of volunteering by a single agent (see Figure 6, CQ.110,
run 2).
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Figure 6: Examples of emerged conventions in simulation experiments with the symmetric VOD.

Figure 7: Emerging cycles represented as Markov-chains for the best fittingmodels per model class in the sym-
metric VOD. All cycles shownwere stable for at least 20 consecutive roundsat theendof a simulation run. Unlike
in Figure 4, there are no superscript numbers to denote di�erent agents because all agents have equal costs of
volunteering in the symmetric VOD, thus resulting in similar behavior.

RQ2: Whichmodel properties a�ect fit systematically

5.9 One interpretation of the results pertaining to RQ1 is that, in principle, di�erent model classes can fit di�erent
aspects of the human data. This instigates the question what structural factors of the reinforcement models
contributed to this fit. To this end, we analyzed the fit data generated by all the model instances (i.e., all pa-
rameter combinations) of the three model classes by means of multiple regression models. This allowed us to
identify the direction and e�ect size of each parameter on model fit. The regression results are summarized in
Table 3 (the full regression models are included in Tables 5 through 7 in the Appendix).
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Table 3: Description of factors that improve model fit per model class and condition.
Asymmetric Symmetric
ClassicQ SequenceX VolunteerX ClassicQ SequenceX VolunteerX

Discount
rate (γ) − − − − − − − −

Learning
rate (α) − − − 0 0 − +

Initial
Q-value (ι) 0 0 0 0 0 0

Exploration
rate (η) +++ +++ 0 − − 0 ++

Social
behavior (S) altruistic altruistic altruistic selfish altruistic altruistic

“+” indicates improvement of model fit (lower RMSE) for higher parameter values.
“−” indicate worse model fits for higher parameter values.
The number of signs indicates e�ect size: +/− : [2.0, 5.0) >;++/− − : [5.0, 10.0);+++/− − − :≥ 10.0.
Insignificant (p > .05) and/or small e�ects (e�ect size < 1.0) are denoted with “0”.
For social behavior, the category with the better (significant) fit is indicated.

5.10 For all models and in all conditions, better fits are produced when agents act myopically, favoring immediate
rewards over potential future rewards (low γ). Furthermore, half of the models fare better when agents rely
on experience (low α) and exploration (large η), while most models produce better fit with altruistic reward
expectations (i.e., maximizing group rather than individual reward). Especially the di�erences in parameter
settings between conditions andmodels allow deeper insights about the learning process.

5.11 First, agents in the VolunteerX model class and the symmetric VOD condition produce better fit with the hu-
man data when they rely more on recent rewards (high α), rather than earlier (accumulated) experience. Our
interpretation is that this e�ect is due to the inconsistent length of action sequences between di�erent state-
action pair alternatives. As a result, agents need to coordinate (and thus constantly reconsider) two things: (a)
the same (for altruistic agents optimal) strategy (Q(∅;¬v¬vv)) and (b) staggered points in time (e.g., agent 1 =
round 1, agent 2 = round2, agent 3 = round 3). This requires thorough exploration of the state-actionpairs, while
relying toomuchonexperiencebeforehaving coordinatedonaction strategies and timepointsmaycausealtru-
istic agents to get stuck in suboptimal outcomes for the group as a whole (e.g., turn-taking between 2 agents).

5.12 Second, agents in the ClassicQmodel class and the symmetric VOD condition produce better fit with the human
data, when they favor exploitation over exploration (low η) while acting selfishly (i.e., considering only own
rewards). Our interpretation is that this e�ect occurs because the expected selfish rewards provide a more
salient optimum in the symmetric condition for all agents (e.g., vv → v : 30 + 30 + 30 = 90; ¬v¬v → v :
80+80+30 = 190; so the di�erence between the two is 100)when compared to the expected altruistic rewards
of the agent with the lowest costs to volunteer in the asymmetric condition (e.g., vv → v : 70+ 70+70 = 210;
¬v¬v → v : 80 + 80 + 70 = 230; so the di�erence between the two is only 20). The former allows to exploit
quickly (low η), while the latter requires exploration of the agent with the lowest costs to find the more subtle
di�erences in payo�s.

5.13 In summary, the results show four main findings. First, no single model produces best fits in both conditions.
Second, quick coordination relies on myopic agents favoring current reward rather than working towards po-
tentially higher gains in the future (low γ). Third, settings of other parameters di�er betweenmodel classes and
conditions. Fourth, coordination requires less exploration when optima are salient.

General Discussion

6.1 We investigated whether reinforcement learning can provide a unifying computational mechanism to explain
theemergenceof conventions in the repeatedvolunteer’s dilemma (VOD). Feedbackand learningareat the core
of reinforcement learning (Sutton & Barto 2018), and an important factor considered to be involved in learning
to act in the real world (Spike et al. 2017). Our results suggest that reinforcement learning models can fit, and
thereby describe, the emergence of conventions in small human groups.
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6.2 Furthermore, we find that the exact structure and details of themodelmatter, as therewas not onemodel class
that provided a best fit in all conditions. While all three model classes (ClassicQ, SequenceX, VolunteerX) are
based on Q-Learning, and thus favor the best performing action in a given state, they di�er in how actions and
states are defined (see Figure 2). ClassicQ follows a backward-looking perspective, where a state is defined by
the two previously performed actions, and actions performed in the current round consist of volunteering and
not volunteering. In contrast, SequenceX and VolunteerX follow a forward-looking perspective by defining a
sequenceof actions (consistingof volunteering, not volunteering), selectedwhenever therearenomoreactions
le� to be performed.

6.3 In the asymmetric condition, ClassicQ had the best fit with the empirical data. Our interpretation is that this fit
emerged due to the combination ofmodel properties and a salient external reward structure. Specifically, Clas-
sicQhasa structural advantage. That is, ClassicQcanmakeadecisioneach round (seeFigure 2, onlyblack states
connected with black arrows), rather than up to every third round like SequenceX and VolunteerX. Moreover,
each time there is only a decision between two actions (to volunteer or to not volunteer), rather than 8 action
strategies for SequenceX, or 4 action strategies for VolunteerX (see Figure 2, one single black state with 8 or 4
black outgoing arrows to orange states). When combined with the salient reward structure of the asymmetric
VOD (one agent has lower costs to volunteer), ClassicQ has a relatively easy learning problem, compared to the
other two model classes: a binary choice with feedback in each round. This aligns with the principle in Spike
et al. (2017) that a salient reward is essential for behavior emergence and in line with more recent behavioral
data from experiments with the asymmetric VOD (Przepiorka et al. 2021).

6.4 In the symmetric condition, VolunteerX has the overall best fit, closely followed by SequenceX. VolunteerX also
has the best fittingmodel when both the symmetric and asymmetric condition are considered. Our interpreta-
tion of this result is that VolunteerX combines the advantages of twomutually impedingmodel concepts: struc-
ture through forward-looking action sequences and timely assessment of success. As for the first advantage,
VolunteerX (andSequenceX) retains contextual structure bydefining forward-looking sequences of consecutive
actions. This di�ers from the ClassicQ model class, which lacks the possibility to actively test combinations of
actions. In contrast to SequenceX, which considers all possible action sequences of length 3, VolunteerX de-
fines when to volunteer (i.e., in the 1st, 2nd, or 3rd round, or not at all). This reduces the number of state-action
pairs that the model needs to consider from eight in SequenceX to only four in VolunteerX. Consequently, Vol-
unteerX learns to coordinate relatively quickly in the di�icult learning task of the symmetric condition, where
turn-taking between three agents is dominant in the experimental data but ambiguous regarding who should
start the sequence.

6.5 Thedi�erences inmodel fit between the variousmodel classes suggest that there are di�erent strategies in play
when humans form conventions in the VOD. In simple scenarios with salient optima immediate evaluation of
single actions lead to quick coordination. In more complex and ambiguous scenarios inferring structure from
the problem helps to coordinate joint actions. Thus, contextual cues may help humans to select potentially
fruitful and successfully apply coordination strategies.

6.6 Concerning the parameters (RQ2), there is again some variation betweenmodel classes. However, a common-
ality for allmodel classes and all conditions is that better fits are obtainedwhen agents actmyopically, favoring
current over expected future rewards (i.e., have low discount rate γ). Furthermore, most models fare better
when agents rely on experience (lowα). Finally, mostmodels produce better fits with altruistic reward expecta-
tions. That is, agents coordinate quicker, and patterns are more stable, when agents maximize rewards for the
entire group rather than considering only individual benefits. In the asymmetric VOD, altruistic reward expec-
tations create a salient optimum for solitary volunteering of the agent with the lowest costs to volunteer. In the
symmetric VOD, altruistic reward expectations create the same expected reward for all agents, thus facilitating
patterns that allow equal distribution of costs (i.e., turn-taking). The results, therefore, suggest that humanpar-
ticipants in the repeated VOD favor immediate rewards, rely on experience, and consider rewards for the entire
group.

6.7 These predictions are qualitatively consistent with other cognitivemodels of convention emergence. Good fits,
for example, were produced in various two-person coordination games when agents acted myopically, giving
lessweight to future prospects for success (e.g., Zschache 2016, 2017). Furthermore, conventions emergedwith
comparably low cognitive skill requirements. That is, agents do not actively consider the decisions of others,
but observe and aggregate personal rewards over time (e.g., Zschache 2016, 2017). In contrast to earlier work,
our good fits also benefit from inherent parameters of the general reinforcement learning mechanism, rather
thanmechanisms behindmemory and forgetting tomodel convention emergence (Collins et al. 2016; Gonzalez
et al. 2015; Juvina et al. 2015; Stevens et al. 2016). The underlying memory mechanism of some models (e.g.,
Anderson et al. 2004), also predicts that memories (and associated behaviors) are learned faster when actions
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are consistent and observed frequently (Anderson & Schooler 1991). This aligns with our observation of low γ
(focus on present) and low α (consistent learning).

6.8 We also showed that in line with Zschache (2016) complete neglect of other agents can explain experimental
data (selfishClassicQ in the symmetric VOD).However, considering rewardsof others (altruism)producesbetter
fits with the experimental data in general. This in turn corresponds to the Roth-Erev model (Roth & Erev 1995),
which suggests that knowing each other’s payo�s and salient optima lead faster to perfect equilibria. Our re-
sults additionally suggest that considering contextual clues (e.g., reward structure) for strategy design (e.g.,
sequences of actions) and strategy selection (e.g., favoring equal distribution of costs) may help to coordinate
more quickly when optima are less salient (e.g., symmetric VOD).

6.9 Future work could test if our qualitative model predictions hold. Specifically, our results suggest that stable
social conventions aremore likely to emergewhen the rewards for adhering to the convention are not delayed,
when rewards are provided reliably so that decisions can rely on experience, and when contextual clues, such
as reward structures of the entire group, can be integrated into the action selection process. Put di�erently,
conventions will take longer to emerge, when rewards are delayed and when the rewards for joint actions do
not create salient optima. Applying and comparing these insights to additional settings would furthermore
allow to generalize our findings; a necessary step towards the definition of a formal theory of learning in the
emergence of conventions.

Model Documentation

The R code of the simulation to generate and analyze the data is available under the GPLv3 license in the
GitHub repository, https://github.com/hnunner/relavod, version: v1.0.4., commit: 72d258e, DOI: 10.5281/zen-
odo.4742547 (Nunner 2021).
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Appendix

Table 4: Parameter values andmodel fits of best fitting models.
ClassicQ SequenceX VolunteerX
CQ.47 CQ.291 CQ.110 SX.145 SX.182 VX.157 VX.239 VX.213

Best fit
(RMSE) of
this model
type for:

Comb Asym Sym
Comb
and
Asym

Sym Comb Asym Sym

Best fit
(RMSE)
across
all models
for:

Asym Comb Sym

Variables
Social
preference selfish selfish selfish selfish selfish selfish selfish selfish

Initial
Q-values 43.33 43.33 43.33 67.5 67.5 67.5 67.5 67.5

Learning
rate 0.4 0.4 0.65 0.3 0.45 0.35 0.7 0.6

Discount
rate 0.6 0.7 1 0.55 0.75 0.6 0.85 0.65

Explor
rate 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1

Constants
Explor.
V.
Exploit.

η-noise η-noise η-noise η-noise η-noise η-noise η-noise η-noise

Cooperation
Ratio 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

Explor.
Decrease 1 1 1 1 1 1 1 1

Actions
per state 2 2 2 NA NA NA NA NA

Agents
per state 1 1 1 NA NA NA NA NA

Exp size NA NA NA 3 3 3 3 3
Model fit when looking at asymmetric and symmetric combined
RMSE 20.07 24.01 32.24 19.57 26.29 16.51 18.11 23.87
R2 0.49 0.42 0.13 0.26 0.19 0.53 0.46 0.26
Model fit for asymmetric condition only
RMSE 4.18 3.87 35.68 25.02 37.70 15.59 13.47 33.08
R2 0.99 0.98 0.04 0.04 0.01 0.57 0.69 0.02
Model fit for symmetric condition only
RMSE 32.89 36.00 26.44 17.63 6.77 17.40 16.30 5.11
R2 0.07 0.14 0.08 0.51 0.93 0.52 0.53 0.97
Notes: Experimental variables were varied as follows: (1) social preferences: selfish vs altruistic;
(2) initial propensities: 43.33 vs 67.5; (3) learning rate: 0.20 - 0.70 in steps of 0.05; (4) discount
rate 0.50 - 1.00 in steps of 0.05; (5) exploration rate: 0.1 vs 0.2.
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Table 5: Regression analysis for ClassicQ (dependent variable: RMSE)
Symmetric Asymmetric
Model 1 Model 2 Model 1 Model 2

Intercept 34.94 (0.06)*** 34.94 (0.06)*** 26.58 (0.26)*** 26.58 (0.20)***
Discount
rate (γ) 3.99 (0.40)*** 3.99 (0.36)*** 8.01 (1.61)*** 8.01 (1.28)***

Learning
rate (α) 0.24 (0.40) 0.24 (0.36) 5.02 (1.61)** 5.02 (1.28)***

Initial
Q-values (ι) 0.03 (0.01)*** 0.03 (0.00)*** 0.02 (0.02) 0.02 (0.02)

Exploration
rate (η) 5.59 (1.25)*** 5.59 (1.15)*** -25.21 (5.10)*** -25.21 (4.06)***

Social
behavior (S) 2.08 (0.13)*** 2.08 (0.11)*** -20.65 (0.51)*** -20.65 (0.41)***

Interaction
e�ects
γ × α -1.79 (2.29) 9.19 (8.11)
γ × ι 0.14 (0.03)*** -1.33 (0.11)***
γ × η -9.38 (7.25) -150.73 (25.65)***
γ × S 9.11 (0.73)*** 19.77 (2.56)***
α× ι 0.02 (0.03) 0.22 (0.11)*
α× η 1.89 (7.25) 7.31 (25.65)
α× S -1.43 (0.73)* 6.29 (2.56)*
ι× η 0.19 (0.09)* 2.81 (0.34)***
ι× S -0.01 (0.01) -0.29 (0.03)***
η × S -4.60 (2.29)* -103.95 (8.11)***
Adj. R2 0.30 0.42 0.64 0.77
Num. Obs. 968 968 968 968
RMSE 1.95 1.78 7.94 6.31
***p < 0.001, **p < 0.01, *p < 0.05. Note: Lower RMSEs indicate better fit with empirical
data. Thus, negative signs indicate better fit for increasing values. S has been converted to 1
(altruistic) and 2 (selfish).
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Table 6: Regression analysis for VolunteerX (dependent variable: RMSE)
Symmetric Asymmetric
Model 1 Model 2 Model 1 Model 2

Intercept 30.56 (0.13)*** 30.56 (0.11)*** 39.15 (0.14)*** 39.15 (0.14)***
Discount
rate (γ) 5.35 (0.83)*** 5.35 (0.71)*** 2.23 (0.92)* 2.23 (0.85)**

Learning
rate (α) -3.31 (0.83)*** -3.31 (0.71)*** -0.00 (0.92) -0.00 (0.85)

Initial
Q-values (ι) -0.11 (0.01)*** -0.11 (0.01)*** -0.06 (0.01)*** -0.06 (0.01)***

Exploration
rate (η) -8.39 (2.62)** -8.39 (2.25)*** 2.76 (2.89) 2.76 (2.70)

Social
behavior (S) -6.64 (0.26)*** -6.64 (0.23)*** -4.87 (0.29)*** -4.87 (0.27)***

Interaction
e�ects
γ × α 11.43 (4.51)* -7.54 (5.40)
γ × ι -0.08 (0.06) 0.01 (0.07)
γ × η -52.65 (14.25)*** -48.75 (17.08)**
γ × S 11.49 (1.43)*** 6.68 (1.71)***
α× ι -0.34 (0.06)*** -0.03 (0.07)
α× η 45.86 (14.25)** 20.96 (17.08)
α× S -8.91 (1.43)*** 2.29 (1.71)
ι× η 1.64 (0.19)*** 1.79 (0.22)***
ι× S -0.16 (0.02)*** -0.17 (0.02)***
η × S 22.02 (4.51)*** -5.68 (5.40)
Adj. R2 0.46 0.60 0.24 0.34
Num. Obs. 968 968 968 968
RMSE 4.07 3.51 4.50 4.20
***p < 0.001, **p < 0.01, *p < 0.05. Note: Lower RMSEs indicate better fit with empirical
data. Thus, negative signs indicate better fit for increasing values. S has been converted to 1
(altruistic) and 2 (selfish).
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Table 7: Regression analysis for SequenceX (dependent variable: RMSE)
Symmetric Asymmetric
Model 1 Model 2 Model 1 Model 2

Intercept 32.82 (0.13)*** 32.82 (0.11)*** 41.79 (0.10)*** 41.79 (0.09)***
Discount
rate (γ) 4.56 (0.81)*** 4.56 (0.72)*** 4.80 (0.65)*** 4.80 (0.59)***

Learning
rate (α) 2.82 (0.81)*** 2.82 (0.72)*** 2.56 (0.65)*** 2.56 (0.59)***

Initial
Q-values (ι) -0.09 (0.01)*** -0.09 (0.01)*** -0.10 (0.01)*** -0.10 (0.01)***

Exploration
rate (η) -1.91 (2.55) -1.91 (2.29) -15.65 (2.06)*** -15.65 (1.88)***

Social
behavior (S) -4.89 (0.25)*** -4.89 (0.23)*** -3.90 (0.21)*** -3.90 (0.19)***

Interaction
e�ects
γ × α -10.53 (4.58)* -12.06 (3.75)**
γ × ι -0.12 (0.06)* 0.05 (0.05)
γ × η -45.72 (14.47)** -23.40 (11.86)*
γ × S 3.59 (1.45)* 7.77 (1.19)***
α× ι 0.21 (0.06)*** 0.12 (0.05)*
α× η -25.37 (14.47) -4.38 (11.86)
α× S 3.01 (1.45)* 4.37 (1.19)***
ι× η 2.55 (0.19)*** 0.10 (0.16)
ι× S -0.06 (0.02)** -0.15 (0.02)***
η × S 8.86 (4.58) -20.96 (3.75)***
Adj. R2 0.33 0.46 0.39 0.49
Num. Obs. 968 968 968 968
RMSE 3.96 3.56 3.20 2.92
***p < 0.001, **p < 0.01, *p < 0.05. Note: Lower RMSEs indicate better fit with empirical
data. Thus, negative signs indicate better fit for increasing values. S has been converted to 1
(altruistic) and 2 (selfish).
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Figure 8: Decision screen of participant 1 in a three-person, symmetric VOD.

Figure 9: Information feedback screen of participant 1 in a three-person, symmetric VOD.
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Figure 10: Interaction patterns of 8 groups in asymmetric VOD condition (Przepiorka et al. 2021).
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Figure 11: Interaction patterns of 8 groups in symmetric VOD condition (Przepiorka et al. 2021).

Figure 12: Interaction patterns of the best fitting ClassicQmodel in the asymmetric VOD condition (CQ.291).
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Figure 13: Interaction patterns of the best fitting ClassicQmodel in the symmetric VOD condition (CQ.110).

Figure 14: Interaction patterns of the best fitting SequenceX model in the asymmetric VOD condition (SX.145).
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Figure 15: Interaction patterns of the best fitting SequenceX model in the symmetric VOD condition (SX.182)

Figure 16: Interaction patterns of best fitting VolunteerX model in the asymmetric VOD condition (VX.239).
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Figure 17: Interaction patterns of best fitting VolunteerX model in the symmetric VOD condition (VX.213).

Notes

1Note that despite the use of noise in the calculation of which action to select, the actual Q-value is updated
based on experience, as expressed in Equation 1.

2Note that the total number of 150 rounds is about three times the number of rounds of the experimental
study by Diekmann & Przepiorka (2016). In a pilot study we compared pattern emergence and stability with
an increasing number of rounds (50, 100, 150, 200, 250, 500). It showed that agents require about 100 rounds
to coordinate in the symmetric condition (fewer rounds in the asymmetric condition). Simulations with more
than 100 rounds, however, showed that the emerging coordination patterns are not necessarily stable, while
simulations with more than 150 rounds hardly ever showed pattern changes a�er the 150 rounds. Simulations
with 150 rounds therefore combine two things: agents are able to learn to coordinate and emerging patterns
are stable.

3See Table 4 in the Appendix for corresponding parameter settings.
4For comparisonpurposes, examplesof humanbehavioral patterns that emerge in the symmetric andasym-

metric VOD are shown in the Appendix in Figures 10 and 11, respectively.
5All emerging patterns of the models producing best fits are shown in the Appendix in Figures 12-17.
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