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Abstract
Accuracy in discriminating between different received coherent signals is integral to the operation
of many free-space communications protocols, and is often difficult when the receiver measures a
weak signal. Here we design an optical communication scheme that uses balanced homodyne
detection in combination with an unsupervised generative machine learning and convolutional
neural network (CNN) system, and demonstrate its efficacy in a realistic simulated coherent
quadrature phase shift keyed (QPSK) communications system. Additionally, we design the neural
network system such that it autonomously learns to correct for the noise associated with a weak
QPSK signal, which is distributed to the receiver prior to the implementation of the
communications. We find that the scheme significantly reduces the overall error probability of the
communications system, achieving the classical optimal limit. We anticipate that these results will
allow for a significant enhancement of current classical and quantum coherent optical
communications technologies.

1. Introduction

Nonorthogonality of coherent states allows for their use in various quantum and classical optical technology
systems, such as quantum networks (Loock 2011) and quantum metrology (Wiseman & Milburn 2009,
Armen et al 2002), as well as classical optical communications schemes (Grosshans et al 2003, Betti et al
1995, Grosshans & Grangier 2002). Coherent states are relatively tolerant to losses and nonlinearities in
communications channels (Giovannetti et al 2004). Additionally, with the introduction of
application-specific integrated circuits (ASICS) and field-programmable gate arrays (FPGAs), research
interest involving coherent optical communications is rapidly growing (Yoshida et al 2011). Furthermore,
coherent optical phase shift keying, in particular QPSK, communications systems have been demonstrated to
have high data transfer rates and low complexity (Patnaik & Sahu 2013). Due to such benefits, coherent
optical QPSK is extensively employed in terrestrial (Feng et al 2018) as well as inter-satellite communications
(Bindushree et al 2014), such as the global positioning system (GPS), and common data links (CDL).
However, the accurate discrimination of coherent states is always a barrier for efficient classical
communications, in particular where the receiver site detects weak, low signal-to-noise ratio (SNR) coherent
states such as in deep space communications (Kaushal & Kaddoum 2017). Realistic coherent optical
communications systems involve the propagation of such signals through various turbulent media that may
decrease the SNR (Ke et al 2018), thus increasing the difficulty in discriminating between the four possible
phase-shifted keys. As a result, the noisy received QPSK signals can significantly limit the ability to establish
such communications in a real-world environment. Here we make use of generative machine learning
techniques (Vincent et al 2008) in combination with a convolutional neural network (Lohani et al 2018) to
design a communications system that is robust to signal fading (or weak coherent signals) and demonstrate
its ability to significantly reduce the error probability in discriminating between received coherent QPSK
signals in a realistic simulated communications setting.
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Figure 1. Schematic of the robust coherent optical communications design with the machine intelligence aided homodyne
receiver. (a) In the pre-communication step, optical QPSK signals (Q1, Q2, Q3, Q4) are simulated to propagate through paths I,
and, II. Prior to communication, the homodyne measurements of coherent states |α′⟩ along the path I are used as the target sets
and training sets for the generative neural networks (GNN) and classifying convolutional neural networks (CNN). Similarly, the
coherent states |α⟩ along the path II are used as the training sets for the generative network. Additionally, SNR along the paths I
and II are assumed to be independently varied. (b) A communication between Alice and Bob. The coherent states |αm⟩ are the
actual unknown message signals sent to and received at the receiver. Prior to communication, the pre-trained neural networks
setup is distributed to the receiver (Bob). Then, Alice (Transmitter) sends weak unknown signals |αm⟩ which are efficiently
demodulated at the homodyne receiver with the distributed GNN and CNN.

Generative machine intelligence systems have recently been applied to a variety of research areas
(Sanchez-Lengeling & Aspuru-Guzik 2018, Jang et al 2018, Li et al 2018, Donahue et al 2018, Torlai et al
2018). Here we implement an unsupervised denoising autoencoder (Vincent et al 2008) as the generative
neural network (GNN), a concept which has been demonstrated to be useful in multiple applications
(Gondara 2016, Fichou & Morlock 2018, Cheng et al 2018). Recently, several research groups have shown the
power of machine intelligence in the context of coherent optical communications (Wang et al 2017, Zhang
et al 2018, Lohani & Glasser 2018, Khan et al 2017, Fan &Wu 2017, Kulin et al 2017). Here we use a
generative neural network, in combination with a convolutional neural network (CNN), to make clean
reconstructions and accurate classifications of received optical QPSK signals even for extremely low SNR
scenarios, which greatly reduces the overall error probability of the communications design, achieving the
classical optimal (i.e homodyne limit (Proakis & Salehi 2001)) or standard quantum limit (SQL). In previous
optical communications techniques using machine learning, unknown received optical signals (including
images) have been classified with high accuracy using only a CNN as the classifier. It is, however, desirable for
schemes with only a CNN as the classifier to have a training set with a large number of known homodyne
measurements, which is always unbounded. This limits the discrimination efficiency of the communications
design with respect to random signal (amplitude) fading of coherent states. Additionally, such setups with
only a CNN as a classifier are based on supervised learning that requires a labelling for each training
homodyne measurement. In practice, it is hard to accurately label the homodyne outputs of a received QPSK
signal, particularly for very low SNRs, which may require an extra detector that further adds some
discrimination error increasing the overall error probability of the communication design. The present
unsupervised learning strategy does not require any labelling for the weak (low SNR) coherent states, which
are autonomously fed to the networks and reconstructed at the GNN outputs. Afterwards, the generated keys
are classified by a CNN purely trained with the homodyne data associated with high SNR QPSK signals
(desired), which are easily distinguished and labelled, prior to the start of communications (i.e. pre-trained
before messages are sent and received). These novel aspects of the current design pave the way towards the
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Figure 2. Schematic of the architecture of the neural networks setup. Networks consist of generative neural networks (GNN)
followed by classifying convolutional neural networks (CNN). The received QPSK homodyne signals are fed to the input of the
GNN which reconstructs clean patterns as the output. The generated keys are then forwarded to the CNN, which classifies them.
The abbreviation FCL stands for a fully connected layer.

robust and realistic implementation of homodyne receivers in efficiently demodulating signals in the
coherent free space optical communications regime.

The overall communications system design is shown in figure 1. A laser beam is split into two paths, path
I and path II, with a beam splitter. The branches I and II are used in training the networks prior to
communication. Here the branching ensures the realistic implementation of an unsupervised learning
(autonomous learning) with the neural networks setup. Note that the QPSK signals |α′⟩, and |α⟩ on path I
and II, respectively, share the same QPSK state (key value) so that the homodyne detectors on both paths
always read the same key value regardless the strength of noise (SNR) in either branch as shown in figure
1(a). The QPSK signal |αm⟩ (‘m’ for message) on the communications channel is assumed to be an unknown
message key that has been sent and received at the receiver end as shown in figure 1(b). In the prior
communication setup, the homodyne outputs of the QPSK signals |α⟩ on path II is fed to the input of the
GNN, which reconstructs a new signal measurement at its output that is finally compared with the
homodyne output of signals |α′⟩ from path I. Next we optimize the reconstruction loss and update the GNN
parameter space (see ‘Methods’). At the same time we use the homodyne measurements of the QPSK signals
|α′⟩ to train the classifying CNN network (see ‘Methods’). Note that the networks are pre-trained, and this
pre-training may take place locally, then be distributed prior to implementation of the communications
(which is the weak signal |αm⟩ sent). Finally, the machine intelligence aided homodyne receiver classifies
unknown QPSK message signals |αm⟩ at the receiver and the corresponding error probability is evaluated.
Examples of the homodyne measurement of a received QPSK signal and corresponding clean reconstruction
are shown in figure 2. Furthermore, we evaluate the error probability for various combinations of |α⟩ (or
|αm⟩) and |α′⟩, various scanning phase ranges of the local oscillator, various SNR values of the transmitted
message signal |αm⟩, and wide range of phase noise. Finally, we show a significant improvement in the overall
error probability when the neural network system is used.

2. Methods

2.1. Architecture of the GNN
The GNN consists of three sections—an encoder, latent space, and a decoder (generator). The encoder
begins with a two dimensional convolutional layer with a kernel of size [5,5], stride length of 1, batch size of
10, feature mappings of 20, same padding, and a ReLU activation function. After this we apply a dropout
with a rate of 20% followed by a max-pool layer with a kernel of size [2,2] with a stride length of 2. Then,
again, we connect a two dimensional convolutional layer to the max-pool with the same parameters and
dropout as discussed above. Next we attach a fully connected layer with the ReLU activation function, where
a number of neurons is always equal to the size of the latent space. Note that for the consistency we always
choose the size of the latent space as half of the input dimension (Lohani & Glasser 2019). For example, input
dimensions of 30× 30, and 16× 16, respectively, have a 15× 15, and 8× 8 sized latent space. Finally, the
encoder convolutes the input dimension of [10 (batch size), width, height, 1 (input channel)] to [10, latent
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space dimension]. At the beginning of the decoder, the latent space is connected to a fully connected layer
with [width/2× height/2× 20 (feature mappings)] neurons, which is followed by a dropout with a rate of
20%. After this we apply a convolutional layer with stride length of 1 and transpose-convolutional (or
deconvolutional) layer with stride length of 2, each with a kernel of size [5,5], feature mappings of 20, same
padding, and a ReLU activation function. Note that each layer is followed by a dropout with a rate of 20%.
Finally a convolutional unit with a single feature mapping generates a clean, or less noisy, homodyne
measurement as the output. Here, the generator decodes the latent space of size [10 (batch size), latent space
dimension] into the outputs of size [10 (batch size), width, height]. In order to optimize the clean

reconstructions, a square reconstruction loss (error) L
(
GNN(α),GNN(α′)

)
is evaluated, where GNN(α) is

the output of the GNN, and GNN(α′) is the target. Finally, we minimize the average reconstruction loss
given by equation (1) using adamoptimizer of tensorflow (Abadi et al 2015) with a learning rate of 0.008.

θ ,θ ′ = θ ,θ ′argmin
1

N

N∑
i

L
(
GNN(α),GNN(α′)

)
, (1)

where θ and θ′ represent the encoder and decoder parameter space, respectively. The schematic of the GNN
is shown in figure 2.

2.2. Architecture of the classifying CNN
The classifying CNN network begins with a convolutional unit with a kernel of size [2,2], batch size of 1,
feature mappings of 10, same padding, stride length of 1, and a ReLU activation function. This is followed a
max-pool layer with a kernel of size [2,2] and stride length of 2. Then we connect fully connected layers
(FCLs) with 400 neurons and 50 neurons, which are consecutively followed by dropout layers with a rate of
80%, and 40%, respectively. Note that we use ReLU activations for both FCLs. Next we attach a final FCL
with 4 neurons with a linear activation function to the end, followed by a softmax operation. In order to train
a CNN to classify the generated clean homodyne outputs, we always use the target set of the GNN i.e. the
homodyne measurements at the signal strength of |α′| as shown in path I of figure 1. We randomly simulate
200 homodyne outputs per each QPSK key for the given |α′| as discussed in the results section, resulting in a
total of 800 homodyne outputs. The data set is split into a training set with 170 measurements and a test set
with 30 measurements, again, per each QPSK. The target of each QPSK is set as the one-hot vector output,
for example, the first target key is [1,0,0,0], the second key is [0,1,0,0], and so on. After this the parameter
space of the CNN is optimized by minimizing a softmax cross-entropy loss function using adamoptimizer
with a learning rate of 0.001 up to 10 epochs. The neural networks’ hyper-parameters are manually
optimized as discussed in (Lohani et al 2018). Note that pre-trained CNN network has unity accuracy with
respect to the test homodyne measurements. The schematic of the classifying CNN is shown in figure 2.

Results

Here we simulate QPSK coherent signals |α′k⟩, |αk⟩ and |αk
m⟩ for k ∈ {1,2,3,4} with,

α′k = |α′|eiϕ
k

,αk = |α|eiϕ
k

, and αk
m = |αm|eiϕ

k

,

such that ϕk = (k− 1

2
)
π

2
, (2)

where each coherent state has some mean amplitude (e.g. |α|) and phase (ϕ). In order to simulate a balanced
(one output from a 50:50 beam splitter is subtracted from the other as shown in figure 1) homodyne
measurement, we use a local oscillator, β = |β|eiγ , with amplitude |β| >> |α|. Note that we set β= 100 for
all of the simulations presented in this paper. As a result, the mean signal, ⟨n⟩, and variance, (∆n)2, at the
detector are given by

⟨n⟩= 2|β|⟨α|Xγ |α⟩ and (∆n)2 = |β|2,

given that Xγ =
a†eiγ + ae−iγ

2
, and γ : γ+π/2 (3)

where a† and a are the raising and lowering operators, respectively. Since the minimum error probability
(Perr) of discriminating between the QPSK signals (keys) are bounded below classically by the homodyne
limit(Proakis & Salehi 2001), and quantum mechanically by the Helstrom limit(Helstrom 1969), we design
and demonstrate that the present communication setups achieve the classical minimum error limit even for
extremely low SNR scenarios. In order to calculate the SQL (PHDerr ) and the Helstrom limit (PHelerr ), we use the
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following relations, which are discussed in detail in (Proakis & Salehi 2001, Becerra et al 2013, Izumi et al
2012),

PHDerr = erfc(
α√
2
)
[
1− 1

4
erfc(

α√
2
)
]
;

PHelerr = 1− 1

8
e−|α|2

(√
cosh |α|2 + cos |α|2

+
√
sinh |α|2 + sin |α|2 +

√
cosh |α|2 − cos |α|2 +

√
sinh |α|2 − sin |α|2

)2
, (4)

where erfc(u)= 2√
π

´∞
u e−u2 du, is the complementary of the error function.

Next, we implement a GNN consisting of three sections—an encoder, latent space, and a generator. The
encoder learns the important features of the signals and stores them into a smaller dimension, which is a
latent space. The latent space is then decoded through the generator which finally reconstructs the desired
clean QPSK homodyne outputs. The implemented GNN uses convolutional units as the encoder and
transpose-convolutional units as a decoder. The encoder contains two convolutional layers, a single
max-pool layer, and a single fully connected layer (FCL) to the latent space, whereas the generator starts with
a FCL followed by a convolutional layer, a transpose-convolutional layer, and again a convolutional layer as
shown in figure 2. Similarly, in order to classify the reconstructed, as well as uncorrected (noisy) QPSK
homodyne outputs, we use a CNN at the end. The CNN consists of a single convolutional layer followed by
max-pooling layer, and two FCLs. Finally, the FCL is connected with an output layer where classification
decisions are made as shown in figure 2. The architectures of the GNN and CNN are described in detail in
the ‘Methods’ section. The error probability introduced by the network (Pnetworkerr ) is further associated with
the error probability while labeling the homodyne outputs for the training sets of the CNN classifier (Plabelerr ),
error probability of the pre-trained CNN (PtCNNerr ), and error probability for making predictions of the
unknown message signal (Pαm

err ), which is equal to the ratio of the total number of incorrect classifications to
the total number of optical QPSK signal received, resulting in the overall error probability (Perr) in
discriminating the received noisy QPSK signals at the receiver given by,

Perr = 1− (1− PHDerr )(1− Pnetworkerr )

= 1− (1− PHDerr )(1− Plabelerr )(1− PtCNNerr )(1− Pαm
err ). (5)

With the aid of the unsupervised GNN in the communication design, we are able to train (pre-train) the
CNN classifier such that both Plabelerr and PtCNNerr are always 0, which is practically possible with very high SNR
data set as discussed in the next paragraph. This leads the overall error probability of the communication
design to equation (6),

Perr = 1− (1− PHDerr )(1− Pαm
err ). (6)

We then evaluate the error probability and plot it as a log10Perr and a signal strength |α| in decibels,
|α|dB = 10log10(|α|).

First we evaluate the Perr with respect to the amplitude |α′| along the path I, given different SNRs in path
II. Here we scan the local oscillator phase from 0 to 2π with a grid consisting of 900 points. We randomly
simulate 200 homodyne outputs for each QPSK signal for 17 different values of |α′| from−15 dB to 9.08 dB,
and set them as the target patterns at the output of the GNN. Similarly, we do the same for path II and
randomly simulate 200 homodyne outputs for each QPSK signal for |α|=−12.0 dB,−10.5 dB, and
−9.3 dB, and feed them to the encoder of GNN. Note that before feeding the signals to the GNN, we convert
the homodyne outputs (from path I and II) into corresponding 30× 30 pixels images as shown in figure 2. In
order to optimize |α′| at various values of |α|, we keep |α| fixed at−12.0 dB,−10.5 dB, and−9.3 dB, and
vary |α′| for all of them separately, such that 17 different GNN configurations are trained up to 150 epochs
(approximately 8 minutes) separately for each |α|, for a total of 51 pre-trained GNNs. Also, we use the same
|α′| data set, separately, to pre-train the classifying CNN networks as shown in figure 1(a). Then the
pre-trained networks are distributed to the receiver site (Bob).

In order to establish a communication setup as shown in figure 2(b), we randomly simulate 360
homodyne outputs (90 per each QPSK key) for each |αm|=−12.0 dB,−10.5 dB, and−9.3 dB as the test
sets. Note that message data and training data for the pre-communication setup share no similarity as they
are randomly simulated at different times. Finally at the receiver, the homodyne measurements of |αm| are
fed to the distributed pre-trained GNN which generates desired homodyne measurement as the output. After
that, in order to calculate Perr , the reconstructed images (generated homodyne measurement outputs) from
the GNN are forwarded to a pre-trained CNN and the corresponding Perr is measured, the results of which
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Figure 3. (a) Error probability (log10Perr) versus target signal strength (|α′|) at different SNR levels of message signal strength
(|αm|), and (b) error probability versus scanning phase range of the local oscillator. The labels on the x-axis represent the phase
range from 0 to the given value times π. For example, the x-label 1.2 represents the phase range from 0 to 1.2π. HD-GNN-CNN
shows the results from the networks setup that consists of both the GNN and classifying CNN at the receiver.

are shown in figure 3(a). Note that the distributed pre-trained networks reconstruct and then classify |αm| on
the order of milliseconds. The Perr for |αm|=−12.0 dB,−10.5 dB and−9.3 dB at various |α′| are shown by
the solid red, green, and blue curves, respectively, with the same color dotted lines representing the
corresponding homodyne limit (PHDerr ), and black solid line representing the Helstrom limit (PHelerr ). We find an
improvement in Perr begins when |α′| ≥ −4.5 dB for all |αm|=−12.0 dB,−10.5 dB, and−9.3 dB. As
expected we obtain better reconstructions and less Perr as we increase |α′| up to−1.5 dB for |αm|=
−12.0 dB, and around 0 dB for,−10.5 dB, and−9.3 dB, after which they begin to saturate. Additionally, we
show that the system’s Perr achieves the corresponding homodyne limit for |αm|=−9.3 dB at |α′|=
−1.5 dB. Similarly we find a difference of 2.4× 10−3, and 6.8× 10−3, respectively, between the Perr and
corresponding homodyne limit for |αm|=−10.5 dB, and−12.5 dB when |α′|= 0.05 dB, and 6.1 dB.
Moreover, the corresponding Perr for |α′| from−2 dB to 4 dB at the given |αm| are zoomed in and shown in
the inset of figure 3(a). After taking into account the various SNR scenarios, we set |α′| relatively high at 9 dB
as the optimized value for all simulations and results discussed in the following paragraphs. Note that this
signal is used in pre-training the neural networks prior to communication, and is not the signal that would
be sent through a realistic communications channel (which is |αm|, and is simulated to be much weaker as
discussed in the following).

Next, we investigate the Perr as the phase scanning range of the detection system is varied. We use the
same training-test data and network settings as discussed above. In order to simulate training and test sets at
various phase scanning ranges, we slice the grid of the homodyne outputs into a number of segments, for
example as discussed in previous paragraph, into a grid of 30× 30 (i.e. 0− 900 points) which represents a
phase scanning from 0 to 2π. Here, we slice it into 28× 28 (0− 784 points), 26× 26 (0− 676 points),
24× 24 (0− 576 points) and so on up to 4× 4 (0− 16 points), for a total of 14 various scanning ranges.
These correspond to phase scanning ranges from 0− 1.74π, 0− 1.5π, 0− 1.28π, and so on up to 0− 0.04π,
respectively. Note that we separately train the GNN and CNN for each scanning range. Also we set the latent
space dimension of the GNN to half of the input dimension for a given range. For example, the input of
28× 28 and 12× 12 points, respectively, have latent space sizes of 14× 14 and 6× 6 points. With the GNN
pre-trained for an |α|= -10.5 dB, and -9.3 dB, and the CNN pre-trained with |α′|= 9 dB, we simulate
sending a message signal |αm|=−10.5 dB, and−9.3 dB (different from training sets) and calculate the Perr
at the given scanning range. Here we reconstruct the 360 homodyne measurements (90 per each QPSK) for
the given message set |αm| and predict the corresponding QPSK value using the CNN, which is finally used
to evaluate the Perr . The Perr resulting from the networks with and without the GNN versus scanning range is
shown in figure 3(b). The improvement in Perr for |αm|=−10.5 dB is shown by red curves, where the dotted
red curve, solid red curve, and horizontal red line represent the Perr without the GNN, with the GNN, and
the homodyne limit, respectively. Similarly, the dotted green curve, solid green curve and a horizontal green
line represent the Perr without the GNN, with the GNN, and the homodyne limit for |αm|=−9.3 dB,
respectively. As discussed above, the black horizontal line is the Helstrom limit. We find a gradual
improvement in the Perr as we increase the scanning phase range of the local oscillator. Furthermore, with the
aid of the GNN in the network and a scanning range of 0− 0.88π, we show significant improvement in Perr
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Figure 4. (a) Error probability (log10Perr) versus signal strength of the message signal (|αm|). (b) Error probability (log10Perr)
versus phase noise strengths associated with the message signal (|αm|) and the local oscillator. The abbreviations HD-CNN and
HD-GNN-CNN, respectively, show the results without and with GNN in the communications setup at the receiver. Furthermore
η represents an efficiency of any arbitrary detecting device at the reciever. Insets: Homodyne results of 9 dB QPSK signal with 5◦

(top-left) and 32◦ (top-right). (Bottom-right) Homodyne results of−9.3 dB with a phase noise of 32◦.

from−0.098 to−0.128, and−0.124 to−0.151 for |αm|=−10.5 dB, and−9.3 dB, respectively. Note that the
homodyne limit for |αm|=−10.5 dB, and−9.3 dB are−0.147 and−0.154, respectively. Additionally, we
find the Perr with the aid of the GNN is minimized and achieves the corresponding homodyne limit when the
scanning range is greater than or equal to 0− 1.14π for |αm|=−9.3 dB. A minimum difference of
2.6× 10−3 between the GNN-aided Perr and homodyne limit is achieved for |αm|=−10.5 dB at a scanning
range of 0− 2π. The Perr corresponding to a scanning range of 0− 1.28π, 0− 1.74π, and 0− 2π are zoomed
in and shown in upper right inset of figure 3(b).

We now turn to investigating the improvement of the Perr at various SNR levels of transmitted message
signals |αm|. In order to generate training input sets for the GNN-network, we randomly simulate 200
homodyne measurements for each QPSK key for 15 values of |α| from−15.0 dB to−9.12 dB. As mentioned
earlier, we set |α′| to 9 dB, and the corresponding 200 homodyne outputs for each QPSK signal are used as
the target for the GNN. The same |α′| is used to train the CNN. Note that we train separately the GNN for
each value of |α|, giving a total of 15 GNNs, while the classifying network (CNN) remains the same (as they
share same target of the GNN). Similarly, we randomly generate 90 homodyne measurements for each QPSK
for 15 values of |αm| from−15.0 dB to−9.12 dB as the message set separately. As a result, message sets and
training sets again share no similarity. With the pre-trained GNN and CNN (distributed), we evaluate the
Perr with and without the GNN in the networks, results of which are shown in figure 4(a). The dotted red and
solid blue curves represent the Perr without the GNN and with the GNN in the networks, respectively.
Similarly, a solid green and a black line represent the homodyne and Helstrom limits for various values of
|αm|, where as a solid magenta line represents the Perr for any arbitrary classifier or device with an efficiency
(η) of 95%. With the aid of the GNN in the networks, we achieve a remarkable improvement in Perr from
−0.119 to−0.147, which nearly reaches the optimal homodyne limit of -0.148 for |αm|=−10.23 dB.
Similarly, for |αm|=−9.27 dB, the Perr achieves an improvement from−0.129 to the optimal homodyne
limit as shown in upper right inset of figure 4(a). Furthermore, even for a very low SNR of |αm|=
−13.49 dB, we significantly reduce the difference between Perr and the homodyne limit from 6.9× 10−2 to
2.7× 10−2. Additionally, for |αm| ≈ −12 dB, we find that the Perr curve with the GNN in the networks
crosses and beats the Perr curve with any 95% efficient detector at the receiver.

Finally, we significantly lower the Perr for the various strengths of phase noise associated with the
transmitted message signals |αm| and the local oscillator, which is shown in figure 4(b). In order to simulate
the phase noise at the receiver, we introduce a phase offset of δ in the mean signal, which is
⟨n⟩ = 2|α||β|cos(ϕ− γ+ δ) such that δ ∈N(0, ρ), a normal distribution with mean 0 and variance ρ2. In
order to train the networks we keep the signal strength of |α′| = 9dB and |α| = −9.3dB fixed along the path
I and II, respectively, as discussed earlier. As homodyne measurements along the path I are used as the target
and training sets for the GNN and classifying CNN, respectively, we assume that this path has only phase
noise strength (ρ) of π/36 radians (5◦), and randomly simulate 200 homodyne outputs for each QPSK signal.
At the same time, we simulate to vary ρ from π/36 to 8π/45 radians (32◦) along the path II, and again
randomly generate 200 homodyne outputs for each QPSK signal and ρ, which are fed to the input of GNN.
Examples of homodyne measurements of the optical QPSK signal along the path I with ρ of 5◦ (top-left) and
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32◦ (top-right) are shown in the inset of figure 4(b). After the networks are pre-trained and distributed, we
randomly simulate 90 homodyne outputs for each QPSK message signal with |αm| = −9.3dB and given ρ.
Note that the training homodyne sets of the networks and the message homodyne sets again share no
similarity. An example for a message QPSK homodyne output with the ρ of 32◦ is shown in the bottom-right
inset of figure 4(b). First, we train the networks separately for each ρ and evaluate the Perr , the results of
which are shown in figure 4(b). The green, black and magenta horizontal lines, respectively, represent the
Homodyne limit, Helstrom limit, and Perr introduced by an arbitrary η= 95% efficient detecting device. The
blue solid and red dotted curves show the Perr with the GNN and without the GNN in the networks,
respectively. With the aid of GNN, we find a significant reduction in the Perr for the wide range of phase noise
strengths from 5◦ to 32◦. For example with the addition of GNN, the Perr for the phase noise strength of 8◦,
20◦, and 26◦ are reduced to the Homodyne limit.

3. Discussion

In conclusion, we have designed a novel coherent optical communications setup that efficiently demodulates
weak coherent optical QPSK states with a robust machine intelligence aided balanced homodyne receiver.
The developed state-of-the-art GNN and CNN system, in combination, corrects for coherent QPSK signals
associated with a wide range of SNRs, resulting in significantly reduced overall error probability of the
communications system, either achieving or approaching the classical optimal limit. Additionally, by using
the same network system, we also reduce the discrimination error probability for various scanning ranges of
the local oscillator at different SNRs. In addition, we illustrate that the network design is robust for the wide
range of phase noise associated with the optical signal and the local oscillator as well. Furthermore, with the
aid of the unsupervised GNN, which reconstructs a clean and desired quadrature measurement at its output,
we have minimized the error probability with a CNN that is exclusively trained with homodyne
measurements associated with high SNR (desired) coherent QPSK signals. This allows bypassing the need for
extremely large CNN training sets that would require various noises which are not only difficult to label, but
are also unbounded. The present advances in QPSK demodulation and classification are essential to the
robust performance of realistic coherent optical communications systems, and we anticipate that the
presented techniques may directly be applied to an enhancement of current classical and quantum
communications protocols (Bacco et al 2019, Eriksson et al 2019).
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