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Abstract
We show how to use the path-wise derivative estimator for both the forward reverse
Kullback–Leibler divergence for any practically invertible normalizing flow. The resulting
path-gradient estimators are straightforward to implement, have lower variance, and lead not only
to faster convergence of training but also to better overall approximation results compared to
standard total gradient estimators. We also demonstrate that path-gradient training is less
susceptible to mode-collapse. In light of our results, we expect that path-gradient estimators will
become the new standard method to train normalizing flows for variational inference.

1. Introduction

Many important physical systems can be described by a Boltzmann distribution

p(x) =
1

Z
exp(−S(x)) , (1)

where S is the action which is often known in closed form and Z=
´
ddx exp(−S(x)) denotes the partition

function. The partition function is typically intractable, i.e. cannot be calculated as it is a very
high-dimensional integral. Nevertheless, well-established Monte-Carlo-Markov-Chain (MCMC) can be used
to sample from the target p and allow for the estimation of physical observables. However, MCMCmethods
become extremely expensive for situations in which subsequent samples of the Markov Chain have large
autocorrelation. Such critical slowing down arises for many systems of great physical interest, e.g. for critical
phenomena in statistical physics, in the continuum limit of lattice field theories, or for atomistic systems with
a large number of local free energy minima in the context of quantum chemistry. As a result, overcoming
critical slowing down constitutes one of the most important unsolved problems of modern computational
physics.

Recent work [1–9] has proposed to combine generative models with MCMC to overcome critical slowing
down. In this context, a particularly promising type of generative model are normalizing flows because they
allow for one-shot sampling, provide a normalized density, and can be interpreted as a diffeomorphic field
redefinition of the underlying physical degrees of freedom. In this approach, a normalizing flow q is first
trained to closely approximate a target density p. Afterward, physical observables can be estimated with the
same asymptotic guarantees as for established MCMCmethods [1, 8, 10]. This can be achieved by using the
flow either for importance sampling or as the proposal density in a Markov Chain. If the target has been
learned well, the resulting estimate will not suffer from critical slowing down as samples are drawn (almost)
independently. Flow-based methods, therefore, allow us to completely avoid critical slowing down provided
that we can train the model q well.
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Figure 1. Summary of the paper. (a) Forward and reverse KL divergences being respectivelymode covering andmode seeking. The
latter is thus more prone tomode dropping. (b) Neural importance sampling (NIS) scheme corrects for imperfections of the
learned variational distribution when the support of p(x) is covered. (c) We propose to use path gradients and develop an efficient
path gradient estimator to improve training efficiency through faster convergence and lower variance. (d) We empirically
demonstrate that using path gradients (PathQP) over standard total gradient estimators (RepQP) substantially improves the
performances.

Unfortunately, training for normalizing flows represents a major challenge for many physical systems of
practical relevance. Current training schemes often minimize the reverse Kullback–Leibler divergence
KL(q,p) from the normalizing flow model q to the target density p and show a drastic deterioration in
approximation quality with growing system size or as a critical point is approached. Furthermore, training
often results in mode-collapse, i.e. the flow qmay assign vanishing probability mass to (at least one) of the
modes of the target density p. Mode-collapse must be avoided as it invalidates asymptotic guarantees,
i.e. even in the limit of infinitely many samples the estimates of physical observables are biased.

In this work, we propose a plug-and-play modification of the training procedure which alleviates its
aforementioned shortcomings and works for any (practically invertible) normalizing flow. Specifically, we
propose an algorithm to estimate the path gradient of the reverse KL divergence for normalizing flows.
Unlike the conventionally used total gradient, the path gradient only takes into account the implicit
dependency on the flow’s parameters through reparameterized sampling but is insensitive to any explicit
dependency. We demonstrate that the resulting path gradient estimator has lower variance compared to the
standard estimator and leads to faster convergence of training as a result. In figure 1, we provide a visual
overview of the paper.

Furthermore, we demonstrate that a path-gradient estimator can also be used to minimize the forward
Kullback–Leibler divergence KL(p,q) which is known to be significantly more robust to mode-collapse, see
e.g. [11, 12], and therefore is the preferable choice to preserve asymptotic guarantees.

We show in detailed numerical experiments that our path-gradient method leads to superior training
results and is able to significantly alleviate mode dropping. We also study these path gradient estimators
theoretically by analyzing their statistical properties in various phases of the training process.

1.1. Related works
1.1.1. Path gradients
Broadly speaking, our work builds on and significantly extends Roeder et al [13] and Vaitl et al [14] which
propose path gradient estimators which only work for simple Gaussian variational models or the very
restricted subclass of continuous normalizing flows, respectively.

More specifically, Roeder et al [13] proposed a path-gradient estimator for the case of a Gaussian
variational density and the standard ELBO loss in the context of variational autoencoders (VAE). In Tucker
et al [15], the authors extended these results to other VAE losses, such as Importance Weighted Autoencoder
[16], Reweighted Wake Sleep (RWS) [17], and Jackknife Variational Autoencoder [18]. More specifically, the
authors proposed an identity that allows rewriting any REINFORCE-based estimator [19] as a path-wise
gradient estimator. Both references empirically demonstrated the superior performance of the path-wise
estimators for VAEs. Later work [20–23] extended these results to other VAE loss functions, for example,
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based on α-divergences, and clarified theoretical aspects of the original references. It is important to stress
that all the aforementioned works require a simple variational model, such as a Gaussian.

Our work focuses on normalizing flows which allow modeling complex target distributions of physical
systems—in stark contrast to simple Gaussian variational densities. Standard approaches [1, 10] minimize
the reverse and forward Kullback–Leibler divergence using the standard total gradient, as opposed to the
path gradient, estimator. Extending path-gradient from simple variational densities, such as Gaussians, to
normalizing flows is not straightforward as one needs to disentangle the explicit parameter dependence of
the model from the implicit one (the latter being related to the parameter dependence of the sampling
process). This is because the density involves the (determinant of the) Jacobian of the sampling function thus
linking the parameter dependence of the sampling with the one of the density. This is in stark contrast to the
case of simple variational densities as considered, for example, in Roeder et al [13].

To the best of our knowledge, Agrawal et al [24] is the only reference studying path-wise gradient
estimators of general invertible normalizing flows. This study is, however, limited to the standard reverse KL
as part of a broader ablation for comparatively simple models from the STAN library. In contrast to our
contribution, their study does not consider approximating complex distributions of physical systems and
path-gradients of forward KL losses. Most importantly, their proposed estimation algorithm has twice the
memory costs, severely limiting its suitability for physics applications, as opposed to our proposal.

More recently, Vaitl et al [14] introduced an efficient path-gradient estimator for continuous normalizing
flows (CNFs). This algorithm for estimating the path gradient—even though efficient—is tailored to CNFs
and requires rewriting the gradient computation. On the other hand, our approach is applicable to any
practically invertible normalizing flow architecture. In particular, it is also applicable to the case of a CNF.
For this specific case, however, it is less efficient than the method proposed in [14].

Therefore, the present work can be thought of as a generalization of [14] any practically invertible
normalizing flow architectures. A further notable novelty of our work is that we discuss the estimation of the
path gradient of the forward KL for normalizing flows and theoretically analyze the variance properties of the
various estimators.

1.1.2. Other variance reduction methods
Most Monte Carlo gradient estimators belong to one of two classes, i.e. reparameterized [25] and
REINFORCE-type estimators [19]. The reparameterization trick provides a simple and efficient way of
computing low-variance gradients but is however limited to continuous random variables as well as a
restricted class of base distributions. It was however generalized in various ways: Figurnov et al [26] enhance
the applicability of the reparameterization trick to a wider class of distributions using implicit
differentiation. Interestingly, this approach was recently also generalized to normalizing flows [27]. Ruiz et al
[28] relaxes the underlying assumptions of the reparameterization trick by defining invertible
transformations such that the base distribution is only weakly dependent on the variational parameters. The
reparameterization trick was also generalized by Jankowiak and Obermeyer [29] by harnessing its
correspondence to optimal transport. In Wan et al [30], the authors extend the reparametrization trick to
f-divergences. Naesseth et al [31] introduce a reparameterization trick through accept–reject sampling. In
principle, these approaches can be combined with path gradients by deriving a path gradient of the
corresponding reduced variance objectives. This represents an interesting line of future research.

The REINFORCE-type gradient estimators are more general than the reparameterization trick as only
the score of the variational distribution is required and are also applicable to discrete random variables.
However, it is well-known to generically have higher variance. Therefore, several variance-reduction methods
based on control variates have been proposed. The simplest and most widely-used approach [32] subtracts
the expected weighting term. However, more sophisticated methods to choose the coefficient of the control
variate have been proposed. Specifically, Richter et al [33] building on earlier work by Salimans and Knowles
[34] has shown that one can (up to a correction which depends on the value of the reverse KL divergence)
obtain the optimal coefficient by using a modified loss function. Even though the path gradients may be
thought of as reparametrized gradient estimators with control variates, the aforementioned control variates
are based on certain means over the mini-batch. This is not the case with path gradients, that subtract part of
the gradient per sample.

Self-normalized importance sampling, as applied in our forward-KL estimators, has been shown to
reduce the variance of estimators [35–37], other schemes for reducing variance using importance sampling
include Adaptive Importance Sampling [38] and Annealed Importance Sampling [39, 40]. It would be
interesting to generalize our path gradient estimator of the forward KL along similar lines as part of future
research.
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1.1.3. Other methods to mitigate mode collapse
Noé et al [1] propose to use a convex combination of both the forward and reverse KL divergence to avoid
mode-collapse. This approach, however (at the very least) requires a single sample from each mode4 which
can be difficult for situations in which the (local) ground state structure is unknown, such as lattice gauge
theories. Laszkiewicz et al [41] and Jaini et al [42] propose methods to improve learning the tail behavior of a
normalizing flow—a property that is crucial in avoiding mode collapse during training. Another well-known
strategy to alleviate mode-collapse [43] is to supplement reverse KL training with variance maximization of
certain observables. In many applications, it is however not obvious which observable should be used.

Dhaka et al [36] investigate mode dropping for an array of different divergences, the effect of
dimensionality as well as the effect of self-normalized importance sampling. It is well-known that the
one-parameter family of α-divergences includes both the forward and reverse KL divergence. However, other
members of this family can also be used as an objective function. As an example α= 2, i.e. the χ2-divergence,
has been applied to normalizing flows [10, 36, 40], as well as to Gaussian distributions with path gradients
[23]. However, it seems to perform inferior to the standard KL divergence without any additional algorithmic
tricks [10, 23, 36]. Recently, however, Midgley et al [40] use this choice of α-divergence combined with AIS
and a replay buffer for quantum chemistry problems. Applying the path gradient estimators in conjunction
with these additional algorithmic measures is not straightforward but an interesting future direction.

1.2. Sampling with normalizing flows
A normalizing flow is a bijective map gθ : Z →X from a base space Z ⊂ Rd to a target space X ⊂ Rd. The
base space Z is equipped with a simple probability density qZ . The bijection gθ then induces a probability
density qθ on the target space X by

qθ(x) = qZ(g
−1
θ (x))

∣∣∣∣∂g−1
θ (x)

∂x

∣∣∣∣ , (2)

where
∣∣∣∂g−1

θ (x)
∂x

∣∣∣ denotes the absolute value of the determinant of the Jacobian of the inverse flow g−1
θ .

The flow is trained to closely approximate the target density p. As we will explain in detail in the next
section, this can be done even for an intractable partition function.

After training, we can use the flow qθ to sample from the target density p with asymptotic guarantees. To
this end, one uses NIS [1, 8, 10] to estimate the expectation value of some observableQ with respect to the
target density p by

Ex∼p [Q(x)] = Ex∼qθ [w(x)Q(x)]≈ 1

N

N∑
i=1

ŵiQ(xi) , with xi ∼ qθ , (3)

where we have defined the normalized importance weight

w(x) =
p(x)

q(x)
,

and its estimator ŵ as

ŵi = ŵ(xi) =
1

Ẑ

exp(−S(xi))

qθ(xi)
, (4)

which uses the estimator Ẑ of the partition function5

Z=

ˆ
ddxqθ(x)

exp(−S(x))

qθ(x)
≈ Ẑ=

1

N

N∑
i=1

exp(−S(xi))

qθ(x)
,xi ∼ qθ .

The variance of the estimator (3) is given by

σ2 = Var(Q)
1

N ESS
+ op(N

−1)

4 This assumption may be relaxed to all modes for which the considered observable of interest has sufficiently large support, such as in
certain applications of Quantum Chemistry.
5 We suppress the dependence of the estimator Ẑ on the number of samples N to alleviate notation.
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with the effective sampling size

ESS=
1

Eq[w(x)2]
∈ [0,1] . (5)

The effective sampling size (ESS) is one for a perfectly trained sampler while very low for a poorly trained
one. The effective sampling size therefore provides a natural metric to quantify the quality of a sampler.

If the model density q has larger or equal support than the target density, i.e.

supp(p)⊆ supp(qθ) , (6)

normalized importance sampling (3) provides a statistically consistent estimator of the expectation value
Ep[O] and thus has the same asymptotic guarantees as well-established Monte-Carlo-Markov-Chain
(MCMC) methods. We refer to Nicoli et al [8] for a detailed proof. In contrast to popular MCMC algorithms,
this method uses independent and identically distributed (iid) samples from the flow. Flow-based sampling
may therefore have considerable advantages over established Markov chain techniques for situations in which
MCMC suffers from large autocorrelation or has problems overcoming large barriers in the action landscape.

We also mention in passing that flow-based sampling can be combined with MCMC by using the flow as
the proposal density of the Markov chain [1, 3, 8]. The resulting algorithm is called Neural MCMC. The
proposal is drawn independently and therefore does not depend on the previous element of the chain. This is
in stark contrast to conventional MCMC algorithms which rely on a (typically small) random modification
of the previous configuration to create a proposal. Crucially, Neural MCMC also only comes with asymptotic
guarantees if the flow has larger support than the target, i.e. provided that (6) holds.

As we will discuss, current training approaches often lead to a violation of the larger support
requirement (6) due to mode-collapse. One of the central motivations of the present work is to propose
modifications to the training procedure to alleviate this effect.

1.3. Training with reverse KL
The flow can be trained by minimizing the reverse KL divergence

KL(qθ,p) = Ex∼qθ [S(x)+ logqθ(x)]+ const. , (7)

where the last summand denotes terms independent of the parameters θ of the flow qθ. As a result, this term
will have no contribution to the gradient of the loss function. This gradient can be rewritten using the
reparametrization trick, i.e. Ex∼qθ [ f(x)] = Ez∼qz [ f(gθ(z))], and is then given by

d

dθ
KL(qθ,p) = Ez∼qZ

[
d

dθ
S(gθ(z))+

d

dθ
logqθ(gθ(z))

]
. (8)

It is straightforward to obtain a Monte-Carlo estimator of this gradient,

d

dθ
KL(qθ,p)≈ GRepQP, (9)

by drawing samples from the base density qZ , reparametrizing and calculating the gradients of the action and
of the log-probability by backpropagation, i.e.

GRepQP =
1

N

N∑
i=1

(
d

dθ
S(gθ(zi))+

d

dθ
logqθ(gθ(zi))

)
,zi ∼ qZ . (10)

We will refer to GRepQP as the reparameterized qp-estimator (RepQP). Currently, this estimator is the most
widely used.

However, the RepQP estimator can often be suboptimal and we propose to instead use the path-gradient
estimator. For this, it is convenient to define the path-gradient of an arbitrary function f(gθ(z),θ) by

▼θf(gθ(z),θ) =
∂f(gθ(z),θ)

∂gθ(z)

∂gθ(z)

∂θ
,

which implies that its total derivative can be written as

d

dθ
f(gθ(z),θ) = ▼θf(gθ(z),θ)+

∂

∂θ
f(x,θ)

∣∣∣∣
x=gθ(z)

, (11)

5
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i.e. the path derivative only takes into account the implicit dependency on θ through the flow gθ and is
insensitive to any explicit dependency. Using this definition, we can rewrite the gradient (8) of the
KL-divergence as

d

dθ
KL(qθ,p) = Ez∼qZ [▼θS(gθ(z))+▼θ logqθ(gθ(z))]+Ez∼qZ

[
∂

∂θ
logqθ(x)

∣∣∣∣
x=gθ(z)

]
,

where we have used that the path and total gradient lead to the same result for the action as

d

dθ
S(gθ(z)) =

∂S(gθ(z))

∂gθ(z)

∂gθ(z)

∂θ
= ▼θS(gθ(z)) . (12)

By applying the reparameterization trick again, it is easy to see that the last score term vanishes

Ez∼qZ

[
∂

∂θ
logqθ(x)

∣∣∣∣
x=gθ(z)

]
= Ex∼qθ

[
∂

∂θ
logqθ(x)

]
=

∂

∂θ

ˆ
ddxqθ(x) = 0 . (13)

By explicitly excluding the vanishing score term from the gradient of the KL-divergence, we obtain the
path-gradient qp-estimator (PathQP)

d

dθ
KL(qθ,p)≈ GPathQP , (14)

which is given by

GPathQP =
1

N

N∑
i=1

(▼θS(gθ(zi))+▼θ logqθ(gθ(zi))) zi ∼ qZ . (15)

Both the path-gradient and the reparameterized qp-estimator are unbiased estimators of the gradient of the
reverse KL divergence. However, their variances are generically different. This effect is particularly
pronounced if the variational distribution perfectly approximates the target, i.e.

∀x ∈ X : qθ(x) = p(x) .

For such a perfect approximation, the path-gradient estimator vanishes identically:

GPathQP =
1

N

N∑
i=1

(▼θS(gθ(zi))+▼θ logqθ(gθ(zi)))

=− 1

N

N∑
i=1

▼θ log

(
p(gθ(zi)

qθ(gθ(zi))

)
︸ ︷︷ ︸

=1

= 0 , (16)

where we have used that−▼θ logp(gθ(z)) = ▼θS(gθ(z)). As a result, the variance of the path gradient
estimator GPathQP vanishes in this limit. This is in contrast to the reparameterized estimator which can be
rewritten as

GRepQP = GPathQP +GScore (17)

where we have defined

GScore =
1

N

N∑
i=1

∂

∂θ
logqθ(gθ(zi)), zi ∼ qZ , (18)

whose variance is given by Var[GScore] =
I(θ)
N where we have defined the Fisher information

I(θ) = Ex∼qθ

[
∂

∂θ
logqθ(x)

∂

∂θ
logqθ(x)

]
(19)

of the variational distribution. As a result, the reparameterized gradient estimator GRepQP has generically
non-vanishing variance even if the variational distribution perfectly approximates the target distribution. By
continuity, we may expect that the variance of the reparameterized estimator is substantially larger than the
path-gradient estimator in the final phase of training and that using the path-gradient estimator will lead to a
better convergence of training as a result. We will indeed demonstrate this in the numerical experiments.
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2. Training with forward KL

As discussed in section 1.2, neural importance sampling (NIS) and neural Markov-Chains (NMCMC)
require the flow qθ to have larger support than the target density p in order to be statistically consistent.
Training with the reverse KL divergence is therefore problematic as it can lead to mode-collapse.
Furthermore, in practice, it may also be the case that the flow assigns only an infinitesimal probability mass
to modes of the target density p. In this case, importance sampling will not lead to reasonable results for any
feasible number of samples (although strictly speaking, it is still statistically consistent in the limit of an
infinite number of samples).

For this reason, it is preferable to train the flow by minimizing the forward KL divergence,

KL(p,qθ) = Ex∼p

[
log

(
p(x)

qθ(x)

)]
, (20)

as it heavily penalizes mode-collapse. In appendix A, we show that the gradient of the forward KL can be
rewritten in terms of the path-gradient:

d

dθ
KL(p,qθ) =−Ez∼qZ

[
▼θ

p(gθ(z))

qθ(gθ(z))

]
(21)

In the next section, we discuss estimators of this forward path-gradient.

2.1. Estimators for the forward KL path-gradient
There are two possibilities for obtaining an estimator for the forward KL path gradient (21). To see why we
recall that the exact normalized weight is defined as

w(x) =
1

Z
w̃(x) , (22)

where w̃= exp(−S(x))
qθ(x)

is the unnormalized importance weight. Using these definitions, we can rewrite the
path-gradient (21) as

d

dθ
KL(p,qθ) =−Ez∼qZ [▼θw(gθ(z))]≈− 1

N

N∑
i=1

▼θ
w̃(gθ(zi))

Z
.

Since the partition function Z is intractable, we need to estimate it with samples from q by

Z≈ Ẑ=
1

N

N∑
j=1

w̃(gθ(zi))zi ∼ qZ . (23)

There are now two ways of obtaining path-gradient estimators:

• We can either pull Z through the path-derivative and then estimate

d

dθ
KL(p,qθ)≈

−1

Ẑ

1

N

N∑
i=1

▼θw̃(gθ(zi)) =−
N∑
i=1

w̃i∑N
j=1 w̃j

▼θ log(w̃i) (24)

We will refer to this estimator as the path-gradient pq-estimator (PathPQ).
• Alternatively, we can let the path derivative act on the estimated partition function

d

dθ
KL(p,qθ)≈− 1

N

N∑
i=1

▼θ
w̃(gθ(zi))

Ẑ

=−
N∑
i=1

(
w̃i∑N
j=1 w̃j

− w̃2
i

(
∑N

j=1 w̃j)2

)
▼θ log(w̃i) (25)

We will refer to this estimator as Z path-gradient pq-estimator (ZPathPQ).

7
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As a baseline, we will also consider an estimator which is not based on path-gradients:

• To this end, we estimate (37) by

d

dθ
KL(p,qθ)≈

1

N

N∑
i=1

w̃i

Ẑ

∂

∂θ
log(w̃i) , (26)

and refer to it as reinforce pq estimator (ReinfPQ).

We note that, to the best of our knowledge, the PathPQ and ZPathPQ estimators were first used in the
context of RWS training of VAE by Finke and Thiery [20] and Tucker et al [15] for simple Gaussian
variational distributions, respectively.

Both the PathPQ and the ZPathPQ estimator have vanishing variance in the limit of perfect
approximation, i.e. qθ ≡ p. This immediately follows by a completely analogous argument as for the reverse
KL case, see (16). Similarly, the variance of the ReinfPQ estimator is proportional to the Fisher information
of the variational distribution qθ in this limit and is thus generically non-vanishing. We refer to appendix B
for a proof.

One may therefore again expect that the path gradient estimators have lower variance than the reinforce
baseline in the final phase of training and will thus lead to better convergence of training. We will verify this
in the numerical experiments.

2.2. Theoretical analysis of path gradient estimators
2.2.1. Initial training phase
estimating the forward KL divergence by reweighting can be challenging in the initial phase of training as the
density of the flow qθ and the target p will have a small overlap. In order to analyze this initial training regime
theoretically, we will assume, without loss of generality, that all samples {xi}N−1

i=1 but one sample xN drawn
from the flow qθ will be in regions of the sampling space for which the target density is very small and
flat, i.e.

p(xi) =O(ϵ), ∇p(xi) =O(ϵ), qθ(xi) =O(1), ∇qθ(xi) =O(1), (27)

for small ε> 0 and i ∈ {1, . . . ,N− 1}6. Since most interesting densities in physics have an exponential fall-off
around their modes, this is a reasonable assumption in practice. Under the further mild assumption that ∂x

∂θ

does not diverge, this implies

▼θwi =O(ϵ) ,wi =O(ϵ) . (28)

We then show in the appendix D that the PathPQ estimator (24) is

N∑
i=1

w̃i∑N
j=1 w̃j

▼θ log(w̃i) =
▼θw̃N

w̃N
+O(ϵ) (29)

while the ZPathPQ estimator (25) has no order one contribution

N∑
i=1

(
w̃i∑N
j=1 w̃j

− w̃2
i

(
∑N

j=1 w̃j)2

)
▼θ log(w̃i) =O(ϵ) . (30)

The ZPathPQ estimator (25) can thus be expected to struggle in the initial training phase. We empirically
confirm this in section 3.

2.2.2. Asymptotic training phase
If the flow density qθ already approximates the target p relatively well, such that the normalized importance
weight variance is small, we can use the delta method to calculate the variance and bias of the estimators. We
show in the appendix C that both the PathPQ and ZPathPQ estimators have the same variance and
comparable bias to leading order in the number of samples N. Thus both estimators can be expected to lead
to a similar performance in this training regime.

6 While not explicit in the notation, we assume that q(xi) is not smaller than an order one number. This assumption is reasonable as xi is
a sample of the flow q(xi).
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Algorithm 1: Path gradient ▼θ logqθ(gθ(z)).

Input: base sample z∼ qZ
x ′← stop_gradient(gθ(z)) # forward pass of z through the flow without gradients

qθ(x
′)← qZ(g

−1
θ (x ′))

∣∣∣∣ ∂g−1
θ

(x ′)
∂x ′

∣∣∣∣ # reverse pass to calculate density

G← ∂ log(qθ(x
′))

∂x ′ # compute gradient with respect to x′

x← gθ(z) # standard forward pass
return d

dθ

(
stop_gradient(G)Tx

)
# for path-gradient, contract ∂x

∂θ
with ∂ logqθ(x)/∂x

2.3. Implementation of estimators
In this section, we will discuss the practical implementation of the path gradient for normalizing flows. See
appendix F for an implementation.

For both forward estimators (24) and (25) as well as the reverse estimator, we need to calculate

▼θ log(w̃) = ▼θ log(qθ(gθ(z)))+▼θS(gθ(z)) .

The second term can trivially be obtained by automatic differentiation because the total derivative leads to
the same result as the path gradient, i.e. d

dθS(gθ(z)) = ▼θS(gθ(z)), see (12).
The first term however does not have this property and therefore requires more care. For variational

inference, the log density of a normalizing flow is typically computed along with the forward pass through
the flow x= gθ(z) which produces the sample x. This makes it challenging to calculate the path-derivative
∂ logqθ(x)

∂x by standard reverse-mode automatic differentiation because the sample x is the output as opposed
to the input of the forward pass.

We overcome this challenge, by proposing algorithm 1 which estimates the path-gradient with the same
memory footprint as needed for the conventional gradient at the cost of roughly two forward passes through
the flow. In practice, a low memory footprint is crucial because invertible architectures tend to have large
memory requirements which severely limits the possible batch sizes. Large batch sizes are however essential
for successful training of flows by self-sampling. This is because training starts from a randomly initialized
flow. If the batch size is not large enough, the probability of probing regions of the sampling space with
significant probability mass tends to be low and the flow will not be able to learn to approximate the target p
as it has not sampled these relevant regions. This effect is particularly pronounced as the system size increases
as the action S is an extensive quantity and the target density p, therefore, becomes increasingly concentrated
around its local minima.

While our algorithm has approximately double runtime per gradient update compared to the standard
total gradient estimator, it will be shown empirically that, for practically invertible normalizing flows, it leads
to faster convergence of training overall as may be expected due to favorable variance properties discussed in
section 1.3. By practically invertible, we mean that the normalizing flow can be evaluated in the reverse
direction for roughly the same cost as in the forward direction. Normalizing flows which are not of this type,
i.e. their forward pass is significantly cheaper than their reverse pass, will entail a larger overhead per gradient
update and thus may not benefit from faster overall convergence.

3. Numerical experiments

3.1. Quantummechanical particle in double-well
In order to evaluate the performance of training with path-gradients, we consider a quantum mechanical
particle in a double well potential which is a prototypical example for a two-moded distribution in quantum
mechanics.

In quantum mechanics, the position of the particle at euclidean time t, and thus its path x(t), is a random
variable. For a discretized path x= (x0,x1, . . . ,xT−1), the corresponding density is given by

p(x) =
1

Z
exp(−S(x)) (31)

where Z=
´
dTxexp(−S(x)) is the partition function and the action is given by

S(x) = a
T−1∑
t=0

(m0

2
(xt+1 − xt)

2
+V(xt)

)
(32)

9
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Figure 2. Left: double-well potential for various choices of the massm0. Right: visualization of samples from a trained model.

with periodic boundary conditions for xi and a denoting the lattice spacing. The double-well potential V is
defined by

V(x) =
m0µ

2

2
x2 +

λ

4
x4 , (33)

where the mass parametersm0 and µ2, as well as the coupling λ control the shape of the potential, see the left
part of figure 2.

3.2. Forward and reverse effective sampling size
In our numerical experiments, we evaluate the degree to which the model qθ approximates the target density
p. As explained in section 1.2, the effective sampling size (5) is a natural metric to quantify this.

We can estimate the effective sampling size using two approaches [11, 12]:

• Reverse estimation uses samples from the flow

ESS=
1

Eq [w2]
≈ 1

1
N

∑N
i=1 ŵ(xi)

2
, xi ∼ qθ .

• Forward estimation uses samples from the target density p

ESS=
1

Eq [w2]
=

1

Ep [w]
≈ 1

1
N

∑N
i=1 ŵ(xi)

, xi ∼ p .

As discussed in section 2, avoiding mode-collapse is of critical importance for NIS. However, the reverse
estimator of the effective sampling size is not sensitive to mode-collapse as it just uses samples from the
model. This is different for the forward estimator which in turn however has the disadvantage that it requires
samples from the target density p which may be very costly to generate. It can therefore be challenging to
detect mode-collapse—especially in situations for which MCMCmethods fail.

For the particle in the double-well potential, we can use an overrelaxed Hybrid-Monte-Carlo algorithm
to generate ground truth samples of the target p. These samples are then used to estimate the forward
effective sampling size. This allows us to detect whether a certain training procedure leads to mode-collapse
and thus quantify the degree of approximation correctly. The details of running the MCMC can be found in
appendix E.

3.3. Discussion of results
3.3.1. Setup
we train a flow with RealNVP couplings for lattices of size L ∈ {8,16,32,64} for each value of the mass
m0 ∈ {2.75,3.25}. We fix the other parameters to λ= 1 and µ2 =−1. For forward and reverse KL training,
we use ReinfPQ (26) and the RepQP estimator (10) as the baseline respectively because these are the most
widely used loss functions. We ensure that the baseline and path-gradient estimators use the same wall-time
for training in order to ensure fair comparison and repeat training five times for uncertainty estimation. We
then estimate the forward effective sampling size as described in the previous section. For a detailed
description of the architecture and training procedure, we refer to the appendix E.

10
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Figure 3. Left: training with the reverse KL estimators form0 = 2.75. Right: training with the forward KL estimators for
m0 = 3.0. The path gradient estimators clearly outperform their baselines. The bold line denotes the mean and the shaded area is
the standard error over five training runs.

Figure 4. Forward ESS form0 = 3.0. Left: forward KL training using both path-gradient estimators (24) and (25) compared to the
reinforce-based baseline (37). Right: reverse KL-training using the path-gradient estimator (15) compared to the base of the
reparameterized estimator (10). The path-gradient-based estimators consistently outperform their baselines.

3.3.2. Approximation quality
Figure 3 shows an example of training as a function of wall-time. The path gradient estimators clearly
outperform the standard ones for both forward and reverse KL divergence. Figure 4 compares the
path-gradient estimators to a suitable baseline for other choices of the massm0 and demonstrates that the
superior performance of the path gradient estimators is not due to a particular choice of the massm0. Our
experiments confirm the observation of related work [22, 36], that optimizing the forward KL only works up
to moderately high dimensions. Nevertheless using the path-wise gradients increases the feasible number of
dimensions for which optimizing the forward KL is still a viable option.

3.3.3. Mode-collapse
in order to analyze mode-collapse, we compare the forward and reverse estimates of the effective sampling
sizes for path-gradient training and its baseline. For table 1, we see that reverse training suffers from
mode-collapse starting from relatively small lattice sizes, in contrast, to forward training as shown by the
discrepancy between forward and reverse estimates of the effective sampling size. This underscores the
superiority of forward training as it is crucial that mode-collapse is avoided for the statistical consistency of
NIS. Furthermore, both for forward and reverse training, the path-gradient-based methods suffer
substantially less from mode-collapse. In particular, we observe that the ZPathPQ estimator (25) seems to be
less susceptible to mode-collapse. As we increase the massm0 and therefore move deeper into the broken
phase, the mode-collapse becomes more severe across all methods, see table 2. Nevertheless, the
path-gradient-based methods allow us to estimate at parameter values for which the standard methods fail.

3.3.4. Training phases
Figure 5 demonstrates that the ZPathPQ estimator (25) can suffer from vanishing gradients in the initial
phase of training. This indeed confirms our theoretical analysis in section 2.2. It may therefore be advisable
to start training with the PathPQ estimator (21). From figure 6, it can be seen that the norm of the PathQP
estimator (15) indeed vanishes in the final phase of training while the standard RepQP estimator (10) is
non-vanishing. This is to be expected since the latter contains the score term (13) which only vanishes in
expectation.

11
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Table 1. Results of training a real-valued non-volume preserving (RealNVP) normalizing flow form0 = 3. Note that only the forward
estimators can detect mode-collapse as discussed in section 3.2. As a result, a large value of the reverse with a corresponding small value
for the forward effective sample size (ESS) is a clear indication of mode-collapse. The path-gradient estimators therefore not only
consistently outperform the baselines but also are significantly more robust to mode-collapse.

ESS d ReinfPQ ZPathPQ PathPQ RepQP PathQP

FW ESS 8 0.84± .14 0.95± .03 0.99± .00 0.03± .02 0.65± .19
16 0.59± .20 0.99± .00 0.98± .01 0.00± .00 0.49± .17
32 0.00± .00 0.42± .18 0.55± .17 0.00± .00 0.00± .00
64 0.00± .00 0.00± .00 0.00± .00 0.00± .00 0.00± .00

Rev ESS 8 1.00± .00 1.00± .00 1.00± .00 0.99± .00 1.00± .00
16 0.99± .00 0.99± .00 1.00± .00 0.06± .04 0.99± .00
32 0.96± .00 0.98± .00 0.98± .00 0.78± .13 0.80± .07
64 0.93± .01 0.95± .00 0.92± .03 0.90± .04 0.97± .00

Note: Best results within a statistical significance of p-value < 0.05, according to the Wilcoxon tests, are shown in bold.

Table 2. Same as table 1 but for a relatively large mass ofm0 = 3.25. At this point in parameter space, the modes of the distribution are
separated by a pronounced action barrier which can lead to mode collapse.

ESS d ReinfPQ ZPathPQ PathPQ RepQP PathQP

FW ESS 8 0.40± .22 0.81± .16 1.00± .00 0.00± .00 0.18± .16
16 0.00± .00 0.86± .10 0.79± .18 0.00± .00 0.00± .00
32 0.00± .00 0.14± .13 0.00± .00 0.00± .00 0.00± .00
64 0.00± .00 0.00± .00 0.00± .00 0.00± .00 0.00± .00

Rev ESS 8 0.99± .00 1.00± .00 1.00± .00 0.77± .17 0.93± .06
16 0.99± .00 0.99± .00 0.99± .00 0.99± .00 0.60± .16
32 0.92± .03 0.96± .01 0.97± .01 0.98± .00 0.91± .06
64 0.94± .00 0.95± .00 0.96± .00 0.87± .06 0.98± .00

Note: Best results within a statistical significance of p-value < 0.05, according to the Wilcoxon tests, are shown in bold.

Figure 5. Norm of the ZPathPQ and PathPQ estimators in the initial phase of training averaged over 5 training runs for the
Double-Well with 64 timesteps andm0 = 2.75. This demonstrates that the ZPathPQ estimator can lead to vanishing gradients in
this initial training phase—as expected from equation (30).

3.3.5. Runtime
As discussed in section 2.3, our estimator for the path gradient has the same memory requirements as the
standard estimator for the total derivative. This is crucial as it allows us to train with the same batch-size.
However, we expect double runtime per iteration. This is indeed confirmed by our numerical experiments,
see figure 7. In order to account for this, the training using the PathQP and ReinfPQ baselines are therefore
run for twice the number of iterations. This ensures a fair comparison as all estimators have the same overall
training time.

3.4. Estimation of thermodynamic observables
A crucial advantage of sampling with normalizing flows is that they allow us to estimate thermodynamic
observables, such as the free energy7 F=− lnZ, at specific points in parameter space [7, 12]. This is in stark

7 We note that we have adopted a normalization of the free energy such that its temperature dependence is one in order to alleviate
notation.
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Figure 6. The norm of the gradient estimated by PathQP goes to zero when the target density p is well approximated towards the
end of the training. The norms of the gradients are averaged over three runs for the Double-Well experiments with eight
timesteps andm0 = 2.75 in equation (33).

Figure 7. Runtime per iteration for calculation of the path, total, and reinforce gradient. The path-gradient has roughly twice the
computational cost at the same memory requirements. This overhead is more than compensated by faster overall training
convergence.

contrast to established MCMCmethods which only allow to estimate free energy differences. For this, it is
however crucial that the normalizing flow is trained in a manner that avoids mode-collapse. Free energy
estimation, therefore, represents an ideal setting to illustrate the downstream advantages of path-gradient
training.

As shown in Nicoli et al [7, 12], a point estimate of the free energy can be obtained by

F̂q =− ln

(
1

N

N∑
i=1

w̃(xi)

)
, xi ∼ qθ . (34)

which is sensitive to mode-collapse since estimation is based on samples from the flow. As a ground-truth
proxy, we also estimate the free energy by

F̂p = ln

(
1

N

N∑
i=1

qθ(xi)

exp(−S(xi)

)
, xi ∼ p . (35)

which requires an expensive MCMC simulation to generate samples from the target p. On the other hand,
this is insensitive to mode-collapse. We refer to [7, 12] for more details.

Figure 8 shows the difference Fq − Fp between the free energy estimators at various points in parameter
space. We observe that path gradient training significantly improves the estimation accuracy due to its ability
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Figure 8. Difference between the two estimators F̂p and F̂q for the free energy. The estimator F̂q uses samples from the variational

distribution qθ while F̂p uses samples from the overrelaxed HMC. The estimators both use 1 million samples. If both estimators

give consistent results, i.e. F̂p ≈ F̂q, there is no sign of mode dropping. If F̂p is larger than F̂q by a value of log(2), this indicates that
q only captures half of the modes of p. A larger value than log(2) indicates that the variational distribution q failed to cover the
relevant regions of the target density p.

to alleviate mode-collapse. As expected, this trend is consistent with the experimental results for the effective
sampling size in the previous section.

4. Conclusion

Path-gradient estimators bring substantial improvements for training normalizing flows in the context of
NIS. In this work, we have proposed an algorithm to calculate path gradient estimators that can be applied as
a drop-in replacement of standard estimators for any invertible normalizing flow. Crucially, our algorithm
has the same memory requirements as standard approaches and thus allows us to use the same batch size for
training, which is essential for training with MC methods. Furthermore, the lower variance of the path-wise
gradient estimators not only leads to faster convergence during training but also better overall approximation
quality.

The path-wise gradient estimators allow us to apply the flows to higher-dimensional problems by
pushing the limit up to which the inclusive forward KL is applicable. Our experiments have demonstrated
the favorable behavior of the forward KL with respect to mode collapse in moderately high dimensions,
which enables us to tackle mode collapse without any prior domain knowledge of the problem at hand. We
have analyzed our estimators theoretically and shown that they have lower variance in the limit of perfect
approximation. We furthermore theoretically compared the properties of the forward estimators in the initial
and final phases of training. We expect that the estimator proposed in this work will become the new
de-facto standard for training normalizing flows on variational inference tasks due to its superior
performance and implementation simplicity.

For future work, it would be interesting to theoretically prove the lower variance of the path-gradient
estimators off the limit of perfect approximation as is strongly suggested by our experiments. Furthermore, it
would be very desirable to construct an estimator which is as fast as the one derived in [14] since their
proposal is more performance than ours but unfortunately completely limited to the special case of a CNF.
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Appendix A. Derivation of the estimator for forward KL

A natural approach to estimating the gradient of the forward KL

d

dθ
KL(p,qθ) =

d

dθ
Ex∼p

[
log

(
p(x)

qθ(x)

)]
, (36)

is to re-weight the expectation value with respect to the target p such that it becomes an expectation with
respect to q

d

dθ
KL(p,qθ) = Ex∼p

[
∂

∂θ
log

(
p(x)

qθ(x)

)]
= Ex∼qθ

[
p(x)

qθ(x)

∂

∂θ
log

(
p(x)

qθ(x)

)]
(37)

= Ex∼qθ

[
∂

∂θ

p(x)

qθ(x)

]
. (38)

We then use the reparameterization trick to obtain

d

dθ
KL(p,qθ) = Ez∼qZ

[
∂

∂θ

p(x)

qθ(x)

∣∣∣∣
x=gθ(z)

]
.

Using the relation (11) of the partial derivative in (38) with the path and total derivative, this can be
rewritten as

d

dθ
KL(p,qθ) = Ez∼qZ

[
d

dθ

p(gθ(z))

qθ(gθ(z))
−▼θ

p(gθ(z))

qθ(gθ(z))

]
.

The first summand on the right-hand-side is vanishing because

Ez∼qZ

[
d

dθ

p(gθ(z))

qθ(gθ(z))

]
=

d

dθ
Ez∼qZ

[
p(gθ(z))

qθ(gθ(z))

]
=

d

dθ
Ex∼qθ

[
p(x)

qθ(x)

]
= 0 ,

where we have used in the last step that Ex∼qθ

[
p(x)
qθ(x)

]
=
´
ddxp(x) = 1.

We have thus obtained the expression of the forward KL gradient in terms of a path-derivative given in
the main text, i.e.

d

dθ
KL(p,qθ) =−Ez∼qZ

[
▼θ

p(gθ(z))

qθ(gθ(z))

]
(39)

We note that this relation can also be derived using the so-called DReG-identity of Tucker et al [15].

Appendix B. Variance of the reinforce estimator

The ReinfPQ estimator was defined in (26) as

d

dθ
KL(p,qθ)≈

1

N

N∑
i=1

w̃i

Ẑ

∂

∂θ
log(w̃i) (40)

=
1

N

N∑
i=1

e−S(xi)

qθ(xi)Ẑ

∂

∂θ
logqθ(xi).

15



Mach. Learn.: Sci. Technol. 3 (2022) 045006 L Vaitl et al

Its second moment is therefore given by

1

N
Ex∼qθ

[
ŵ(x)2

(
∂

∂θ
logqθ(x)

∂

∂θ
logqθ(x)

)]
.

In the limit of perfect approximation, i.e. qθ(x) = p(x) for any x ∈ X , it holds that ŵ(x) = 1 and thus the
covariance of the ReinfPQ estimator converges to the Fisher information of the variational distribution

1

N
Ex∼qθ

[
∂

∂θ
logqθ(x)

∂

∂θ
logqθ(x)

]
︸ ︷︷ ︸

=I(θ)

=
1

N
I(θ) , (41)

and thus is generically non-vanishing even in the limit of perfect approximation.

Appendix C. Asymptotic behavior of path gradient estimators of forward KL divergence

Here, we analyze the bias and variance of the PathPQ (24) and ZPathPQ (25) estimators, which are
defined as

PathPQN =− 1

N

N∑
i=1

w̃i

1
N

∑N
j=1 w̃j

▼θ log w̃i,

ZPathPQN = PathPQN +
1

N2

N∑
i=1

(
w̃i

1
N

∑N
j=1 w̃i

)2

▼θ log w̃i.

Throughout this appendix, we use a shorthand notation for w̃i = w̃(xi) = w̃(gθ(zi)). Using
wi = w̃i/Z= p(xi)/qθ(xi), we can rewrite the estimators above as

PathPQN =− 1

N

N∑
i=1

1
1
N

∑N
j=1wj

▼θwi, (42)

ZPathPQN = PathPQN +
1

N2

N∑
i=1

wi(
1
N

∑N
j=1wi

)2▼θwi, (43)

where we used wi▼θ logwi = ▼θwi. Note that Eqθ [w] = 1.

C.1. Bias
Let ϵ≡ 1

N

∑N
i=1(1−wi). Then, Eqθ [ϵ] = 0 and ϵ=Op(N−1/2), and therefore

1
1
N

∑N
j=1wj

= (1− ϵ)
−1

= 1+ ϵ+ ϵ2 + ϵ3 +Op(N
−2). (44)

Since {wi}Ni=1 are independent, the following hold for any function κ(·):

Eqθ [κ(wi)ϵ] = Eqθ

κ(wi)
1

N

N∑
j=1

(1−wj)


=

1

N
Eqθ [κ(wi)(1−wi)], (45)

Eqθ [κ(wi)ϵ
2] = Eqθ

κ(wi)
1

N2

 N∑
j=1

N∑
k=1

(1−wj)(1−wk)


= Eqθ

κ(wi)
1

N2

(1−wi)
2 +
∑
j ̸=i

(1−wj)
2 +

N∑
j=1

∑
k̸=j

(1−wj)(1−wk)


= Eqθ

[
κ(wi)

1

N2

(
(1−wi)

2 +(N− 1)Ew∼qθ [(1−w)2]
)]

=
1

N
Ew∼qθ [κ(wi)]Ew∼qθ [(1−w)2] +Eqθ

[
κ(wi) · Op(N

−2)
]
, (46)
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Eqθ [κ(wi)ϵ
3] = Eqθ

κ(wi)
1

Np 3

(1−wi)
3 +
∑
j ̸=i

((1−wj)
3 + 3(1−wi)(1−wj)

2)


= Eqθ

[
κ(wi)

1

N3

(
(1−wi)

3 +(N− 1)Ew∼qθ

[
((1−w)3 + 3(1−wi)(1−w)2)

])]
= Eqθ

[
κ(wi) · Op(N

−2)
]
. (47)

C.1.1. PathPQ
By using equations (44)–(47), the bias of the PathPQ estimator (42) from the true gradient−Ew∼qθ [▼θw] is
evaluated as

Eqθ [PathPQN] +Ew∼qθ [▼θw]

=− 1

N

(
Ew∼qθ [(1−w)▼θw] +Ew∼qθ

[
(1−w)2

]
Eqθ [▼θw]

)
+Ew∼qθ

[
Op(N

−2) ·▼θw
]
. (48)

The bias of the PathPQ estimator is of N−1 times smaller scale than the true gradient. However, the leading
term vanishes in the converging phase where qθ(x)≈ p(x) holds. For example, if w= 1+Op(N−1), the bias
is of N−2 times smaller scale. We suppose that this, however, does not affect the practical training
performance, because the estimation error is dominated by the variance, as will be shown in appendix C.2.

C.1.2. ZPathPQ
Similarly, by using equations (44)–(47), the expectation value of the second term of the ZPathPQ
estimator (43) is evaluated as

Eqθ

 1

N2

N∑
i=1

wi(
1
N

∑N
j=1wi

)2▼θwi

=
1

N
Ew∼qθ [w▼θw] +Ew∼qθ

[
Op(N

−2) ·▼θw
]
.

Therefore the bias of the ZPathPQ estimator is given as

Eqθ [ZPathPQN] +Ew∼qθ [▼θw]

=− 1

N

(
Ew∼qθ [(1− 2w)▼θw] +Ew∼qθ

[
(1−w)2

]
Eqθ [▼θw]

)
+Ew∼qθ

[
Op(N

−2) ·▼θw
]
. (49)

A notable difference from the PathPQ estimator is that the leading order term does not vanish when w≈ 1,
and therefore the bias is always N−1 times smaller than the true gradient.

C.2. Variance
We analyze the asymptotic behavior of the variance of gradient estimators by using the Delta Method (see
e.g. theorem 5.5.28 in Casella and Berger [44] or paragraph 4.9 in Small [45]):

Theorem 1 ([45]). Assume that f(x,y,z) is a differentiable function, and {(Xi,Yi,Zi)}Ni=1 are independently and
identically distributed. Assume that the distribution of (Xi,Yi,Zi) satisfies the conditions for the central limit
theorem, and hence X= 1

N

∑N
i=1Xi, Y= 1

N

∑N
i=1Yi, and Z= 1

N

∑N
i=1Zi are normally distributed in the

asymptotic limit. Then it holds that

Var( f(X,Y,Z)) = f 2xVar(X)+ f2yVar(Y)+ f2z Var(Z)

+ 2fxfyCov(X,Y)+ 2fyfzCov(Y,Z)+ 2fzfxCov(Z,X)

+O(N−2) , (50)

where

(fx, fy, fz) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)∣∣∣
(x,y,z)=(E[X],E[Y],E[Z])

are the derivatives evaluated at (x,y,z) = (E[X],E[Y],E[Z]).
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C.2.1. PathPQ
The PathPQ estimator (42) is a ratio estimator with two variables as

PathPQN ≡ f(X,Y) =− 1
1
N

∑N
j=1wj︸ ︷︷ ︸

1/Y

1

N

N∑
i=1

▼θwi︸ ︷︷ ︸
X

=−X

Y
.

Since

fx =− 1

E[Y]
=− 1

Eqθ [w]
=−1,

fy =
E[X]
E[Y2

]
=

Eqθ [▼θw]

Eqθ [w]
2
,

Var[X] =
1

N
Varqθ [▼θw],

Var[Y] =
1

N
Varqθ [w],

Cov[X,Y] =
1

N
Covqθ [▼θw,w],

Equation (50) gives

Var(PathPQN) = Var( f(X,Y))

=
1

E[Y]2
Var(X)+

E[X]2

E[Y]4
Var[Y]− 2

1

E[Y]
E[X]
E[Y]2

Cov[X,Y] +O(N−2)

=
1

N
Varqθ [▼θw] +

Eqθ [▼θw]2

N
Varqθ [w]

− 2
Eqθ [▼θw]

N
Covqθ [▼θw,w] +O(N−2). (51)

C.2.2. ZPathPQ
ZPathPQ (42) has an additional term to PathPQ, i.e.

ZPathPQN ≡ f ′(X,Y,Z) = f(X,Y)+ g(Y,Z), where

g(Y,Z) =
1(

1
N

∑k
j=1wj

)2
︸ ︷︷ ︸

Y
−2

1

N2

k∑
i=1

wiwi▼θwi︸ ︷︷ ︸
Z

=
Z

Y
2 .

Since

f ′x = fx ,

f ′y = fy + 2
E[Z]
E[Y3]

=
Eqθ [▼θw]

Eqθ [w]
2

+
2

N

Eqθ [w▼θw]

Eqθ [w]
3

,

f ′z =− 1

E[Y]2
=− 1

Eqθ [w]
2
,

Var(Z) =
1

N3
Varqθ (w▼θw) ,

Cov(Y,Z) =
1

N2
Covqθ [w,w▼θw],

Cov(Z,X) =
1

N2
Covqθ (w▼θw, ▼θw) ,
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Equation (50) gives

Var(ZPathPQN) = Var( f ′(X,Y,Z))

= Var(X)f ′2X +Var(Y)f ′2Y +Var(Z)f ′2z
+ 2f ′xf

′
yCov(X,Y)+ 2f ′yf

′
zCov(Y,Z)+ 2f ′z f

′
xCov(Z,X)

+O(N−2)

=
1

N
Varqθ [▼θw] +

Eqθ [▼θw]2

N
Varqθ [w]

− 2
Eqθ [▼θw]

N
Covqθ [▼θw,w] +O(N−2). (52)

We see that PathPQ and ZPathPQ have the same leading order variance (compare (51) and (52)). This is
because the difference g(Y,Z) between the two estimators is Op(N−1) and thus its contribution to the
variance is O(N−2).

C.3. Summary
Our analysis revealed that

• Both of the PathPQ and the ZPathPQ estimators have the biases, (48) and (49), that are ofN−1 times smaller
order than the true gradient. However, when the model distribution qθ approaches the target distribution p
in the converging phase of training, the leading order bias vanishes for PathPQ, while it stays for ZPathPQ.
Therefore, we can say that PathPQ has a smaller bias than ZPathPQ in the converging phase.

• The PathPQ and ZPathPQ have the same leading order variances, (51) and (52), which isN−1 times smaller
(hence the standard deviation is N−1/2 times smaller) order than the sample gradients.

• For both estimators, the estimation error is dominated by the standard deviation, and therefore, we suppose
that the advantage of PathPQ in terms of the bias in the converging phase does not have a large effect on the
training performance.

We conclude that both estimators should perform similarly in the converging phase.

Appendix D. Initial training phase behavior of path gradient estimators of forward KL
divergence

Weight degeneracy [38] can become a serious issue for importance sampling. Weight degeneracy is the
phenomenon of only a few importance weights taking high values, while the other degenerate weights take
negligible values. At the start of training in high-dimensional problem settings, it is often the case in practice
that only a singular sample is non-degenerate. Here we will show this phenomenon is problematic for the
ZPathPQ estimator.

In order to analyze this initial training regime theoretically, we assume without loss of generality that the
N-th sample is singular, i.e.

p(xi)

p(xN)
=O(ϵ),

∥∇xip(xi)∥
p(xN)

=O(ϵ) for i= 1, . . . ,N− 1, (53)

and

qθ(xi) =O(1), ∥∇xqθ(xi)∥=O(1) for i= 1, . . . ,N, (54)

for small ε> 0. The former assumption (53) comes from the fact that most interesting densities in physics
have an exponential fall-off around their modes, while the latter assumption (54) comes from the fact that all
samples {xi}Ni=1 are generated from the sampler qθ. We also assume that ϵ≪ N−1,d, and ignore the scaling
w.r.t. N and d.
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Let τ = p(xN)8. Then, the assumptions (53) and (54) lead to

∇xi
p(xi)

q(xi)
=∇xi(p(xi))

1

q(xi)
− p(xi)

q(xi)2
∇xiq(xi)

=O(τϵ)
1

q(xi)
−O(τϵ)∇xiq(xi)

=O(τϵ)

for i= 1, . . . ,N− 1. Using the mild assumption that ∂x
∂θ does not diverge, the corresponding path-wise

gradient is in the same order:

▼θw(xi) =
∂w(xi)

∂xi

∂xi
∂θ

=O(τϵ). (55)

D.1. PathPQ
Under the singularity assumptions, (53) and (54), the PathPQ estimator (42) can be evaluated as

PathPQN =
N∑
i=1

1∑N
j=1wj

▼θwi

=
1∑N
j=1wj

(
N−1∑
i=1

▼θwi +▼θwN

)

=
1

wN
(1−O(ϵ))(▼θwN +O(ϵ))

=
▼θwN

wN
+O(ϵ).

Therefore, if ∥∇xNp(xN)∥= O(τ) and hence ▼θwN
wN

= O(1), the gradient direction is dominated by the
singular (N-th) sample. Interestingly, the dominating term for the PathPQ gradient is proportional to the
dominating term for the PathQP gradient:

PathQPN =
1

N

N∑
i=1

▼θwi =
1

N
▼wN +O(τϵ).

This implies that the PathPQ and the PathQP gradient behave similarly in the initial training phase, and
could point to an explanation for the observation of Geffner and Domke [23] that their path-wise gradient
estimators for alpha-divergences—such as the forward KL—seem to optimize the reverse KL in a high
dimensional setting.

D.2. ZPathPQ
Under the same singularity assumptions, (53) and (54), the ZPathPQ estimator (43) on the other hand does
not have an order one contribution:

ZPathPQN =
N∑
i=1

 1∑N
j=1wj

− wi(∑N
j=1wj

)2
▼θwi

=

 1∑N
j=1wj

− wN(∑N
j=1wj

)2
▼θwN +O(ϵ)

=

(
1

wN
− wN

w2
N

)
▼θwN +O(ϵ)

=O(ϵ).

The ZPathPQ estimator is thus expected to struggle in the initial training phase with its weak gradient signal.

8 Note that it is assumed that τ = O(1) in section 2.2 for simplicity.
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Figure 5 empirically validates this behavior. This might also explain why the ZPathPQ estimator shows
unstable behavior in optimizing VAEs (see e.g. experiments on structured MNIST in Tucker et al [15])9.

Appendix E. Experimental details

E.1. Double-well
For the quantum mechanical particle in the double-well potential, we trained a flow with RealNVP couplings
which uses tanh activation, eight coupling layers with three fully connected layers with a width of 200
neurons each. The batch size was 4000. We used adaptive Moment estimation (ADAM) with an initial
learning rate of 5×10−5, β = (0.9,0.999). The learning rate was decreased using a plateau learning rate
schedule with a patience of 3000 to a minimum of 10−7. We used gradient norm clipping with a l2 norm and
a max norm of 1.0. The base distribution for the normalizing flow was a univariate normal distribution with
a standard deviation of 10. The baselines estimators were run for 200k and 170k epochs, while the path
gradient estimators were run for 100k epochs, this ensured that the wall-time duration for training the
path-wise gradient estimators did not exceed the duration of training the baselines. The training was done on
NVidia P100 GPUs.

E.2. Estimating the forward ESS
For the quantum mechanical particle in the symmetric double-well, we follow [7]. Ten Hamiltonian Markov
Chains (HMCs) were run with 100k steps, 50 sub-steps and an overrelax frequency of 10, totaling in 1
million samples. We used 10k equilibrating steps. An overrelax step mirrors the sample around zero. Due to
the symmetry of the Double-Well, both the original and the mirrored sample have the same probability.
Thus the MC step would always be accepted.

E.3. Full results
Results for the forward and reverse ESS form0 = 2.75 can be found in table 3.

In figure 9 the forward and reverse ESS form0 ∈ {2.75,3.03.25} are shown. In particular, the top plot
shows the results from table 3.

Table 3. Results of training a RealNVP form0: 2.75.

d ReinfPQ ZPathPQ PathPQ RepQP PathQP

FW ESS 8 0.99± .01 1.00± .00 1.00± .00 0.57± .20 1.00± .00
16 0.79± .18 0.99± .00 0.99± .00 0.79± .18 0.69± .18
32 0.45± .18 0.97± .01 0.90± .05 0.06± .02 0.20± .17
64 0.00± .00 0.17± .15 0.04± .03 0.00± .00 0.00± .00

Rev ESS 8 1.00± .00 1.00± .00 1.00± .00 1.00± .00 1.00± .00
16 0.99± .00 0.99± .00 0.99± .00 0.99± .00 0.99± .00
32 0.95± .01 0.98± .00 0.98± .00 0.85± .05 0.98± .00
64 0.48± .13 0.90± .01 0.69± .14 0.60± .18 0.53± .13

Note: Best results within a statistical significance of p-value < 0.05, according to the Wilcoxon tests, are shown in bold.

9 The reference refers to the PathPQ and ZPathPQ estimators for the loss of the variational encoder as IWAE-STL and RWS-DReG respect-
ively.
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Figure 9. Forward ESS of trained RealNVP by varying over gradient estimators, dimensionality, and separation parameterm0.

Appendix F. Sample Pytorch code for algorithm 1

def path_backward(flow, batch_size, action):
"""
Parameters
----------
flow : normalizing flow,

has function forward & reverse,
give back sample and log_q of the sample
as well as sample_base

batch_size : number of samples in batch
action: function that computes action of sample
"""
with torch.no_grad():

z = flow.sample_base(batch_size)
x1, _ = flow.forward(z)

x2 = x1.requires_grad_()
_, log_q = flow.reverse(x2)

log_p = -action(x2)
log_w_tilde = log_p - log_q
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# The grad call deletes the computational graph from memory
# When using e.g. PathPQ, we use different grad_outputs
grad = torch.autograd.grad(outputs = log_w_tilde,
grad_outputs = -torch.ones_like(log_w_tilde), inputs = x2)[0]

# Add to avoid rare instabilities
# grad = torch.where(grad! = grad, torch.zeros_like(grad), grad)

x3, _ = flow.forward(z)

(x3 * grad).mean().backward()
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