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Abstract

Crystal plasticity theory is often employed to predict the mesoscopic states of polycrystalline
metals, and is well-known to be costly to simulate. Using a neural network with convolutional
layers encoding correlations in time and space, we were able to predict the evolution of the
dominant component of the stress field given only the initial microstructure and external loading.
In comparison to our recent work, we were able to predict not only the spatial average of the stress
response but the evolution of the field itself. We show that the stress fields and their rates are in
good agreement with the two dimensional crystal plasticity data and have no visible artifacts.
Furthermore the distribution of stress throughout the elastic to fully plastic transition match the
truth provided by held out crystal plasticity data. Lastly we demonstrate the efficacy of the trained
model in material characterization and optimization tasks.

1. Introduction

The modeling of the mechanical behavior of polycrystalline metals has wide spread technological relevance.
The prediction of the stress states of polycrystals as they deform is difficult, especially during transition to
plasticity. Homogenization theory can provide bounds and approximations to the macroscopic response, but
is, by construction, insensitive to the details of the microscopic states influencing the response of a particular
polycrystal. On the other hand, crystal plasticity theory [1-7] provides a constitutive model that enables
detailed meso-scale simulations of metals; however, it is complex and costly to simulate. Many higher level
models of the phenomenology of plastic deformation have been developed over decades [8, 9] and are often
calibrated to represent polycrystalline metals. While this approach is sufficient in the small grain/large
sample limit (representative volumes [10, 11] and larger), there is a need for accurate, efficient models of the
response of aggregates with smaller sample sizes (stochastic volumes [12]). These models can be used for
stand-ins for material design/optimization, and also for uncertainty quantification and other statistical
analysis.

The high cost for traditional finite element formulations of crystal plasticity engendered innovative
approaches beyond straight-forward finite element implementations, such as Green’s function based spectral
methods, see [13] for a review and [14—19] for details. Included in these developments is the use of databases
[14, 20] and generic functional bases [21, 22] which can be seen as steps toward data-driven modeling.
Kalidindi and co-workers have been especially active in the field and a summary of their current
developments can be found in [22].

In a wider context, data-driven modelling has experienced recent rapid growth. In fact, across a range of
commercial and scientific fields, data-driven modeling and, in particular, machine learning [23, 24] has risen
as a tool to form representative models of complex underlying physics without resorting to gross
approximations. Given a large enough dataset and a trainable model of sufficient and appropriate complexity,
many machine learning techniques can provide a high fidelity representation of the underlying physics.

© 2020 The Author(s). Published by IOP Publishing Ltd
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Although nascent, the field of applying machine learning to materials science has garnered sufficient
interest to elicit topical reviews, such as [25-27]. There are also a number of notable individual contributions
employing a variety of approaches to the tasks of classification and reconstruction/synthesizing
microstructures, and predicting their physical response. Key ingredients in these tasks are selection of (a) the
inputs by feature extraction from image, either manually or by the network, and (b) the output, such as
classes of the expected microstructures or their stress response. Convolutional neural networks (CNNs) [28]
typically play a role in feature extraction and latent space discovery since they were developed to efficiently
process image data and have the distinct advantage of being able to discern the features salient to the selected
outputs when trained successfully.

Image-based learning encompasses a variety of approaches. Image-based transfer learning is a scheme
that leverages developments in computer science, such as Gatys et al [29]. In transfer learning, models
trained in similar contexts are reused with minimal additional training. Lubbers et al [30] adapted a
convolutional neural network trained for image recognition to form low-dimensional representations of
microstructures in order to generate statistical reconstructions. In the related field of modeling atomic
phenomena, Noh et al [31] used Gaussian smearing of atomic positions together with CNN to circumvent
the more traditional approach of feature selection [32]. Li et al [33] also used transfer learning for
microstructure reconstruction for a wide range of classes of microstructure. Clustering is another of the
variety of methods employed for classification. Papanikolaou et al [34] employed dislocation dynamics data
and a clustering algorithm to classify materials based on prior plastic deformation. Liu et al [20] employed a
database of microstructures and a clustering algorithm to predict plastic localization. Using a variety of
techniques, such as visual bag of words, texture and shape statistics, and pre-trained convolutional neural
networks, support vector machines, clustering, and random forests, Chowdhury et al [35] performed feature
extraction and classification of dendritic morphologies.

The task of microstructure reconstruction/generation has a strong image processing component and is
particularly germane to a variety of materials studies. Chen and coworkers [36—39] have produced a
considerable body of work in this emerging field, primarily focussed on microstructure reconstruction [38].
Xu et al [36] used pre-selected and winnowed image features in a supervised learning process to represent
microstructures. Bostanabad et al [38, 39] used a Gibbs sampler and a classification tree to construct binary
microstructures. Generative models such as variational autoencoders (VAEs) [40] and generative adversarial
networks (GANs) [41] have been employed for microstructure reconstruction and optimization. Cang et al
[42] used a VAE to represent granular microstructures and compared its performance to the more traditional
approach of using a Markov random field model. Yang et al [43] trained a GAN to provide latent variables
that may be used to optimize the properties of a material structure. Kalidindi and coworkers [44—48] have
also generated numerous papers in the field of microstructure analysis and reconstruction. Particularly
relevant is the work of Cecen et al [46] and Yang et al [47], which compared more traditional models, based
on statistical and physical descriptors, with data-driven methods like principal component analysis (PCA)
and compared to a model where a CNN was used to encode the spatial correlations in the elastic response of
a two phase material. They showed showed that the CNN model was superior to the reduced order models
using the physical descriptors and regression, as well as classical models based on homogenization theory.

Other work has also focused on predicting the physical response of microstructures. Niezgoda
[26, 49, 50] has been active in the field of applying machine learning to materials science, in part with
Kalidindi [50] and also with commercial groups [26, 49]. As mentioned Kalidindi and coworkers have be
actively pursuing data-driven modeling for microstructural problems with emphasis on crystal plasticity. In
one of their latest works Montes de Oca Zapiain and Kalidindi [21, 22] used a physics-based features with
spherical harmonic kernels to encode crystal orientation and coefficients tuned with regression to model
plastic stretch rates and simulate multiscale 3D stress evolution. Also related to the present effort, Yuan et al
[49] used a random forest model with PCA of texture and the underlying model parameters as inputs to
predict the history for multiple loading conditions. Mangal and Holm [51] used a random forest decision
tree and pre-selected features to predict local environments that lead to high stress in uniaxial tension. Bessa
et al [37] developed a methodology for applying machine learning to modelling physical response with
particular focus on sampling of the training data. Jones et al [52] designed neural network models of
elastic-plastic behavior based on the traditional stress and flow rule framework and key aspects of classical
representation theory. Yang et al [48] compared a CNN based model for making point estimates for a two
phase elastic material to more traditional feature based techniques, and used the trained model in multiscale
predictions. Recently, Frankel et al [53] demonstrated the use of convolutional neural networks to predict the
elastic modulus of polycrystalline aggregates and combined the CNN architecture with a recurrent neural
network to predict the system average stress evolution through yield and plastic flow. Although the results
were, in part, a proof-of-concept of the use of data-driven modeling for crystal plasticity, the architecture was
limited to predicting the homogenized stress states and had reduced accuracy as time progressed.
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In this work we create a data-driven, full-field predictor of the dominant component of the stress of
plastically-deforming polycrystals with the use of a novel hybrid neural network architecture based on a
convolutional-long short term memory neural network (ConvLSTM) [54]. The ConvLSTM simultaneously
(versus sequentially) processes the spatial and temporal aspects of the data with trainable causal filters in
time that have underlying, embedded spatial convolutions. As a convolutional neural network, the
ConvLSTM is efficient in terms of number of parameters needed to represent processes that have temporal
and spatial locality of action such as most physical initial value problems. Our architecture employs a
ConvLSTM at its core and separate convolutional unit to take a complex initial image of one type
(microstructure) to predict the evolution of physically related images of another type (stress field) and makes
no assumptions of the form of the functions describing the evolution. The convolutional aspects of the
network allow for the material features relevant to the output stress to be discovered through correlation
with the output instead of guessed/pre-supposed. Given the high-fidelity of the predictions we can
confidently assert that subsequent use of the model in structure-property explorations is based on the
relevant underlying features, as opposed to reduced models based on pre-selected features. As with our
previous work [53] (which predicted the evolving average stress of three dimensional (3D) microstructures),
we predict the evolution of the stress response through elastic-plastic transition to full plastic flow which is
considerably more difficult for a unified network that merely predicting the initial elastic response and
involves previous states to predict future ones. Unlike our previous work, we predict the entire stress field
instead of its spatial average by the use of the ConvLSTM which combines the application of the spatial filters
of a CNN with the time kernels of a long short term memory (LSTM) recurrent neural network. In our
previous work the output of the spatial convolution was reduced to a small number of features before feeding
into a separate LSTM to capture the time dependence. In this work the initial field is not reduced through an
encoder but is fed forward and, together with the loading, is used to predict the stress field evolution through
time. To the best of our knowledge this is the first neural network model to predict the elastic-plastic
evolution of the stress field from an initial microstructure. Another improvement over our previous work is
we ameliorate the growth in error with time using an additional convolutional layer that processes the spatial
and temporal information simultaneously. The extension of this network to three dimensional (3D) data and
other types of microstructure is straight-forward and will be discussed in the concluding section.

There are significant advantages of the approach we demonstrate over recent developments in the field.
The first is the embedding of the temporal evolution of the stress states in the data-driven model through a
recurrent component of the architecture which is combined with the spatial convolution. Another is that
neural networks have a universal approximation property that ensures that given a large enough network and
sufficient data to train it, the neural network can learn to represent any function of interest [55, 56]. This
means that as opposed to traditional physics-based models or simpler regression models, our architecture
has the capacity to converge to an unbiased representation of the underlying mechanics. As we will
demonstrate, it has deep learning capabilities to embed features of the initial microstructure that are not
pre-selected instead and are instead best correlated with the selected output. Furthermore, given that the
method is image based and agnostic to the type of microstructure and the particular physical process that
drives the evolution of the output field field, it should be directly extensible to a wide class of physics,
materials science, and engineering problems.

In section 2, we describe the polycrystal dataset and then, in section 3, we discuss the particular
ConvLSTM-based model in the wider context of neural networks and compare variants of the proposed
model. In section 4, we show results for the prediction of the stress state evolution, including error analysis,
statistical comparisons, and a material exploration demonstration. Lastly, we discuss extensions and
additional applications in section 5.

2. Crystal plasticity data

Crystal plasticity (CP) simulations typically consist of a finite element representation of the grain structure,
including a mesh defining the grain boundaries and material models informed by the crystal orientation of
each grain and the allowed slip systems. So as not to be data limited in training for our neural network
(described in section 3.2), we employed over 10* two dimensional (2D) simulations of polycrystals. This is
particularly crucial to make the potential weaknesses in the neural network architecture apparent and
unambiguous. Each sample consisted of the tensile stress response of 1 um? squares of polycrystalline steel
with a single face-centered cubic (FCC) phase. The cost for a 3D sample was on the order of 100 cpu-hours
in previous studies [52, 53] where we generated approximately 10° tension samples. In this study, they are on
the order of 1 cpu-hour. Also, given the relative magnitude of the components of the stress tensor in tension
as well as the need to expand the network with the number of components, we chose to only model the
dominant normal component of the stress in the tension direction. Each grain was assigned a viscoplastic
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Figure 1. Oligocrystalline realizations colored by crystal orientation angle ¢. Note the crystals are stressed vertically in tension
with uniform displacement on the top and bottom and free lateral boundaries.

constitutive model with power-law hardening and the crystal interactions in aggregate were governed by
compatibility.

2.1. Realizations
To produce the 2D realizations, we utilized the well-tested algorithms in the Dream.3d software package [57]
for creating 3D polycrystals. In particular, we created 1 um? cubes with a realistic polycrystalline
morphology using Dream.3d and then took slices of these three dimensional (3D) representations. For ease
of slicing and subsequent simulation efficiency, the cubes were 32° element structured meshes with voxelated
grain boundaries. To minimize correlation between 2D samples we sliced each cube on every 7th plane in the
out-of-plane dimension. For the 2D slices only the in-plane texture was preserved so that the crystal
orientation can be described by the in-plane rotation by angle ¢ of a (100) canonically oriented FCC crystal.
This procedure has the benefit of being connected to, if not a full representation of, realistic 3D polycrystals.
Figure 1 shows representative realizations from this process colored by the texture angle ¢ € [0, 7/2). The
pixelated grain boundaries are apparent, as are the fairly equiaxed grains. Figure 2 shows descriptive statistics
of the ensemble of 2D realizations. The orientation angle distribution is approximately uniform and is
correlated over the spatial domain of the realizations. Also, roughly a quarter (24.7%) of the elements (across
realizations) have a grain boundary on their border. Clearly the 2D (and 3D) samples are stochastic volume
elements (SVEs) since the correlations are long compared to the size of the domain. This spatial correlation
was inherited from the process that created the 3D cubes. Since the samples are not at the representative
volume element (RVE) limit, we will refer to the realizations as oligocrystals (as opposed to polycrystals) in
the subsequent sections. The number of grains per realization ranges from 5 to 25, with 14 being the most
prevalent (corresponding to an average grain size of 0.15 ym? and number density of 0.071 zm™~2). The
distribution in grain size is approximately log normal with mode at approximately 0.1 gm?. Again, this
distribution is inherited from the process used to create the 3D realizations. The distribution of
misorientation between grains has slight preference for low angle boundaries but there are also a significant
number of high angle boundaries. Lastly, the grain boundary length distribution is fairly compact with a
mode at approximately 6 pm.

2.2. Mechanical response

Given the crystal orientation, the response of each grain in the oligocrystal followed a widely employed
elastic-viscoplastic constitutive response [1-7] representative of austenitic (FCC) steel. For the crystal
elasticity, we employed a finite deformation Saint Venant model, which is a linear relation between the
second Piola-Kirchhoff stress S in the intermediate configuration and the elastic Lagrangian strain E,

S=C:FE°. (1)

The Cauchy stress o is obtained through the usual relation involving the deformation gradient. Since elastic
modulus tensor C respects FCC crystal symmetries, there are only three relevant non-zero components,

Ci1, Ci2, Cy4, and these were set to 204.6, 137.7, 126.2 GPa [58], respectively. In 3D, plastic flow can occur on
any of the 12 FCC slip planes (with Schmid tensors {S®n} = (111) ® {110}) in each crystal subject to
compatibility between grains. For this 2D study, the allowed in-plane rotation by ¢ leaves the third
component of the slip S and normal n vectors unchanged; and, a plane strain constraint is enforced via
projection of the motion into the plane. Note that in this quasi-2D formulation, multiple slip systems have
the same projection into the plane. Furthermore, the effective yield strength varies across samples in part due
to the underlying variation in single crystal yield strength. A single crystal oriented at ¢ = /4 has the
maximum yield strength, and the orientations ¢ = 0, 7/2 have near maximum values (approximately 3%
lower), while ¢ = /8,37 /8 have minimum effective yield strengths at &~ 15% lower. As in a previous study
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Figure 2. Descriptive statistics of the oligocrystal ensemble.

[53], we employed a power-law form for the slip rate relation

Ta (2)

driven by the shear stress 7, resolved on slip system .. We chose the reference slip rate 4, = 1.0 s~1, the rate
exponent m = 20, and the initial slip resistances g, (t = 0) = 122.0 MPa. The slip resistance evolves according
to [59, 60]

go = (H—Rga) Y _ [Hal (3)

where the hardening modulus is H = 355.0 MPa and the recovery constant is R =2.9. See [52, 53] for more
details.

Under the plane strain constraint, each oligocrystal realization was subjected to quasi-static uniaxial
tension at a constant engineering strain-rate of ¢ = 1 s~ ! up to 0.3% strain with free lateral boundaries and
uniform displacement on the top and bottom. These boundary conditions create a nominal homogeneous
stress state and the loading range was chosen to cover the elastic-plastic transition and the subsequent plastic
flow, as can be seen in the stress-strain data shown in figure 3 (representative stress fields are shown in
figure 9 and will be discussed in section 4). We used the Albany finite element code [61] for these
simulations. Note that a richer set of loading conditions could be explored, at the cost of increasing the size
and cost of the training data manifold [52]. Here we focus on tension since this is the most common loading
condition in high-throughput experiments, see Salzbrenner et al [62] for example.

3. Neural network model

Given the relatively recent application of machine learning to materials science, we first give a brief overview
of the relevant techniques, specifically neural networks that can be applied to predicting the evolution of the
stress field in an oligocrystal given an initial grain structure and the loading. Then we describe the particular
architecture and training of the proposed network.
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Figure 3. System level stress-strain response for a sampling of realizations which are distinguished by color.

The basic type of artificial neural network (NN) is the multilayer perceptron (MLP) [63]. This
feed-forward model is a directed graph that feeds the selected inputs through layers of nodes that are densely
connected between neighboring layers. Each node transforms its inputs via a non-linear activation function
with trainable weights and biases. The result of all the transformations of the inputs is given by the output
layer that is compared to data in training/calibrating the model using a selected error/loss metric. A MLP
neural network with L layers and N nodes per layer requires the optimization of O(LN?) parameters.

For image or field data, the number of parameters needed to model a function of the image is too large to
be trained practically, and would require a prohibitive amount of data in the current materials science
context. However, for field data, it is physically plausible that spatial correlations exist that decay with
distance, see figure 2(b) for example. The convolutional neural network (CNN) [24] was developed to take
advantage of this locality. Rather than prescribing a unique set of weights to every single pixel, the
convolutional neural network uses a convolutional filter with compact support and single set of weights that
is moved across the entire image to produce output of the same dimension. The result of this operation is a
new image and multiple such sets of filters can be applied in parallel. In general, further non-linear
operations, reductions of the image, or convolutions may be performed to enhance the richness of the
feature space of the image or reduce the dimensionality before finally yielding the desired output.

A similar heuristic is commonly used for time-series data, where a long sequence of data may require an
inordinate number of parameters to fit to an output. Based on causality, we expect that a future state will
depend most strongly on the current state along with some additional latent variables controlling
non-stationarity of the signal being modeled. Thus recurrent neural network (RNN) architectures were
created to take as input to a single layer MLP the features from the current state as well as the output from the
previous state in order to make predictions over a time sequence. In this sense, they have some features in
common with traditional time integrators. A number of advanced variants of the recurrent neural network
design, including the long short term memory (LSTM) [64], include additional hidden variables that take into
account a longer running history/memory of the signal and thus improve the accuracy and stability of
training these neural networks.

The convolutional LSTM (ConvLSTM) [54] was designed to combine the heuristics of the CNN and
LSTM architectures for making predictions of a sequence of images. Where an LSTM uses a small MLP as a
non-linearity for feature processing and prediction, a convolutional LSTM uses a set of convolution
operations on each image to create the next image. Specifically, the input image from the current state, as
well as the output image from the previous state and hidden variables, are used as inputs to make subsequent
predictions. This architecture has particular appeal for microstructural mechanics since it exploits both
spatial and temporal correlations in the data to be modelled. For our application, the physical topology of the
grains influences the stress state of the microstructure in a way that simple reduced order statistics like
average grain size cannot capture reliably, and so we need a model that can analyze the full-field physical state
of the system at once. At the same time, the evolution of the stress as a function of strain is expected to
depend heavily on the previous stress states as well as the evolution of the latent variables associated with
plastic dissipation, which indicates a sequential model with a longer-term memory.

3.1. Architecture

Figure 4 shows a schematic of the proposed architecture which has a ConvLSTM at its core. The inputs (gray)
to the network are: (a) a time sequence (#;), and (b) an image ¢(x;) (2D array) corresponding to the first
time, t. The outputs (yellow) are images, o (x;, t;), for each time ¢; in the sequence (a 3D array). Note that we
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Figure 4. Neural network architecture. Input is (a) the external strain loading of the oligocrystal £(¢;) and (b) an image of the
initial microstructure (orientation field) ¢(x;). The image ¢ (x;) is fed to a sequence of convolutions (orange layers). This output
of all the filtered images associated the last convolution is given to a sequence of recurrent layers in the ConvLSTM (blue) together
with loading. At the end, a block 3D convolution (red) takes the image sequence from the ConvLSTM to generate the output
stress evolution o (x;, ;) (yellow).

train only to the normal component of stress in the (horizontal) tension direction ¢ since it dominates the
response and modeling all components would require a larger network and more training samples. Unlike in
traditional applications where the input image and output images are of the same quantity, in our network
the initial image ¢(x;) is the crystal orientation field characterizing texture, while the output images are the
stress field o (xy, ;) as a function of time/external loading strain (t;). Here, x; are element locations which
are identified with image pixels I and ¢(x;) with the color of the pixel I. Image size N x N = 32x 32 is fixed
by the data described in section 2. The image of the initial microstructure is fed into a sequence of Nigyers 2D
convolutional layers (Conv2D, orange) with rectified linear unit (ReLU) non-linear activations [65]. Each
layer has Niers filters applied in parallel. Each of the filters has a kernel size of 4 x 4, with zero-padding to
maintain the image size pre- to post-filter.

The output of the initial convolutional layers and the loading history is combined in the ConvLSTM
(blue); its recursive structure is shown unrolled in figure 4 for illustration. To embed the time-dependence of
the problem, each processed image is repeated for each of the time steps, and an additional filter is added to
each whose value is constant across the image and equal to the value of the time step. Thus the input to the
convolutional LSTM is a 4-dimensional tensor of size Nijmes X N X N X (Nfjers + 1), indexed by time step,
image row, image column, and filter value, respectively. The ConvLSTM used the same kernel size, number
of filters, padding, and activation as the initial 2D convolutional layers. Its output was sequence of images,
one for each time step. Finally, a 3D convolutional layer (Conv3D, red) with 1 filter was applied across the
two space and one time dimensions of the input data, as processed by the ConvLSTM. Its output (yellow) is
the time sequence of images of the stress field o (xy, #;). To keep the cost of training manageable, the stress
field data was limited to the normal component of stress in the tension direction i.e. the most significant
component.

The Keras-Tensorflow framework [66] was used to construct and train the proposed neural network
architecture.

3.2. Training
To train the proposed network and some variants, a dataset of 16,000 input-output pairs
{[e(t;), d(x1)],0(x1,%;) } from the CP simulations described in section 2 was split into 80% for training and
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Figure 5. Convergence of NN training with dataset size for six models: (a) baseline (Nfiters = 16, Niayers = 4, black solid line) (b)
baseline with fewer filters (Nfjers = 8, black dashed line ), (c) baseline with fewer input convolutional layers (Nayers = 3, red solid
line), (d) fewer layers and fewer filters (Niyyers = 3, red dashed line), (e) without the Conv3D layer (red in figure 4) so that the
ConvLSTM (blue in figure 4) directly outputs the stress evolution predictions (Njayers = 4 and Nfjiers = 16, blue solid line), and
(f) without the Conv3D layer with fewer filters (Niayers = 4 and Nfiers = 8, blue dashed line), The lines connect the validation
errors and vertical error bars indicate the spread in the training versus validation errors (which are visually indistinguishable).

20% for testing. One tenth of the training set was used for network validation to monitor for convergence
during training and prevent over-fitting. This amounts to 11,520 training samples, 1,280 validation samples,
and 3,200 testing/prediction samples. The networks were trained using an Adam optimizer [67] guided by a
mean-squared-error loss function summed over all pixels I and times #;. The Adam optimizer [67] used an
initial learning rate of 0.001 and a batch-size of 128. GPUs were used to overcome the computational expense
of training the network so that each training epoch took approximately 100 seconds. Training proceeded for
1500 epochs or until the validation error stopped decreasing (approximately 100 gpu-hours). To aid in the
training, the stress field data was also normalized such that the average value of the stress at the final time
step was equal to 1. In preliminary studies datasets of 1000 samples with resolutions 16 x 16 and 64 x 64 were
used in training with comparable results to the 32 32 resolution we used for the final studies and was a
compromise between microstructure resolution and computational cost.

The network shown in figure 4 has a large space of hyperparameters, especially if we were to assign kernel
width, etc per layer. We did a non-exhaustive exploration of the hyperparameter space to determine the
relative performance of variants of the architecture. Figure 5 compares the root mean square (pixel-wise)
validation error versus size of training dataset for a few architecture variants. For each of the trainings the
training and validation errors were comparable (to within 6%), which indicated that the networks were not
over-fit to the data. The flattening of the error curves in figure 5 is evidence of limits to the learning and
accuracy of the models, and may indicate that the networks were not complex enough or the increase in the
size of the dataset provides no additional information. The main finding of the architecture exploration is
that the Conv3D appears to be needed to reduce the training error. Regarding the other modifications,
namely changing the number of Conv2D layers and the number of filters, the results are more equivocal.
Since we were only able to train each network variant once due to the training costs, we conjecture that the
scatter in the losses of the best networks is likely due to the vagaries of the stochastic optimization method
(and the early stopping criterion). Given that the architecture with Nfjeers = 16 and Niyyers = 4 achieved
marginally the lowest error, we focussed on it in the subsequent results. Further optimization of the network
architecture should be possible.

4, Results

After training the model we evaluated the quality of its predictions for the response of different
microstructures to the same loading conditions as the training data, and demonstrated its use in material
evaluation/optimization.

4.1. Quality of the predictions

We used the trained model to predict the response of the 3,200 testing samples not employed in training

(described in section 3.2) and compared the stress history o (x;, t) predictions to the corresponding held out

CP data. Note that, given the strain rate (¢ = 1/s), the time ¢ and the loading strain £(¢) have the same values.
In this section we focus on the errors in the (post-training) predictions of held out data for both the

full-field stress o (xy, t) and its spatial average & (t) over time. The pixel/element-wise stress error field
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error(xy, t) is simply the difference between the predicted o (xy, t) and true o (xy, t) stress fields:
error(xy,t) = o(xy,t) — 5 (X, 1) (4)

for a particular realization. The root mean square error (RMSE) of the pixel/element-wise stress is given by
the ensemble average (o) of these errors across all the 3,200 realizations used in testing

RMSE(t) = <]1]Zerror(x1, t)2>7 (5)
I

where here N = 322 is the number of pixels/elements. The root mean square error of the spatially averaged
stress 7 () = & >, 0(Xp, 1) is

RMSE() = <(6(t) . 5(t))2> (6)

Note the total root mean square pixel-wise error summed across pixels I and discrete times ¢;

TMSE(t) = <I\;\[ZZerror(xI,ti)2>, (7)
i

was used to drive the stochastic descent algorithm training the network, with N; being the length of the time
sequence. (As stated in section 3.2 the final training errors were comparable to the validation errors.)

Figure 6 shows the correlation of the NN predictions with the true/CP stresses and the RMSEs of the
normalized stresses over the entire held out testing ensemble of 3,200 samples. The stresses are normalized by
their maximum value of over the strain history. Both the correlation and error of the spatial average
(RMSE(t) and the full-field (RMSE(?)) stress evolution are shown. The spatial average displays a cancellation
of errors and better correlation with data than the full-field but both are good. The ensemble-average
stress-strain response with ensemble variance is shown in the top panel to aid comparison with trends in the
correlations and errors. The absolute error in the normalized stress and its spread for both the average and
the field are worse preceding the elastic-plastic transition, where there is the highest variance in the ensemble
response and the most complexity in the local states. Note that the spread of pixel-wise errors is significant;
however, the spread for the predictions of the average derived from the full-field predictions appears to be
negligible. Interestingly the correlation coefficient was highest around the elastic-plastic transition, which
implies model bias in this regime since is where the relative errors are the highest (and that variance in the
output aids the correlation). Unlike our previous work [53] which displayed monotonic increase in error
with time (with a MLP-based LSTM architecture used to predict the spatial average stress history), the
Conv3D structure in the present NN appears to level and reduce the error over the entire history (as well as
effectively predicting the evolution of the entire field). However, some artifacts of the zero padding in time
can be seen in the error curves in figure 6, for example the kink in correlation and error in at the last
time-step, and the predicted (zero load) first stress states are not identically zero (not shown).

We also compared the distributions of per pixel stresses over the ensemble at fixed loading levels. Figure 7
shows the stress distributions in the elastic, elastic-plastic and plastic regimes. Clearly, they are nearly
identical. The discrepancy for the elastic-plastic regime is the highest, as expected, since this is the most
complex regime of the simulations. The distribution of errors in the normalized stress fields are show in
figure 8. The distributions of error across the testing ensemble for fixed times in figure 8(a) exhibit peaked,
bell-shaped distributions with slight but noticeable bias to under-prediction of the stress and greatest spread
in near the elastic-plastic transition. Both observations are corroborated by the information in figure 6. As
indicated in figure 6 the errors are most pronounced near ¢ = 0.07% where figure 8(a) shows tails of the
error distribution extending to roughly £ 0.15. Figure 8(b) shows the spatial distribution of error at fixed
times for one realization, with the true stress fields shown for comparison. It is evident that most of the stress
error field is white or near white indicating that the error near zero especially in full plastic flow, and is largest
at some but not all of the extreme stress locations near grain boundaries. It appears that the trained filters are
more sensitive to the jumps in field values at grain boundaries than the nearly constant field values in the
interior of grains.

Figure 9 shows the predictions for the test realizations with the minimum, median, and maximum TMSE
(0.016 3, 0.025 8, 0.040, respectively). It demonstrates that the predictions of the normal stress field evolution
are high fidelity, with very few visible artifacts in the sequence of images (upper rows: true/CP data, lower
rows: predicted/NN). The correspondence is corroborated by the numerical correlation shown in figure 6. As
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Figure 6. Normalized average stress response () (upper panel), correlations (middle panel), and root mean squared errors
RMSE(#) and RMSE(#) (lower panel) versus loading strain (¢). Upper panel shows the mean response (black line), and one (dark
gray) and two (light gray) standard deviations with strain. Middle panel shows the correlation of predictions for full-field (red
line) and average (blue line). Lower panel shows the mean squared error of predictions for full-field (red line) and average (blue
line) together with one and two standard deviation bands. Note that bands around the error in the average RMSE(¢) are barely
visible since they are effectively coincident with the blue trend line.

mentioned, the initial prediction at t =0 (not shown for brevity), before any deformation has occurred, is
not identically zero; likewise some relative errors are visible even in the best case, figure 9(a). This is a result
of the loss function, equation (7), used to train the network being based on absolute errors and hence not as
sensitive to errors in small stresses. This behavior could be corrected with an alternative structure for the NN
to enforce zero stress at zero strain, or padding the time history with more appropriate values, or minimized
with particular weighting or penalty in the loss function to emphasize the early stress states. These errors, as
are the errors throughout the history, are arguably negligible since the mean response (predicted/NN (blue),
true/CP (red)) lie on top of each other. Both the predicted and true stress fields (blue-white-red image
sequences) show stress concentrations in correspondence with the boundaries of the grain structure (color).

Predicting the stress rates is arguably a more difficult task since they all tend to zero as the plastic flow
ensues. Figure 10 shows that the network predictions of the full-field stress rates are in good correlation with
the CP data and, given their positivity, satisfy the basic dissipation requirement implied by the second law of
thermodynamics. Nevertheless, there are noticeable errors in the average rates early on in the maximum error
realization, figure 10(c), and more minor fluctuations in the median and minimum error realizations. This is
possibly due to zero strain stress errors previously mentioned and the emphasis on higher stress values in the
error norm, TMSE. Spurious undulations in the rate fields are also apparent and to be expected since
differences such as time rates tend to have higher errors than the primary field. The errors tend to manifest as
striations normal to the loading direction early in the deformation which then become more grid-like as fully
plastic flow develops and the stress field becomes nearly constant. This is could be related to by the limited
width of the convolution kernels and the fact that the CO activation functions do not produce entirely smooth
outputs so that differences show exacerbated fluctuations. We could ameliorate these errors by adding error
in the rates to the loss function used in training, equation (7), and possibly with wider convolution kernels.

These results show that the predictions of mean, distribution, and pixel/element-wise stresses are in good
correspondence with the held out true values.
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Figure 8. Distribution of errors in the stress field predictions: (a) distribution of stress errors error(x, t) across all predictions as a
function of strain, (b) comparison of the stress error field error(xy, t) (bottom, -0.1:cyan, 0.1:orange) to the true stress field
& (x1,t) (top, -1.0:blue, 1.0:red) for realization with median error TMSE across the range ¢ € {0.02,0.06, 0.10, 0.14,0.18, 0.22}%.

4.2. Structure-property exploration

As a demonstration of the efficacy of using the proposed network model in exploring the effects of
microstructure on mechanical performance, we used the NN model to screen 16,000 additional oligocrystals
(generated with the same process as for the calibration, refer to section 2) based on their yield strength and
the homogeneity of their stress fields. Using thresholds shown in figure 11(a) and (b) for the yield strength
and the maximum (over time) of the standard deviation the stress field, we were able to partition the
ensemble into high yield structures (11.1%), low variance structures (7.6%) and structures that have both
properties (2.4%) in a few minutes. To determine mechanistic sources for these properties, we compared the
distributions of the subpopulations to that of the full population for a variety of grain statistics. Figure 11(c)
show interesting differences in the crystal textures in the various populations. The high yield structures have
a distinct prevalence of grains with ¢ = /4 orientations such that the slip planes are oblique to the loading
direction. The low variance structures have a bimodal distribution of textures with preference for near but
off ¢ = m/4 orientations. The distribution of structures with both properties is unimodal but with broader
peak than the high yield population. Figure 11(d) shows slight shift to lower grain boundary lengths (per
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Figure 9. Evolution of stress for three realizations (a,b,c) corresponding to the minimum, median and maximum TMSE,
respectively. Initial grain structure (left upper panel, using the same color scale as figure 1 where gray corresponds to an
orientation of 0 and 7/2, and yellow is 7/4), comparison of the oligocrystal average stress-strain response (left lower panel, CP:
blue, NN: red, min-to-max CP range of the stress field: gray), and stress field evolution (true/CP: upper right panels,
predicted/NN: lower right panels) at uniformly sampled strains € € {0.02, 0.06, 0.10, 0.14, 0.18, 0.22}% are shown. Note that the
blue-white-red color scale range of the true and predicted stress field at a fixed strain is adjusted to the minimum and maximum
of the true CP stress to show contrast.

simulation cell) for the superior (high strength and low variance) microstructures. Since the misorientation
was calculated such that it scales with boundary length, the distributions for the high yield and low variance
populations also shifted to slightly lower values compared to distribution for the full population. We also
examined the distributions of grain density and grain size for the high performing structures. They were
were essentially equivalent with the distributions for the full population.

Figure 12(a) shows the highest yield microstructure and figure 12(b) the lowest stress variance
microstructure; and, figure 12(c) and (d) show the corresponding stress fields in the elastic-plastic transition
regime. Both the highest yield microstructure, figure 12(a), and the lowest variance, high yield
microstructure, figure 12(b), have high grain-to-grain misorientation. As mentioned in section 2.2, the
effective yield strength varies with orientation in this quasi-2D formulation, which makes interpretation of
the results in terms of maximum resolved shear stress difficult; however, both oligiocrystals have a high
percentage of ¢ ~ 0, 7/2 grains and these abut ¢ ~ 7/4 grains. It is apparent that the highest yield
microstructure has a rough central symmetry and the lowest variance, high yield microstructure has loose
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Figure 10. Evolution of stress rate for three realizations (a,b,c) corresponding to the minimum, median and maximum TMSE,
respectively. Initial grain structure (left upper panel, using the same color scale as figure 1 where gray corresponds to an
orientation of 0 and 7/2, and yellow is 7/4), comparison of the oligocrystal average stress-strain response (left lower panel, CP:
blue, NN: red, min-to-max CP range of the stress rate field: gray), and stress field evolution (true/CP: upper right panels,
predicted/NN: lower right panels) at uniformly sampled strain € € {0.02, 0.06, 0.10, 0.14, 0.18,0.22}% are shown. Note that the
blue-white-red color scale range of the true and predicted stress field at a fixed strain is adjusted to the minimum and maximum
of the true stress to show contrast.

bilateral symmetry. Note that the responses of these microstructures are only marginally different, although
it is notable that the microstructure shown in figure 12(a) has the highest yield 0.99, where as the low
variance microstructure figure 12(b) had a yield of 0.90 which was on the lower boundary of the selected
range. It is also notable that both the microstructures have grain boundary lengths well below the average of
the distribution, 4.7 and 4.4 pum, respectively. It is likely that these results are strongly influenced by
boundary effects given the correlation length (refer to figure 2(b)) versus the size of the samples [68].
Nevertheless, it is a strength of the machine learning model that it can efficiently find these high scoring
oligocrystals in a fixed ensemble of 16,000 microstructures. Also, it should be noted that the subtleties in the
results would be unlikely to be uncovered by traditional means, such as exploration based on assumed
sensitivities. This demonstrates that connecting this trained network to a generative network capable of
creating realistic oligocrystals with the characteristics we created with Dream.3d could find near optimal
microstructures in a material discovery effort.
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standard deviation 0.052 (yield 0.900) in the high yield set. Stress fields are shown at € = 0.07% in the elastic-plastic transition.
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5. Conclusion

Using a neural network architecture based on a ConvLSTM that efficiently encoded the spatial and temporal
correlations in the data, we were able to predict the evolution the stress field of oligocrystals with remarkable
fidelity using just the initial microstructure and the external loading as inputs. Admittedly there are
limitations to the dataset, mostly necessitated by cost, such as the grain boundaries being stair-stepped on a
structured grid and the strict geometric compatibility of interactions across grain boundaries; however,
taking these as ground truth the ability of the proposed network to represent elastic-plastic process based on
these initial structures is remarkable. We also demonstrated that the network model can be used to facilitate
material screening, optimization and design tasks. A more sophisticated method would use the generator
component of a GAN trained to generate microstructures [43] for material optimization over latent
space/manifold embedded in the GAN. In addition to structure-property discovery, the model can also be
used as a high efficiency surrogate model for uncertainty quantification and global sensitivity studies. It is
worth noting that computing the crystal plasticity training data took approximately 500 processor-days on a
cluster, the NN training took 4 processor-days on a GPU, after which tens of thousands of evaluations of the
NN model took minutes on a laptop.

Although not as mature recent developments to accelerate crystal plasticity calculations [16, 18, 19],
machine learning techniques are promising, probably faster to evaluate once trained, and arguable more
widely applicable to mesoscale/microscale modeling. For the particular problem at hand, application of the
proposed evolving, full-field NN to other loading modes/non-monotonic loading should be straight-forward,
albeit with the significant sampling burden quantified in [52] and the path-dependence of plasticity.
Likewise, extension to 3D data should be straightforward in that only a ConvLSTM capable of handling 4D
data (3 spatial dimensions plus time) is necessary. In fact, Yang et al [48] demonstrated that training a CNN
based model over a wide variety of loading conditions is possible, at least for the average response of an
elastic material. A specific scheme would use architectures like that shown in figure 4 parallel to model the
coefficient functions of the natural tensor basis for the stress response, refer to [52, 69]. Also the proposed
approach should be effective in predicting the complex evolution other types of microstructures, such as
voids, multiple phases, fractures, given appropriate training data and means of encoding them. Given the
subtleties in the structure-property demonstration, we will investigate the interpretability [70] of the
proposed network which should aid in this endeavor and reveal what hidden physical aspects learned by the
network are informing the predictions. This should lead to simpler, more humanly digestible understanding
of the complex behavior. We would also like to extend the model to use multi-fidelity training augmented
with limited experimental images and mechanical response [71-73]. Another topic of interest is the
sensitivity of these types of network to the resolution of the grain structures and their spatial correlation. In
addition to the topic of interpretability, the imposition of physical constraints on the models [52, 69] and
merging human understanding with machine learning is another topic of active research with significant
open questions.

This work demonstrates that the proposed data driven, image based neural network model is effective
means of modeling evolving spatio-temporal processes. Unlike previous approaches which have a fixed
capacity for accuracy due to pre-selection of specific features and do not intrinsically handle evolving
processes, deep learning can reach arbitrary levels of non-linearity and has the potential for learning the key
informative features and input-output correlations implicitly for microstructure evolution. We have shown
that our neural network model of spatio-temporal evolution can converge to an sufficiently accurate
representation of the underlying data-generating process given a large enough dataset and network.
Furthermore, the architecture, figure 4, is ambivalent to the data represented in the images of initial
microstructure other than this field needs to be correlated with the evolving field output of interest, and,
hence, the proposed network is adaptable to a wide class of physical evolution problems where an initial field
strongly influences the evolution of another field of interest. In addition the architecture is directly extensible
by adding input channels and filters to handling more than one type of image simultaneously so that the
effects of porosity on crystal plastic behavior [74], for instance, can be modelled. To our knowledge no other
broadly applicable, data-driven method has demonstrated the capability to predict complex evolving
microstructural fields over space and time with comparable accuracy and the model trained quickly on a
relatively small dataset (considering other deep learning models and the complexity of the task at hand). This
method can enable high-speed model querying and uncertainty quantification as well as provide a model of
simulation-experiment discrepancy.

Data availability

The data that support the findings of this study will be openly available [75] following a delay.
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