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Abstract
In stochastic systems, numerically sampling the relevant trajectories for the estimation of the large
deviation statistics of time-extensive observables requires overcoming their exponential (in space
and time) scarcity. The optimal way to access these rare events is by means of an auxiliary dynamics
obtained from the original one through the so-called ‘generalised Doob transformation’. While this
optimal dynamics is guaranteed to exist its use is often impractical, as to define it requires the often
impossible task of diagonalising a (tilted) dynamical generator. While approximate schemes have
been devised to overcome this issue they are difficult to automate as they tend to require knowledge
of the systems under study. Here we address this problem from the perspective of deep learning.
We devise an iterative semi-supervised learning scheme which converges to the optimal or Doob
dynamics with the clear advantage of requiring no prior knowledge of the system. We test our
method in a paradigmatic statistical mechanics model with non-trivial dynamical fluctuations, the
fully packed classical dimer model on the square lattice, showing that it compares favourably with
more traditional approaches. We discuss broader implications of our results for the study of rare
dynamical trajectories.

1. Introduction

In this paper we consider the problem of efficiently sampling rare trajectories of stochastic systems. A natural
approach to studying stochastic dynamics is by means of trajectory ensemble methods, e.g. [1–18] (for
reviews see [19–24]). For the statics, the ensemble method of equilibrium statistical mechanics [25] deals
with sets of configurations or microstates and their probabilities of occurring under equilibrium conditions
and connects their statistical properties to macroscopically observable phenomena. The straightforward
generalisation to dynamics [19–24] is to replace microstates by stochastic trajectories, defining the ensemble
in terms of all possible trajectories of the dynamics and the probabilities of them occurring under stochastic
evolution. In the dynamical setting, order parameters (meaning macroscopic quantities that classify physical
behaviour) correspond to observables of the whole trajectories, while the large size limit involves also the
long time limit. Just like in the static case, in such ‘thermodynamic’ regime large deviation (LD) principles
may apply [19–24], so that the statistics of observables become encoded in LD functions that play the role of
free-energies for the dynamics (see below for definitions).

The usual setting is of a system with Markovian dynamics defined via its evolution operator (such as the
exponential of a Markov generator for continuous-time dynamics) and one or more trajectory observables
that one wishes to study [19–24]. As usual, physical intuition about the problem at hand will suggest that
these are appropriate dynamical order parameters to describe the phenomenon of interest. For example they
could correspond to macroscopic (particle or energy) currents for driven problems such as exclusion
processes, or dynamical activities for systems with slow dynamics such as glasses. The aim is to calculate the
probability distributions of these dynamical quantities. These distributions are ‘physical’ in the sense that
they are in principle observable with access to enough statistics of the dynamics.
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In practice, accessing the LD statistics of dynamical observables is challenging in general [26–38]. The
extensive nature of the observables makes them exponential (in system size and time) concentrated around
their typical or average value. That is, to observe trajectories other than typical is exponentially hard if
sampled with the dynamics that generates them. Alternatively, the LD statistics is encoded in the spectrum of
a deformation - or tiltings (see below for definitions) - of the evolution operator, but diagonalising such
tilted operators is not possible except when the state space is of modest size.

Many techniques have been developed to overcome these difficulties. Most of these approaches attempt
to sample rare long-time trajectories efficiently by improving their exponential scarcity within the original
dynamics. Two popular methods are based either on population dynamics, such as cloning or splitting
[26–28, 30], or on importance sampling in trajectory space, such as as transition path sampling (TPS) [1, 7].
While these tame some of the exponential cost, further sampling improvements are needed for
computational tractability in many systems of interest. Recently various schemes based on umbrella
sampling in trajectory space have been shown to be useful [32–34], together with related adaptive schemes
based on optimal control [31, 35, 39] (more on both of these below). An alternative approach is via
variational approximations, for example directly at the level of LD rate functions [38], or by using tensor
networks to find leading eigenvectors of tilted generators [29, 36, 37].

While efficient for many problems of interest, the methods above often require some information on the
problem being studied. Improving cloning or TPS with trajectory umbrella sampling implies the choice of an
alternative sampling dynamics. While an optimal one is known to exist (via the so-called generalised Doob
transformation [9, 16, 40], see below), to find it requires solving the problem in the first place. Adaptive
methods [31, 35] attempt to find an approximation to this optimal dynamics, but for systems of interest a
suitable parameterisation needs to be selected and this is also problem dependent. Alternatives such as those
based on variational tensor networks [29, 36, 37], which in principle are generic, are in practice often
restricted to one dimensional problems with short range interactions.

Here we address the problem of finding in an automatic manner - i.e. without the usual physical input
that goes into the parameterisation - an efficient auxiliary dynamics, close to the optimal Doob dynamics, for
sampling rare trajectories in the LD regime. We address this problem from the perspective of deep learning
[41, 42], since this appears to be an unsupervised learning (USL) task of unknown features extractable from
fluctuations of the original system dynamics. Many sampling techniques, like Monte Carlo (MC), rely on a
form of encoding the configuration into either a unique descriptor or some macroscopic value. The task of
converting a configuration (or image) into a single value which encodes the likelihood of that configuration
from a given distribution is clearly a deep learning problem [43–45]. What we know from studies like [43] is
that Neural Networks (NN) can encode more of these physical features than merely a label of which
distribution the sample was taken from. Therefore given the right architecture and learning task a NN can be
used to condense a configuration into a multitude of different parameters. In the past few years, there have
been approaches that take advantage of these NN’s to speed up equlibration via sampling methods such as
MC [46–49]. This type of approach to MC modification is perfectly framed for finding the auxiliary
dynamics needed for the LD regime, using only a configuration as input and an appropriate learning process.

We focus for concreteness on a paradigmatic system with rich dynamics, namely, the fully packed
classical dimer model (CDM) on the square lattice [50, 51], which is known to display a range of interesting
dynamical LD behaviour [52]. We construct an iterative USL scheme which in progressively approximates
with increased precision the optimal Doob dynamics for sampling. The clear advantage of our approach is
that it does not require any a priori knowledge of the system. For the CDM we show that our method
compares favourably with more standard approaches.

The paper is organised as follows. In section 2 we review the main concepts about trajectory ensembles
and dynamical large deviations. In section 3 we describe the classical dimer model which we use as a testbed
for our ideas and describe the issues relating to sampling rare trajectories. Sections 4 and 5 present our main
results. In section 4 we consider the problem of approximating an optimal dynamics for LD sampling via
neural networks and supervised learning. It established the main principles and the appropriate architecture
for the NNs. Subsequently, in section 5 we generalise the methods via semi-supervised learning to make
them scalable and thus applicable to systems for which exact diagonalisation is not possible. Finally in
section 6 we present our conclusions and outlook.

2. Trajectory ensembles and dynamical large deviations

2.1. Continuous-timeMarkov dynamics and trajectories
For concreteness, we will focus on systems with stochastic Markovian dynamics in continuous time. The
issues we discuss, however, are easily generalisable to discrete time dynamics. As a general setting we consider
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a system with configurations {x1, · · · ,xN } whereN indicates the size of configuration space (for example
N = 2N for a system of N Ising spins).

The master equation for the evolution of the probability over configurations can be written in general as

∂t|Pt⟩=W|Pt⟩, (1)

where {|x⟩} is an orthonormal configuration basis, |Pt⟩ is the probability vector,

|Pt⟩=
N∑
n=1

Pt(x)|xn⟩, (2)

and Pt(x) the probability of configuration x at time t. Throughout the paper we use the standard physics
notation of ‘bra-kets’ for vectors. Specifically, the ket |Pt⟩ represents a column vector

|Pt⟩=


Pt(x1)
Pt(x2)

...
Pt(xN )

 (3)

obtained from equation (2) given that ket |xn⟩ represents the column basis vector

|xn⟩=



...
0
1
0
...

 , (4)

where the only non-zero entry is at position n. Conversely the bra ⟨xn| represents the row basis vector

⟨xn|=
(
· · · 0 1 0 · · ·

)
, (5)

where again the only non-zero entry is at position n.
The Markov generator of the dynamics (sometimes also called master operator) is given by

W=
∑
x,x′ ̸=x

wx→x′ |x′⟩⟨x| −
∑
x

Rx|x⟩⟨x|, (6)

The positive terms are off-diagonal and encode the possible transitions x→ x′ and their rates wx→x′ . The
negative terms are diagonal, with Rx the escape rate from configuration x, Rx =

∑
x′ ̸=xwx→x′ . The form (6)

guarantees probability conservation: the largest eigenvalue ofW is zero and its left eigenvector is the uniform
(or ‘flat’) state:

⟨−|W= 0 , ⟨−|=
∑
x

⟨x| . (7)

In many cases, the dynamics generated by (6) also has a stationary state,

W|ss⟩= 0 , |ss⟩=
∑
x

Pss(x)|x⟩ , (8)

where Pss(x) denotes the (time independent) stationary state probability over configurations. The generator
(6) defines a continuous time Markov chain. Samples from such dynamics are stochastic trajectories,
corresponding to a sequence of configurations and jumps between them at random times,

ωt = (x0 → xt1 → . . .→ xtK), (9)

where ti (i= 1,…,K) indicate the times at which jumps between configurations occur, with time ordering
0< t1 < · · ·< tK < t and we use the symbol ωt to label a trajectory of total time extension t. Between jumps
the configuration does not change, meaning that from the time of the last jump, tK and the final time t, the
configuration in (9) remains as xtK . The set of all possible trajectories ωt generated by dynamics for, say, fixed
total time extent t, together with their probability of occurring, π(ωt), defines the (original or untilted, see
below) ensemble of trajectories.
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2.2. Dynamical large deviations
We are interested in the statistics of trajectory observables, i.e. functions of the whole trajectory which are
extensive both in time and size of the system. One of the simplest is the dynamical activity [3, 4, 8, 53]
defined as the number of configuration changes in a trajectory, K(ωt). The distribution of these dynamical
observables is obtained by contraction from that of the trajectories

pt(K) =
∑
ωt

π(ωt)∇ta[K(ωt)−K] . (10)

Given that the trajectories are independent and identically distributed samples from the ensemble of
trajectories we can say for long times pt(K) obeys a large deviation (LD) principle

pt(K)∼ etφ(K/t) , (11)

where the ~ sign is used to indicate that the left hand side approximates the right hand side up to factors
which are exponentially subleading in time. Specifically

φ(k) = lim
t→∞

t−1 lnpt(kt) . (12)

The (extensive in space) function φ(k) is often called the rate function and plays the role of an entropy
density for trajectories. One can alternatively consider the statistics of K in terms of its moment generating
function (MGF) [19–24],

Zt(s) =
∑
K

Pt(K)e
−sK =

∑
ωt

π(ωt)e
−sK(ωt), (13)

which also has a LD form at long times

Zt(s)∼ etθ(s). (14)

The scaled cumulant generating function(SCGF) θ(s) is a free-energy (per unit time, but extensive in
system size) for trajectories, while Zt(s) is the corresponding trajectory partition sum. As in static
thermodynamics, the rate function and SCGF are connected via a Legendre transform [19–24],

θ(s) =−min
k

[φ(k)+ sk] . (15)

2.3. Exponential tilting and biased ensembles
The trajectory partition function (13) encodes an exponential tilting of the probabilities of trajectories. That
is, it is the normalisation of a reweighing of the probability of a trajectory through the value of the observable
K,

πs(ωt) =
π(ωt)e−sK(ωt)

Zt(s)
. (16)

These tilted probabilities correspond to a biased trajectory ensemble, where averages of arbitrary
trajectory observables are given by

⟨A⟩s =
⟨Ae−sK⟩
Zt(s)

=

∑
ωA(ω)π(ω)e

−sK(ω)

Zt(s)

=
∑
ω

A(ω)πs(ω). (17)

At s= 0 these correspond to the averages under the process dynamics. For s ̸= 0, they do not, but by
tuning s the exponential tilting allows to (formally) explore the properties of atypical trajectories.

The dynamical partition sum (13) can be written in terms of a ‘transfer matrix’,

Zt(s) = ⟨−|etWs |i⟩ ,

where the probability vector |i⟩ represents the distribution from which the initial state is drawn. The tilted
generator Ws is a deformation of the original dynamical generator [19–24]. For the specific case of tilting
against the activity (generalisations are straightforward) we have

Ws = e−s
∑
x,x′ ̸=x

wx→x′ |x′⟩⟨x| −
∑
x

Rx|x⟩⟨x| . (19)
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The SCGF is the largest eigenvalue ofWs,

Ws|rs⟩= θ(s) |rs⟩ , ⟨ℓs|Ws = θ(s)⟨ℓs|, (20)

where |rs⟩ and ⟨ℓs| are the corresponding right and left eigenvectors.

2.4. Basic considerations on sampling exponentially tilted ensembles
The spectral structure (20) provides an important simplification. It converts the problem of estimating the
LD statistics into one of minimising an operator (or finding the minimum eigenvalue) - something that is
routine in physics for example in the context of finding ground states of quantum Hamiltonians. However,
diagonalisingWs is often impractical in many-body systems once size exceeds modest values. In most cases
of interest it is therefore necessary to resort to numerical approximation schemes.

Consider the problem of calculating averages such as (17). Doing so using the original dynamics, (6), is
extremely impractical, as the exponential factor in the first line of (17) makes convergence exponentially (in
space and time) hard. Ideally one would like to sample πs(ω) directly, but there is no easy way to generate
trajectories compatible with (16) starting from the known dynamics (6).

The first step in addressing the sampling problem is to account for the exponential factor in the first line
of (17) in a systematic manner, by means of importance sampling in trajectories. One such scheme is
transition path sampling (TPS), see discussion below. It amounts to doing a biased random walk in
trajectory space guaranteed to converge asymptotically to the biased trajectory ensemble (16). TPS will form
the basis of the numerical scheme we develop below.

3. Trajectory sampling and classical dimer model

3.1. Transition path sampling, trajectory umbrella sampling and optimal reference dynamics
As discussed in section 2.4, for many-body system - including the example of the classical dimer model
(CDM) that we discuss in detail below - accessing the LD statistics of a relevant dynamical order parameter
such as the activity for large systems sizes and long times is non-trivial. Sampling of rare trajectories requires
a strategy that overcomes the fact that they are exponentially suppressed both in space and in time. This is
the central consideration of this paper.

The first step is to choose a basic scheme to do importance sampling of trajectories, that is, to improve
beyond the computational trap of brute force sampling of exponentially rare trajectories with the original
dynamics. For this purpose we employ transition path sampling (TPS) [1]. We consider specifically TPS as
formulated for the study of LDs in time-translation invariant dynamics, see e.g. [7, 52] (rather than as
originally devised to access rare trajectories in transition pathways where the rare events are conditioned to
start in one region of phase space and end in another). Alternative numerical methods include ‘cloning’ (or
‘splitting’) [30], variational approximations [38], or tensor network approaches [36, 37].

TPS is Monte Carlo (MC) sampling of trajectories. Just like MC for configurations, TPS is a form of
‘importance sampling’, progressively guiding the trajectories it samples towards the relevant region of
trajectory space according to the desired target measure, in our case the tilted distribution equation (16).
Like in standard MC there are two relevant basic steps in the TPS algorithm: (i) proposal of trial moves and
(ii) acceptance or rejection. For (i) new trajectories are proposed typically via ‘shooting’ and/or ‘shifting’
moves [1], where sections of the current trajectory are regenerated to create the proposed new trajectory. For
(ii), a Metropolis rule if often employed, whereby the probability of acceptance is given by min

(
1,e−s∆K

)
,

where∆K is the change in the observable (e.g. the activity) between the current and proposed trajectories.
This approach is guaranteed to converge to trajectories sampled from (16).

While TPS (or alternative methods such as cloning) improve the efficiency of sampling with respect to
brute force, for many-body systems they may still suffer from slow convergence, especially near LD
transitions. In the case of TPS this is related to the proposal of trial trajectories and their low acceptance,
especially for long times in systems with large state spaces. To improve convergence one can use umbrella
sampling in trajectory space [32–34, 52]. If we consider an exponentially tilted average such as the numerator
of (17) we can write

⟨Ae−sK⟩=
∑
ω

πref(ω)A(ω)e
−sK(ω) π(ω)

πref(ω)

= ⟨Ae−sK+G⟩ref , (21)

where

G(ω) = log
π(ω)

πref(ω)
. (22)
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This means that we can estimate (17) using a different dynamics, the ‘reference’, if we exponentially
weight according also to the trajectory observable G to account for the change in measure [32–34, 52]. A
clever choice of reference may reduce the exponential sampling error. In fact, the optimal choice for the
reference dynamics is given via a generalised Doob transformation [9, 16], which removes the exponential
cost of the sampling, basically by cancelling the−sK in the exponent of (21) with the reweighing term G.

The alternative dynamics has generator

Wref =
∑
x,x′ ̸=x

wref
x→x′ |x′⟩⟨x| −

∑
x

Rref
x |x⟩⟨x| , (23)

with the following restriction: wref
x→x′ ̸= 0 if wx→x′ ̸= 0, that is, the reference dynamics connects (with in

general different rates) the same configurations as the original dynamics; and, of course, to maintain
stochasticity, the escape rates are given by Rref

x =
∑

x′ w
ref
x→x′ . The reweighing factor for a trajectory ωt is then

eG(ωt) =
π(ωt)

πref(ωt)

=
∏
x,y̸=x

(
wx→x′

wref
x→x′

)Kx→x′ (ωt)

e
´ t
0 dt

′∆Rxt′ , (24)

where Kx→x′(ω) indicates the total number of jumps between configurations x and x′ in trajectory ω and
∆Rxt′ = Rref

xt′
−Rxt′ with xt′ the configuration in the trajectory at time t′. Trajectory averages with the

reference dynamics, (21), can be computed with TPS by adjusting the acceptance criterion. If the old
trajectory was ω and the proposed one ω′ the probability of acceptance Γacc(ω → ω′) reads

Γacc(ω → ω′) =min

(
1,
e−sK(ω′)+G(ω′)

e−sK(ω)+G(ω)

)
. (25)

In the limit of long times the optimal reference dynamics is given by the long-time Doob transformation.
This optimal dynamics has generator W̃ with transitions rates given by

w̃x→x′ =
ℓx′

ℓx
e−swx→x′ , (26)

where the ℓx are the elements of the leading left eigenvector ofWs, cf (20), and escape rates give by the
original ones shifted by the SCGF

R̃x = Rx− θ(s) . (27)

Note that this is true only for jump observable that are symmetric in transitioning from x to x′ and back.
If the reference dynamics is the one generated by W̃ the reweighing factor then reads,

eG = etθ(s) esK
ℓx0
ℓxt

. (28)

Note that with such reweighing the exponential of K in (21) is removed, while the exponential of the SCGF
cancels the normalisation in (17). In this way the exponential suppression disappears when using the optimal
dynamics as the reference to calculate averages such as (17). Note however that the factor ℓx0/ℓxt which only
depends on the time-boundaries of the trajectory remains. For s ̸= 0 where in general θ(s) is non-vanishing
this will set an upper limit to the efficiency of the sampling with regards to TPS acceptance.

3.2. Arriving to the optimal dynamics iteratively through feedback
The key quantity in defining the optimal dynamics (26) is the left eigenvector ⟨ℓs∥, cf (20). In practice the
problem is that to obtain (26) one needs to diagonaliseW s first, something which is often not possible to do
in systems of interest. The aim of what follows will be to find a way to estimate the components ℓx in an
efficient manner.

We consider dynamics which obeys detailed balance which offers a useful simplification (this is the case
of the CDM we study below). For systems with such dynamics we have in general

Peq(x)wx→x′ = Peq(x
′)wx′→x , (29)

6
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where Peq is the equilibrium stationary distribution. In operator form this relation can be written as

W† = PeqWP−1
eq , (30)

where Peq is a diagonal matrix with entries Peq(x). For the case of an observable like the activity, the tilted
operator also obeys a similar relation

W†
s = PeqWsP−1

eq , (31)

with the same matrix Peq.
The optimal dynamics (26) is obtained via a generalised (and long time) Doob transform [9, 16],

W̃= L [Ws− θ(s)]L−1 , (32)

where the components ℓx are used to construct the diagonal matrix L, such that ⟨−|L= ⟨ℓx|. The operator
W̃ obeys ⟨−|W̃= 0, as it generates the proper stochastic dynamics (26). The Doob dynamics also obeys
detailed balance,

W̃† = P̃W̃ P̃−1 , (33)

where P̃ is the diagonal matrix with entries P̃(x) given by the equilibrium distribution of dynamics (26).
Combining equations (31)–(33) we get

L2 = P−1
eq P̃ , (34)

which in components gives the relation between the elements of the left eigenvector and the stationary
probabilities of both the original dynamics and the optimal one,

ℓx =

√
P̃(x)

Peq(x)
. (35)

Equation (35) relates the objects we need to obtain to define the optimal dynamics, ℓx, to two
equilibrium distributions [16]. The first one is that of the original dynamics, which we either known exactly -
as in the case of the CDM - or we can sample from direct simulation. The second one is the equilibrium
probability of the Doob dynamics. This one we do not know, but we can estimate from TPS simulations. This
forms the basis of an iterative feedback approach for obtaining the optimal dynamics similar to those used in
references [31, 35, 39]:

• We consider a reference dynamics with a structure similar to (26)

wref
x→x′ =

ℓrefx′

ℓrefx

e−swx→x′ . (36)

We could begin for example with ℓrefx = 1 for all x as a naive initial guess.
• We run TPS under this reference and estimate P̃.
• We use (35) to obtain a new set of ℓrefx , we insert them in (36) to define a new reference dynamics and repeat
the sampling.

Via this procedure the reference dynamics is guaranteed to eventually converge to the optimal Doob
dynamics. The practical limitations relate to the size of state space and the ability to estimate the necessary
equilibrium densities, which we address in the following sections via machine learning techniques.

3.3. Model
For concreteness we will consider the dynamics of a paradigmatic statistical mechanics model, that of fully
packed dimers on a square lattice - with periodic boundary conditions - or classical dimer model (CDM)
[50–52]. Figure 1 sketches the model. It comprises of dimers which occupy two adjacent sites on a square
lattice (with periodic boundary conditions) under the conditions that all sites are covered and dimers do not
overlap. For dynamics with local changes to the configuration x which ‘flip’ a pair of neighbouring parallel
dimers (or plaquette), between horizontal to vertical and visa versa, without having any direct effect of the
rest of the configuration, see figure 1.

7
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Figure 1. An example of a fully packed classic dimer configuration showing how the local plaquette flip dynamics changes the
configuration. Where the highlighted (pink) pair of dimers, or plaquette, undergo the plaquette flip dynamics which leaves all
other dimers unchanged.

The stochastic generator, cf (6), for the CDM can be written schematically

W=
∑

(|II⟩⟨= |+ |=⟩|II⟩)−
∑

(|II⟩⟨II|+ |=⟩⟨= |) , (37)

where the first sum contains all the non-diagonal elements that give rise to the plaquette transitions, while
the second sum is diagonal and just counts them. Both the right eigenvector with eigenvalue zero (i.e. the
equilibrium states) and the corresponding left eigenvector, equations (7)-(8), are given up to normalisation
by the flat state over all allowed dimer configurations. As such, the dynamics generated by (37) is an ‘infinite
temperature’ dynamics, i.e. one where the stationary state is one of maximum entropy.

The CDM is known [52] to have a LD first order transition when tilted by the dynamical activity, in this
case given by the number of plaquette flips in a trajectory. This transition occurs at s= 0 in the large size
limit. The corresponding tilted generator, cf (19), reads

Ws = e−s
∑

(|II⟩⟨= |+ |=⟩⟨II|)−
∑

(|II⟩⟨II|+ |=⟩⟨= |) , (38)

and the transition manifests in a first-order singularity in the SCGF θ(s) at s= 0 in the large size limit.

4. Optimal dynamics via neural networks: supervised learning and network architecture

The are several hurdles to overcome in order to implement the iterative feedback procedure of section 3.2.
They all stem from the fact that configuration space grows exponentially with the system size, which in the
case of the CDM is given by the number of sites in the lattice. For many-body systems like the CDM the aim
is to study the problem for a range of relevant system sizes which immediately leads to a computational
bottleneck that is difficult to solve.

Specifically, for the scheme of section 3.2 we face two related problems. First, in order to define a
dynamics (36) one has to be able to specify ℓrefx for all configurations x of the system. As soon as the system
exceeds modest sizes there are too many states to tabulate. Secondly, to use (35) to get ℓrefx (that is, an
approximation to the true ℓx) not only one needs to have an estimate of P̃(x) for all x - the same problem as
for ℓrefx - but furthermore, this estimate has to be constructed from the states sampled in TPS trajectories,
which are often much fewer than the total number of states (as is common in sampling).

These two problems are amenable to solution via standard machine learning methods [41, 42]: the first
one we can address via function approximation whereby we represent the functions ℓrefx and P̃(x) by means of
a neural network (NN) with an overall number of parameters that is much smaller than the dimension of
configuration space; the second problem is one of density estimation, whereby from limited sampled data we
approximate the distribution for all possible data. Of course, one can apply functional approximation and
density estimation without using NNs [41, 42], through a choice of approximate description that depends on
a small number of parameters. The problem is that if the approximation chosen does not contain the
necessary physical information - for example when studying very different dynamical regimes - then it might
have little effect on the sampling process. Using a NN as the approximator mitigates this problem by not
hard-constraining physical assumptions.

4.1. Network structure
In terms of using a NN, learning how to take a configuration x and map it to a single output ℓrefx can be
viewed as a regression problem. If a NN can be trained to provide a value of ℓrefx for each x, then the NN can
be incorporated in a continuous-time MC algorithm to provide values for the rates of potential moves.
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Figure 2. (a) Loss of the NNs as a function of epoch. The top panels correspond to the training the NNs to recover the value of ℓx
for each x, with the loss defined as the mean squared error (MSE) between the prediction and the exact value (obtained by exact
diagonalisation of the titled generator (19). The bottom panels correspond to training the NNs to make the classification (39),
with the loss given by the binary cross entropy (BCE). Shown are three network architectures: fully connected network with 50%
dropout between layers (red), a CNN (orange) and a CNN with 50% dropout between layers (blue). The left panels corresponds
to the training loss and the right panels to the test loss. Training is done by sampling 104 configurations weighted according to ℓx,
while testing is done for 103 sampled configurations. The size of configuration space for the CDM at N= 6× 6 isN ∼ 105. (b)
Structure of the NN implemented in the subsequent trajectory sampling. For a CDM of size N= L× L all layers until the first
dense layer scale with L. The input is an array of N= L× L encoding a configuration. The encoding we use consists of allocating a
numerical value (1,2,3,4) to the orientation (up, right, down, left) of the half of the dimer at a given site. The two convolutional
layers have 8 convolutional nodes each with a kernel size of 2 by 2 and ReLU activation. The two average pooling layers have
pooling size of 2 by 2. These are followed by a flattening layer and two dense layers, one with 128 nodes and ReLU activation, the
other with 10 nodes and ReLU activation. Between each of the dense layers there is a dropout rate of 50%. For ease of replication,
all the NNs employed in this paper were done using the Keras API [54].

The optimal reference is the Doob dynamics (26). The first test for our NN approximator is therefore to
learn the true form of the Doob transformation vector ⟨ℓs|. For CDM this means we are limited to a
maximum lattice of size N = 6× 6 for which we are still able to obtain ⟨ℓs| by exact diagonalisation. The
supervised learning problem of training a NN to accurately reproduce the true components ℓx of ⟨ℓs| given
an input configuration x for the exactly solvable L= 6 case will provide information about the correct
network architecture for large scales.

There are many hyper-parameters associated with finding a suitable network structure. Several possible
schemes are compared in figure 2(a). One such is a NN with dense layers and regularisation such as dropout
[41, 42]. However, if we consider configurations as highly correlated images then it makes sense the use of
convolutional layers [41, 42]. We can see in figure 2(a) the effect of such layers, in combination with dropout
regularisation, has on the training and generalisation of the model. Through this analysis we conclude that
the convolutional neural network (CNN) [43–45] shown in figure 2(b) is an appropriate architecture for a
functional approximator of ℓx.

An important step is an adaptation of the loss function which will become very useful when we scale the
problem up in the next section. The key expression for what follows is (35). What this equation shows is that
in order to obtain the vector ℓx that defines the reference dynamics we are not interested in the individual
probability distributions, Peq and P̃, but on the ratio between them for each configuration x. This fact can be
exploited using a method of learning that rephrases the issue of density estimation as a semi-supervised
learning problem [55].

Specifically, consider a situation where we are generating sample configurations x from two distributions,
the equilibrium one Peq corresponding to the original dynamics (6) and a second stationary distribution
HatP, for example an estimate of the true Doob equilibrium P̃. Consider the problem of training a NN to
discriminate between configurations generated from Peq orHatP. That is, the output of a NN such as that of
figure 2(b) could be a function µ(x)∈[0, 1] trained to reproduce

µ(x) =
HatP(x)

HatP(x)+ Peq(x)
=

HatP(x)
Peq(x)

1+ HatP(x)
Peq(x)

. (39)

The above expression corresponds to the average of a binary label Y which is equal to Y = 1 if x is
generated exclusively byHatP and Y = 0 if x is generated exclusively by Pref. This is a standard classification
problem. We can define our NN figure 2(b) with a sigmoid activation function before the output,
corresponding to µ(x) and train it with data obtained in an i.i.d. from bothHatP and Peq and labelled
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Figure 3. (a) Value of ℓx, normalised by
∑

x ℓx, for all configurations x, for the CDM at N= 6× 6. The top panel is for s=−1
while the bottom panel for s= 1. The plots show the normalised values of ℓx from exact diagonalisation of (19) (orange) and for
the NNs of figure 2(b) with output the vector ℓx (green) and with the output the classification (39) (blue). The configurations x
are ordered based on ascending values of the exact ℓx. (b) Activity per unit time and size in the tilted ensemble,
k(s) = ⟨Ke−sK⟩/(⟨e−sK⟩Nt) =−θ′(s)/N, vs s for the case of= 6× 6. The pink circles show k(s) estimated by brute force (from
105 sample trajectories for each s followed by exponential reweighing). The green diamonds correspond to standard TPS (starting
at s= 0 and moving in steps of∇tas= 10−2 after 105 TPS iterations and similarly for the other TPS data). The down blue
triangles correspond to TPS with a reference dynamics where the NN trained for the value of ℓx (NNv) is used as function
approximator. The up orange triangles are the same but with the NN trained with the category approach (NNc). They both
coincide with the use of the exact diagonalisation result (black curve) and with TPS with the exact Doob dynamics (26) (purple
stars) as reference (TPS needed in this case to fix time-boundary effects). (c) Sample TPS evolution collected at s= 1 from the
standard TPS method (blue) and from TPS with reference dynamics given by the trained NNc (orange). The inset is the same data
on a linear scale.

accordingly. Furthermore, from the output µ(x), we can obtain an estimate of the left eigenvector ℓx from the
output of the NN by substituting (35) it into (39) and rearranging,

ℓx =

√
µ(x)

1−µ(x)
. (40)

Since this relationship between ℓx and µ arises due to (35) we can also see how it depends on detailed
balance being present in the system of interest. In our case the CDM obeys this property.

4.2. Proof of principle: LD sampling forN = 6× 6
As a proof of principle on the use of a NN for the function approximator of the reference dynamics we
consider the CDM for size N = 6× 6 and periodic boundaries, which is solvable by exact diagonalisation. In
this case we can calculate exactly the vector ℓx for all configurations x. Figure 3(a) shows the ability of a NN
like that of figure 2(b) to learn the exact ℓx. We show for comparison the NN trained to reproduce the
classification (39) (note that for the CDM the equilibrium probability Peq is uniform over all configurations),
with a similar network trained to reproduce the actual value of ℓx. While the classification/category NN
(NNc) gives larger fluctuations than the value NN (NNv), as we will see below, it provides a method that can
be applied to system sizes too large for the value method.

The aim is to use this network within a TPS simulation as an aid to define the reference dynamics.
Figure 3(b) compares the results from various sampling schemes with the exact diagonalisation of the tilted
generator (19) for the N = 6× 6. We plot the average activity per unit time

k(s) =−θ′(s) (41)

against s, cf [52]. The sampling data is shown for the same number of generated trajectories (105) for each s,
in order to compare their efficiency. The pink circles show brute force sampling via post-selection: as
expected, the exponential cost of sampling away from s= 0 makes the estimation of the true k(s) very poor.
The green diamonds are results obtained via standard TPS, where trajectories are generated using the
original dynamics: while this is an improvement over brute force sampling, for s large enough the simulation
fails to reproduce the exact values (black curve). The down blue triangles and up orange triangles correspond
to TPS with a reference dynamics provides by NNs trained with the value (NNv) and category (NNc) of ℓx.
They coincide with TPS using the exact Doob dynamics (26) as reference (purple stars) and with the exact
diagonalisation result. Figure 3(b) demonstrates that TPS supplemented by appropriately trained NNs [with
the architecture of figure 2(b)] can efficiently recover the dynamical LD statistics of the CMD, at least for
N = 6× 6. The next section addresses how to scale up this approach.
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Figure 4. (a) Sketch of the iterative procedure to arrive at accurate sampling of the tilted ensemble. Each iteration of the procedure
has two stages. The first one corresponds to sampling the equilibrium probability with the original dynamics, (6) and the
probability of the tilted ensemble via TPS with a reference dynamics, (36), which at iteration k isWref

n−1 (for the initial iteration we

choose ℓrefx uniform). At the end of this stage we obtain samples of an approximationHatPk to the true P̃. The second stage of the
iteration corresponds to training the NN to classify the samples, (39). This is done by running the NN through 300 epochs of
training. An epoch is when the NN has been trained, in batches of 100 configurations, on all the data gathered from the previous
iteration labeled as one category and the (same amount of) data gathered from the equilibrium dynamics labeled as the other
category. Once the NN has been trained the data gathered from the previous iteration is discarded. This via (40) allows the NN to

generate the vector ℓref,nx , which is used to define the reference dynamics for the next iterationWref
n . This feedback scheme should

eventually converge to the exact Doob vector ℓ and corresponding optimal dynamics (26). (b) Total variational distance between
the (normalised) exact ℓ (for N= 6× 6 and s= 1) and the output of the NNc learned at each stage of the iterative procedure
(green symbols). The orange dashed line indicates the TVD between the exact ℓ and the NNc trained with the exact values, cf
figures 2,3, while the blue dotted line the same for NNv. (c) Evolution of the probability distribution in the iterations labelled in
the previous panel. In iteration D we compare to the exact value (orange).

As an alternative measure of efficiency we can compare the number of TPS iterations required to
equilibrate (in the TPS sense) to the correct value of k(s). Figure 3 shows such comparison between standard
TPS and TPS supplemented by the NNc for s= 1. We see from the figure that for these conditions the NNc
enhanced TPS converges to the exact value orders of magnitude faster than standard TPS.

5. Optimal dynamics via Neural networks: Semi-supervised learning and scalability

5.1. Iterative feedback procedure
For system sizes beyond N = 6× 6 it is not possible to numerically diagonalise the tilted generator of the
CMD. In order to scale up the procedure of the last section we can adapt the optimal control procedure
introduced in [31] (see also [35, 39]) to our setting, as discussed above in section 3.2. Figure 4(a) sketches
our feedback scheme. The procedure consists of two stages per iteration. The first one samples both the
equilibrium configurations from Peq with the original dynamics (6) (something which is redundant in the
CMD as the equilibrium distribution is uniform) and configurations in the ensemble tilted by s, using TPS
and a reference dynamics. This latter step is imperfect and only produces samples according to an
approximationHatP to the true target distribution P̃. The second stage of each iteration is to train the NN to
classify between configuration generated by Peq and P̃. The NN we use has the structure of that of figure 2(b).
The trained network is then used to generate the vector ℓref that determines the reference dynamics, cf (36),
for the next iteration of the procedure. For enough iterations we eventually converge to the optimal
dynamics (26).

We can test the effectiveness of this iterative procedure by looking at the probability distribution
produced by each step in the iteration. Figure 4(b) shows the distance between the left eigenvector ℓref,nx at
each iteration n the feedback procedure and the exact one ℓx. If we normalise these vectors we obtain
probability distributions over the configurations and we can compare them in terms of total variational
distance (TVD)

TVD(ℓref, ℓ) =
∑
x

∣∣∣∣∣ ℓrefx∑
y ℓ

ref
y

− ℓx∑
y ℓy

∣∣∣∣∣ . (42)
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Figure 5. (a) Average activity as a function of s. Symbols are for systems sizes N= 6× 6 (orange), N= 8× 8 (blue), N= 16× 16
(red) and N= 24× 24 (green), obtained from TPS with the NNc reference via the feedback procedure, cf figure 4. The dashed
lines correspond to the results of reference [52]. (b) In both panels the system size is N= 6× 6. Top panel: TPS acceptance rate as
a function of s. When the original dynamics is used (blue) acceptance decays fast away from s= 0. Acceptance is much larger with
the reference obtained from NNc (orange). In the main plot we show acceptance scaled by that of the optimal Doob dynamics
(green; the inset gives the unscaled rate, showing that even with the optimal dynamics acceptance is not strictly unity away from
s= 0 due to time-boundary effects). Bottom panel: TPS acceptance rate at s= 1 as a function of the time of the cut. A good choice
of reference dynamics reduces the exponential suppression with time of the acceptance. (c) The accuracy of NN trained on the
binary-cross entropy try to distinguish two distributions, cf (39). The top panel shows the binary cross entropy for training and
the bottom one for test data, for the same system sizes of (a).

We see from figures 4(b,c) for the solvable N = 6× 6 case that over a small number of iterations the NNs
learn the values as well as they would have done so using the exact diagonalisation data as input.

5.2. Sampling results
We are now in a position to use the semi-supervised learning method to sample systems that are not
accessible to exact diagonalisation. Figure 5(a) shows the average activity per unit time and size, k(s)/N, as a
function of s for different system sizes in the CMD. We see from the figure that the results coincide with those
of reference [52], currently the state of the art for this model. The key observation of [52] was the existence of
a transition at the LD level at s= 0 in the limit of large system size, seen as the change in k(s) that is tending
to a discontinuity. Accurate sampling of trajectories responsible for the transition is the main computational
difficulty in this system. The results of figure 5(a) show that our NN assisted feedback procedure is capable of
sampling such rare events efficiently.

One caveat of this process, arose from the choice of initial dynamics for the largest system size we
explored, N = 24× 24. In the smaller system sizes we simply set ℓrefx to be uniform as an initial dynamics.
However for N = 24× 24, the distribution produced by setting ℓrefx to be uniform was not sufficiently distinct
from the equilibrium distribution for the iterative procedure to converge in a reasonable time. To solve this
problem we explored the use of transfer learning by Training a NN on a tiled version of a smaller system size,
N = 6× 6; such that the input to the NN is sufficiently sized for N = 24× 24 configurations. The initial
dynamics can be implemented using the trained NN instead of the uniform ℓrefx . The initial distribution
produced from the trained NN was then capable of converging in a reasonable time.

The effectiveness of the iterative NN method can be seen in the ability to find a reference dynamics under
which to run TPS where the acceptance of proposed trajectory moves is larger than in standard TPS. In
figure 5(b) (top panel) we show the TPS acceptance as a function of s. For TPS where trajectories are
generated with the original dynamics, this acceptance decreases fast with s. Furthermore, as shown in
figure 5(b) (bottom panel) for the s= 1 case, acceptance is exponentially suppressed with the time point at
which the current trajectory is cut to generate the proposed one. In contrast, TPS with the NN reference
dynamics has a much larger overall acceptance probability away from s= 0 and the exponential reduction
with cut time is much suppressed. In this sense it is getting closer to the optimal Doob dynamics, for which
acceptance probability is in principle independent of cut time [but not quite equal to unity away from s= 0
due to the need to correct the temporal boundaries in trajectories, see discussion following equation (28)].

A final check on how well the semi-supervised NN method is performing, instead of looking at the loss
function of the NN under training/testing, we can consider the accuracy as shown in figure 5(c). This is
defined as the percentage of correctly categorised configurations and is a metric that can be applied to any
system size. We use the exact data from N = 6× 6 as a benchmark.
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6. Conclusions

We have addressed the problem of numerically sampling rare dynamical trajectories for the estimation of the
large deviation statistics of dynamical observables. We have considered this problem specifically for the case
of the classical dimer model as a characteristic many-body system where the sampling complexity arises from
its correlated dynamics and associated trajectory phase transition. We have shown that it is possible to
implement a scheme where the optimal dynamics with which to sample exponentially tilted trajectory
ensembles is obtained from an iterative feedback mechanism with minimal input regarding the nature of the
problem. Specifically, by using a neural network as a functional approximator for the eigenvector over the
many-body configurations that defines the reference dynamics, we are able to implement our scheme in a
manner that is scalable with system size. For the CDM we showed that this procedure efficiently recovers the
LD phase transition of the model. Since the aim of the paper was to present a Deep Learning approach to LD
trajectory sampling we chose to compare to the CDM to validate our method. In future work we hope to
apply it to yet unsolved problems, in the context of dimer models and interesting one would be to go beyond
two dimensions. We expect the key property of our systematic approach to be beneficial especially in
problems where a physically inspired approximation to the eigenvectors is not clear (which is the most
widespread situation in many-body problems). Our approach should be directly applicable to the study of
similar types of time extensive observables, like the activity, on other many-body systems of interest that also
obey detailed balance. An interesting extension would be to systems without detailed balance and/or
non-symmetric observables such as currents. More generally, our results here are yet another example of the
broad potential of deep learning methods for study of non-equilibrium systems more generally.
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[17] Jack R L, Thompson I R and Sollich P 2015 Phys. Rev. Lett. 114 060601
[18] Bertini L, Faggionato A and Gabrielli D 2015 Stochastic Process. Appl 125 2786
[19] Eckmann J P and Ruelle D 1985 Rev. Mod. Phys. 57 617
[20] Ruelle D 2004 Thermodynamic Formalism (Cambridge: Cambridge University Press)
[21] Gaspard P 2005 Chaos, Scattering and Statistical Mechanics (Cambridge: Cambridge University Press)
[22] Touchette H 2009 Phys. Rep. 478 1
[23] Garrahan J P 2018 Physica 504 130

13

https://orcid.org/0000-0002-3319-4433
https://orcid.org/0000-0002-3319-4433
https://doi.org/10.1146/annurev.physchem.53.082301.113146
https://doi.org/10.1146/annurev.physchem.53.082301.113146
https://doi.org/10.1073/pnas.0504820102
https://doi.org/10.1073/pnas.0504820102
https://doi.org/10.1007/s10955-006-9254-0
https://doi.org/10.1007/s10955-006-9254-0
https://doi.org/10.1103/PhysRevLett.98.195702
https://doi.org/10.1103/PhysRevLett.98.195702
https://doi.org/10.1088/1751-8113/42/7/075007
https://doi.org/10.1088/1751-8113/42/7/075007
https://doi.org/10.1126/science.1166665
https://doi.org/10.1126/science.1166665
https://doi.org/10.1103/PhysRevLett.103.010602
https://doi.org/10.1103/PhysRevLett.103.010602
https://doi.org/10.1143/PTPS.184.304
https://doi.org/10.1143/PTPS.184.304
https://doi.org/10.1209/0295-5075/96/56002
https://doi.org/10.1209/0295-5075/96/56002
https://doi.org/10.1007/s00220-012-1449-4
https://doi.org/10.1007/s00220-012-1449-4
https://doi.org/10.1103/PhysRevLett.109.195703
https://doi.org/10.1103/PhysRevLett.109.195703
https://doi.org/10.1103/PhysRevLett.111.120601
https://doi.org/10.1103/PhysRevLett.111.120601
https://doi.org/10.1103/PhysRevE.87.032115
https://doi.org/10.1103/PhysRevE.87.032115
https://doi.org/10.1007/s00023-014-0375-8
https://doi.org/10.1007/s00023-014-0375-8
https://doi.org/10.1103/PhysRevLett.114.060601
https://doi.org/10.1103/PhysRevLett.114.060601
https://doi.org/10.1016/j.spa.2015.02.001
https://doi.org/10.1016/j.spa.2015.02.001
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physa.2017.12.149
https://doi.org/10.1016/j.physa.2017.12.149


Mach. Learn.: Sci. Technol. 1 (2020) 035004 Tom H E Oakes et al

[24] Jack R L 2019 Euro. Phys. J. B 93 1–22
[25] Chandler D 1987 Introduction to Modern Statistical Mechanics (Oxford: Oxford University Press)
[26] Giardina C, Kurchan J and Peliti L 2006 Phys. Rev. Lett. 96 120603
[27] Cérou F and Guyader A 2007 Stoch. Anal. Appl. 25 417
[28] Lecomte V and Tailleur J 2007 J. Stat. Mech. 2007 P03004
[29] Gorissen M, Hooyberghs J and Vanderzande C 2009 Phys. Rev. E 79 020101
[30] Giardina C, Kurchan J, Lecomte V and Tailleur J 2011 J. Stat. Phys 145 787
[31] Nemoto T, Bouchet F, Jack R L and Lecomte V 2016 Phys. Rev. E 93 062123
[32] Ray U, Chan G K-L and Limmer D T 2018a Phys. Rev. Lett. 120 210602
[33] Ray U, Chan G K-L and Limmer D T 2018b J. Chem. Phys 148 124120
[34] Klymko K, Geissler P L, Garrahan J P and Whitelam S 2018 Phys. Rev. E 97 032123
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