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Abstract
Although several models have been proposed towards assisting machine learning (ML) tasks with
quantum computers, a direct comparison of the expressive power and efficiency of classical versus
quantum models for datasets originating from real-world applications is one of the key milestones
towards a quantum ready era. Here, we take a first step towards addressing this challenge by
performing a comparison of the widely used classical ML models known as restricted Boltzmann
machines (RBMs), against a recently proposed quantum model, now known as quantum circuit
Born machines (QCBMs). Both models address the same hard tasks in unsupervised generative
modeling, with QCBMs exploiting the probabilistic nature of quantum mechanics and a candidate
for near-term quantum computers, as experimentally demonstrated in three different quantum
hardware architectures to date. To address the question of the performance of the quantum model
on real-world classical data sets, we construct scenarios from a probabilistic version out of the
well-known portfolio optimization problem in finance, by using time-series pricing data from asset
subsets of the S&P500 stock market index. It is remarkable to find that, under the same number of
resources in terms of parameters for both classical and quantum models, the quantum models
seem to have superior performance on typical instances when compared with the canonical
training of the RBMs. Our simulations are grounded on a hardware efficient realization of the
QCBMs on ion-trap quantum computers, by using their native gate sets, and therefore readily
implementable in near-term quantum devices.

1. Introduction

In the past decade, a significant interest in quantum computing has been devoted to the search of key
real-world applications where quantum computers can offer a significant advantage over their classical
counterparts. As in many computer science research areas, such as the development of heuristic algorithms,
we expect these developments to involve experimental testing of the performance on relevant data sets, but
without access to rigorous proofs or general claims about their speed up compared to previous algorithms.
The development of machine learning, as applied to the real-world applications, relies largely on this
approach, where new algorithms are tested and compared against other proposals via established
benchmarks.

Among the span of applications, probabilistic graphical models, and more specifically, unsupervised
generative modeling stands out as one of the most promising ML areas towards a demonstration of quantum
advantage with near-term quantum devices [1]. It is in this domain that we focus the comparison in this
work.

To generate the benchmarks, we use stock market data and use subsets to construct a probabilistic version
of a canonical problem in finance: portfolio optimization. In particular, the market data used for this study
correspond to the historical time-series of stocks in index S&P 500 for the time period encompassing daily
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asset pricing data between 2017-12-01 to 2018-02-07. The benchmark is constructed such that, both classical
and quantum models can be compared on the same footing.

For our quantum approach, we implement here a recently proposed model referred to as quantum circuit
Born machines (QCBMs) [2]. This model is used to load and represent arbitrary probability distributions by
using the Born amplitudes of the wave function at the end of the quantum circuit, hence its name. The term
Born machine was originally coined in the context of quantum wavefunctions from tensor networks
objects [3]. To distinguish from such quantum objects we refer to the latter as tensor networks Born
machines (TNBMs).

QCBMs can be trained with the so-called data-driven quantum circuit learning (DDQCL) algorithm
within the framework of parametrized quantum circuits and hardware efficient representations, with the
help of gradient-free [2] or gradient-based [4, 5] optimizers, making it amenable for implementations in
near-term hardware. To date, experimental implementations of QCBMs via DDQCL have been implemented
in ion-trap [6] and superconducting devices [7, 8]. Another recent experimental implementation was
demonstrated in reference [9], in the context of probability distributions appearing in financial applications,
and where the QCBM is embedded as the generator inside a generative adversarial network approach.

As the canonical ML model to compete with the QCBMs, we choose a generative model known as
restricted Boltzmann machines (RBMs). This model has been the baseline used elsewhere to compare the
performance of other quantum thermal models [10–12]. RBMs are energy-based models that associate scalar
energy to each configuration of the variables of interest. These energy-based probabilistic models define a
probability distribution through an energy function analogous to Boltzmann distribution. RBMs are shallow,
two-layer neural networks, where the first layer is called the visible, or input, layer, and the second is the
hidden layer. Learning corresponds to modifying the parameters on that energy function so that its shape
reaches configurations with low energy.

Although there have been several contributions in the frontier of finance and quantum computation
[9, 13–22], our focus here is in a systematic benchmark comparison of a widely known classical machine
learning model with a quantum model readily implementable in near-term quantum hardware.

Without any claim to a precisely developed theory regarding the true nature of market distribution, the
inspiring motivation for modeling it with the Boltzmann distribution rests on an analogy with statistical
mechanics. For instance, following [23], based on the context of an ideal gas, the companies shares negotiated
by investors could be compared with particles, and therefore, under this assumption, they could be described
by Boltzmann distributions. We construct such distributions from a time window of the stock market pricing
data, and use them as the target distributions from which we draw the samples to be used as training sets for
both competing models: the RBMs and the QCBMs. Here, the temperature can be analogously interpreted as
the market temperature, capturing the variability (volatility) of the market, in analogy with an ideal gas
where temperature accounts for the average agitation energy of the underlying particles. Thus, higher
temperature leads to higher volatility and lower temperature of the economic system corresponds to lower
volatility of the market. More details related to the construction of the benchmarks are provided in section 2.

As shown in figure 1, key and unique to our contribution, is that the number of parameters in both our
QCBMs and RBMs is the same as the number of assets increases, therefore allowing for a fair comparison in
terms of model expressivities.

In the next section, we describe the details of the benchmark proposed. In section 3 we provide the details
for each of the computational approaches, and in section 4 we discuss the main findings of the quantum
versus classical model comparison. In section 5 we summarize and point out potential research directions
from this work.

2. ProblemDescription

In this section, we describe how to transform data taken from the stock market into a probabilistic model
that can be used to generate the training set for both, the quantum and classical models (QCBMs and RBMs,
respectively).

The selection of optimal investment portfolios is a problem of great interest in the area of quantitative
finance. The problem is of practical importance for investors, whose objective is to allocate capital optimally
among assets while respecting some investment restrictions. The goal of this optimization task, introduced
by Markowitz [24], is to generate a set of portfolios that offer either the highest expected return (profit) for a
defined level of risk (standard deviation of portfolio returns) or the lowest risk for a given level of expected
return. This set represents the so called efficient frontier (EF).

More precisely, the portfolio optimization model aims at determining the fractions wi (such that∑N
i wi = 1) of a given capital to be invested in each asset i of a Universe of N assets, such that these minimize

the risk σ(w) for a given level ρ of the expected return ⟨r(w)⟩. The problem can be written as:
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Figure 1. QCBM and RBM schematic setup: We show an example for a subset of N= 4 stock market assets, modeled either by the
four visible nodes in the classical scheme, {v1,v2,v3,v4}, or by the four qubits in the quantum model. In panel (a), we show the
graph layout used for the RBM training, with a number of hidden nodes set toM=N/2. In panel (b), we show the quantum
circuit layout used for our QCBMmodels, with the first layer performing arbitrary single-qubit rotations through the sequence of
X and Z rotation gates and the second layer composed of a fully connected graph of parametrized Mø lmer-Sø rensen XX
entangling gates (see section 3.1 for details). This layout, inspired by the native gates in ion-trap quantum computers, contains an
adjustable parameter controlling either the degree of rotation or the degree of entanglement for both single or two-qubit gates,
respectively. Note both schemes are designed to have the same amount of adjustable parameters to be learned in the training
process: 2 N+N(N− 1)/2 for QCBMs and N+M+NM coming from the biases on each node and the graph weights (edges)
for the case of the RBMs. Both are equal to N(N+ 3)/2.

min

σ2(w) =
N∑
i=1

N∑
j=1

Σijwiwj :

⟨r(w)⟩ =
N∑
i=1

µiwi = ρ

}
, (1)

where Σij is the sample covariance obtained from the return time series of asset i and asset j, and µi is the
average of the return time series of asset i, with each daily return, µti, calculated as the relative increment in

asset price from its previous day (i.e. µti = (pti − p(t−1)
i )/p(t−1)

i , with pti as the price for asset i at time t). We
denote by σρ the outcome from equation (1) for a given return level ρ. The graph φ of the pairwise (σρ,ρ),
for different values of ρ on a given interval [ρ0,ρ1], coincides with the set of all efficient portfolios (i.e. the
efficient frontier). Under no further constraints, solving for σp from equation (1) can be done efficiently with
quadratic programming (QP) algorithms.

Note the optimization task in equation (1) has the potential outcome of investing small amounts in a
large number of assets, as an attempt to reduce the overall risk by ‘over diversifying’ the portfolio. This type
of investment strategy can be challenging to implement in practice: portfolios composed of a large number
of assets are difficult to manage and may incur in high transaction costs. Therefore, several restrictions are
usually imposed on the allocation of capital among assets, as a consequence of market rules and conditions
for investment or to reflect investor profiles and preferences. For instance, constraints can be included to
control the amount of desired diversification, i.e. modifying bound limits {li,ui} to the proportion of capital
invested in the investment on individual assets or a group of assets, thus the constraint li < wi < ui could be
considered.

A more realistic and common scenario is to include in the optimization task a cardinality constraint,
which limits directly the number of assets to be transacted to an pre-specified number κ<N. Therefore, the
number of different sets to be treated isM=

(N
κ

)
. In this scenario, the problem can be formulated as a

Mixed-Integer Quadratic Program (MIQP) with the addition of binary variables xi∈{0, 1}, for i= 1, ...,N,
which are set to ‘1’ when the ith asset is included as part of the κ assets, or ‘0’ if it is left out of this selected
set. The optimization task can be described as follows:

min

{
σ2(w) :

⟨r(w)⟩= ρ,

lixi < wi < uixi i= 1, ...,N,
N∑
i=1

xi = κ

}
. (2)
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Figure 2. Probabilistic model from portfolio optimization problem: Panel (a) shows the efficient frontiers corresponding to the
solution of a 4-asset subset taken from the S&P 500 stock index under the unconstrained case (equation (1), and labeled as φ) and
from the constrained optimization problem (equation (2), labeled as φ2

i for i= 1, ..., 6), where two assets can be selected at a time
(κ= 2). Note that the optimal risk for the unconstrained case can differ significantly from the constrained case, as can be seen in
the example for the expected return, ρ= 2.5× 10−3. Optimal values correspond to x-axis values corresponding to the crossing
(red circles) of the fixed ρ line and the efficient frontiers curves, obtained from solving each QP problem. From each of these
solutions (crossings) we can associate a Boltzmann probability according to equation (3), where the portfolios with lowest risk
would be sampled with more probability. In panel (b) we show the probability distribution resulting from the example in (a) at
ρ= 2.5× 10−3. This would correspond to one of the many target distributions used as benchmarks and to be learned by both the
RBMmodel and the QCBMmodel. For illustration, we encode the different assets configuration by 4-pixel binary images [see
encoding in panel (a)], where full pixels indicated the assets selected. For example, the configuration 1001 (#9 in the x-axis)
corresponds to the only asset #1 and #4 being selected.

In this problem we denote by σκ
ρ the outcome from 2 for a given return level ρ. The graph φκ of pairwise

(σκ
ρ ,ρ), i.e. the efficient frontier, is no longer convex neither continuous in contrast with φ defined in

problem (1).
In general terms, a possible approach to solving the optimization problem (2) is to enumerate all possible

subsets of κ assets and, for each of them, to solve the associated QP that considers only the assets in the
subset for the optimization. However, such an exhaustive enumeration scheme is not practical in this
context, as this MIQP problem falls in the class of considerably difficult NP-hard problems [25]. As this
brute-force approach appears infeasible, other heuristic avenues have been proposed to tackle the hybrid
optimization problem, concurring on a strategy consisting of breaking the problem on a continuous part
solved via QP and leaving the discrete to be dealt with kind of black-box solvers, as genetic algorithms,
particle swarm optimisation or dimensionality reduction (see e.g. references [26–29]). Alternatively to
heuristic methods, this problem may be suitable for quantum computers, which can help in the discrete hard
part of the problem, resulting in a hybrid combination of classical and quantum resources for the continuous
and discrete parts, respectively. We describe next a probabilistic variant from this hard optimization problem
that will allow us to compare the performance of RBMs versus QCBMs).

As indicated above, the different potential portfolios with κ assets are encoded in bitstrings of size N
(represented by the variable x in equation (2)). Therefore, every bit represents the inclusion of that asset in
the candidate portfolio (1 - selected and 0 - not selected), and the valid portfolios would have a number κ of
1’s, as specified in the cardinality constraint. For instance, for N = 4 and κ= 2, the different valid
configurations can be encoded as {0011, 0101, 0110, 1001, 1010, 1100}.

The MIQP problem in equation (2) is tantamount to multiple QP problems over each possible set of κ
assets defined by the cardinality constraint. For instance, in the aforementioned case with N = 4 and κ= 2,
the problem is equivalent toM= 6 different QP problems. The solution for each of those QP problems yields
the efficient frontiers φκ

i , for i= 1, ...,M, which are enveloped by the efficient frontier of the optimization
task without the cardinality constraint, as illustrated in figure 2(a). The efficient frontier φκ

i encloses all
efficient portfolios for the ith possible sets or configurations of κ assets.

The next step in completing the genesis of the training data set corresponds to generating a probabilistic
distribution out of the different aforementioned efficient frontiers. To do so, we determine the risk σκ

ρ,i for
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each of theM efficient frontiers for a given return level ρ, and assign the probability of finding this
configuration by the Boltzmann distribution

p(σκ
ρ,i) =

e−σκ
ρ,i/T∑M

i=1 e
−σκ

ρ,i/T
, (3)

where T is referred to as the market temperature. This temperature parameter stands as an analogous
representation of volatility in the market, where higher temperature means higher volatility and lower
temperature of the economic system is interpreted as lower volatility of the market. With these
considerations, we define the temperature parameter in equation (3) as the square root of the mean of the
covariance matrix defined in equation (1), as this matrix encapsulates the risk information (volatility) as
stated in the Markowitz’s model.

With this encoding, we are able to represent the different probabilities (given by equation (3)), and from
which we can draw samples that would define the target datasetD to be learned by the QCBMs and the
RBMs. In figure 2(b) we plot the probability of every configuration, where {0101, 0110, 1001, 1010} are the
configurations with efficient portfolios for a expected return ρ= 2.5× 10−3 (red dotted line in figure 2(a)).
Note for two out of the six possible configurations there is no solution to the QP problem under the specified
value of ρ, since there is no crossing to the red dotted line for φ2

1 and φ
2
6. For those configurations, a risk of

effectively infinity is assigned such that probability is zero. This is the reason why figure 2(b) shows only four
peaks, instead of six.

In section 4 we provide more details about the construction of the 30 realizations of target distributions
per system size, i.e. number of stock assets. With the intention of having statistical diversity in the
benchmarks, these target distributions include different values of ρ and different random subsets from the
S&P 500 for each system size.

3. Methods

3.1. The quantum learning pipeline
The QCBMmodel is the hybrid quantum–classical algorithm we consider here for the quantum learning
approach since it is tailored towards generative modeling in unsupervised ML, i.e. it aims to capture the
target benchmark distribution through a quantum wavefunction (for more details, see reference [2]). This
algorithm uses a parametrized quantum circuit (PQC), with fixed depth and gate layout, that prepares a
wavefunction |ψ(θ)⟩ from which probabilities are obtained according to Born’s rule Pθ(x) = |⟨x|ψ(θ)⟩|2.
The N-dimensional binary vectors x ∈ {0,1}N are associated with the so-called computational basis of the
N-qubit quantum states, e.g. 1010→ |1010⟩, and as mentioned above, these map one-to-one to valid
portfolios in this 2N configuration space. A classical solver updates the quantum circuit parameters θ in
pursuit to minimize the Kullback-Leibler (KL) divergence DKL(PD|Pθ). The latter measures how the circuit
probability distribution (learned distribution) Pθ is different from the target probability distribution PD. To
evaluate this loss we consider the Kullback-Leibler divergence (DKL) defined as

DKL[P|Q] =
∑

x∈{0,1}N

P(x) lnP(x)

−
∑

x∈{0,1}N

P(x) ln(max(ϵ,Q(x))), (4)

where we have introduced a clip ε to avoid singularities when Q(x) = 0.
The quantum circuit should be able to prepare a broad range of wavefunctions, in order to approach a

given target distribution. To this end, we consider a general circuit parametrized by single-qubit rotations
(first layer) and two-qubit entangling rotations (second layer). Inspired by the gates readily available in ion
trap quantum computers, we use Mølmer-Sørensen XXij entangling gates for the second layer, where
XXnm(χ) = exp(−iσx

nσ
x
mχπ/2), with σ

α
n the Pauli operators for α= x, y, and z. In this ansatz, the number of

parameters depends only on the number of qubits N.
In the first layer, since we execute circuits always from the ground state |0...0⟩, it is enough to apply

single-qubit operations relying on Xn(θ) = exp(−iσx
nθπ/2) and Zn(θ) = exp(−iσz

nθπ/2) rotations as it is
shown in figure 1. After, in the second layer, we can perform XXij entangling gates involving any two qubits
following a fully connected graph. Thus, under this two-layer ansatz, single-qubit operations would require
2 N parameters and the two-qubit entangling gates would require N(N − 1)/2 parameters, summing up to
N(N + 3)/2 circuit parameters to be learned with the help of the classical solver.

5
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The quantum circuit simulations are performed using Rigetti’s quantum virtual machine (QVM); it is a
part of the ForestTM SDK available in [30]. Additionally, for our simulations we assume a noiseless device
and infinite measurement precision allowing us to compute the Born probabilities of the quantum
probabilistic model directly from the computed wavefunction amplitudes.

3.2. The classical learning approach
We consider the widely used RBMmodel as the classical counterpart of the aforementioned QCBM. We
consider the RBM standard type, that consists of binary variables, classified as hidden {h1,h2, ...,hNh} and
visible {v1,v2, ...,vNv} units or nodes, with Nh < Nv. This approach generates a probabilistic model
P(h,v) = exp[−E(h,v)]/Z, based on the energy E(h,v) =

∑
i θ

v
i vi +

∑
i θ

h
j hj +

∑
ij θijvihj. The normalization

term Z is the partition function. The energy E(h,v) is biased by Nv +Nh weights (one per node), and
Nh ×Nv weights associated with the connections between hidden and visible nodes. These weights play the
role of parameters to be learned in the learning process. We consider Nh = Nv/2 and Nv =N, for N even, to
get the same number of parameters used for the QCBM (see figure 1 for an example of a Universe of four
available assets).

This learning approach stands on gradient-based maximization of the likelihood of the RBM’s
parameters given the training data. We consider the persistent contrastive divergence (PCD)
training [31, 32], in which a Gibbs chain is run for only KRBM steps to estimate the log-likelihood gradient
given the data set. For the implementation, we used Theano [33].

4. Results and discussion

For our simulations, we consider as our Universe of stocks subsets of the historical time-series from the
S&P500 index for the period encompassing 2017-12-01 to 2018-02-07. These stocks subsets are constructed
by randomly selecting N assets out of the full index aforementioned. For a robust comparison, we consider
several target distributions generated by the set of six expected return levels. Given the historical return
values, we chose these levels of return to be {0.010, 0.015, 0.020, 0.025, 0.30, 0.35}. In all of our numerical
experiments with N assets, the cardinality constraint was set to κ=N/2, and N ∈ {4, 6, 8, 10}. Additionally,
we consider five different random subsets per problem size N, which altogether with the six return levels, it
makes for a total count of 30 different distributions to be learned by the QCBM and RBM per each N.

For the quantum circuit learning algorithm, the number of qubitsN is equal to the number of considered
stock market assets and we use the CMA-ES solver [34, 35] for the optimization part, with variable standard
deviation, to minimize DKL. In the classical learning scheme, we consider the KRBM = 1 standard value for
the Gibbs sampling in the PCD training, but higher values of KRBM were also considered (see appendix A for
results with KRBM = 10 and 100). Due to the stochastic nature of the starting point in the learning procedure,
we consider 11 repetitions of each simulation to evaluate the learning scheme typical performance by
calculating their DKL median value.

We collect all the median values of DKL using QCBM and RBM, for a given N, and bootstrap those values
in a sample size of 104. The typical performance is given by the median of this bootstrap analysis, with a
confidence interval given by the 5th and 95th percentile of that median.

From figure 3(a) it can be seen that the quantum model clearly outperforms the classical ML model on
typical instances under the assumptions presented here.

For a better analysis of the results, we compare the performance using a two dimensional scatter plot
composed by the QCBM and RBM results. In this way, we can visualize the relative performance by the
position of the points with respect to the identity line where DRBM

KL = DQCBM
KL . In figures 3(b)–(e), we show

the scatter plots for different values of N, in which most of the points fall below the identity line indicating
the superior performance of QCBMmodel is not just on average, i.e. for typical instances, but that it
corresponds to a close to 100% win when looked on a case-by-case basis. For the smallest size, N = 4, the
RBM performance can be enhanced using larger amounts of Gibbs sampling KRBM. In appendix A1 we
consider the oversize values KRBM = 10 and 100, in those plots most of the points in the scatter plot falls
above the identity line for N = 4. But most importantly, for other problem sizes with N = 6, 8 and 10, the
performance of QCBM still largely outperforms RBM even on average as dictated by the median and on a
case-by-case basis as well (see figure A1).

Additionally, we consider in figure 3(a) the performance of a uniform probability distribution over all the
potential N asset outcomes. This test helps to define upper limit values for DKL in the scenario where no
learning or educated guess criteria is involved, and therefore to determine the usefulness of the classical or
quantum model training from their corresponding values. As can be seen from the results, the training of the
classical RBM tends toward that limit for the larger problem sizes, hinting that this energy model with
quadratic interactions and N/2 hidden units does not have enough expressive power or that there are

6



Mach. Learn.: Sci. Technol. 1 (2020) 035003 J Alcazar et al

Figure 3. Performance scaling comparison for quantum and classical learning schemes: In this figure, we show the score of the
learned distribution using classical and quantum algorithms. In panel (a) we present a comparison between the bootstrapped
median value of DKL from 30 different scenarios per problem size N comprising of different stock market asset selection, under a
cardinality constraint setting of κ=N/2 and several expected return levels. Error bars depict 5 and 95 percentile (90% confidence
interval) of each bootstrapped median value of the cost. The ‘UNIFORM’ line corresponds to models obtained by sampling
randomly from an uniform distribution over all the parameters, and therefore it serves as a baseline since no training is required
to generate such models. Panels (b) –(e) show scatter plots of the costs from QCBM against those cost from RBM, for N= 4, 6, 8,
and 10. The orange square-symbol datapoint corresponds to the median value reported in (a). The red dashed line corresponds to
the DRBM

KL = DQCBM
KL line and therefore, points falling bellow this line correspond to those where the performance of the QCBM

model is better than the RBMmodel.

difficulties in training such models. For example, another explanation for the significant underperformance
of the classical RBM results might be due to the so-called ‘curse of dimensionality’, where the performance is
significantly affected by the increase in the number of parameters as the problem size increases. In other
words, the model optimization process gets lost in parameter space. Given that both classical and quantum
models are trained with the same number of parameters, it is very encouraging that our QCBM training still
finds models with DKL values further away from this uniform probability distribution reference. We have
chosen this probability as the reference since it is the most trivial model realization that already exists in the
search space of both parametrized probability distributions, from the RBMs and the QCBMs; in the RBMs it
would be equal to setting every θvi = θhi = θij = 0 and in the QCBM to just applying the equivalent of
Hadamard gates in the first layer, therefore preparing a uniform superposition in the computational basis.

It is important to note that this apparent limitation is not inherent to QCBMs or RBMs. In fact, if we give
more resources to either classical or quantum models, in terms of the number of parameters, we should see
that the performance improves for both cases, moving our training curves away from the uniform model line
towards a better performance (lower values of DKL). In the limit of a large number of parameters (at most
exponential in the number of visible units), RBMs are known to be universal approximators [36], and
therefore they should yield a DKL = 0.0 (perfect score). In this scenario with an unbounded or exponential
number of parameters, a perfect training (flat line curve staying at DKL∼0.0) would be then the asymptotic
limit. In the model adopted for this work, where a limited but equal number of parameters allowed for both
classical and quantum models, the asymptotic behaviour is the uniform model since the model seems to be
degrading faster as the number of variables (qubits) increases. We emphasize here that our focus is not to
prove that QCBMs is superior than any classical model, but to show the very encouraging result that a
quantum model with the same resources as a classical one shows better performance.

Although QCBM has been implemented in noisy hardware [6–8], the impact of noise and the scalability
of the training to larger instances will need to be addressed in the future. The focus here was limited in scope
to the expressibility of noiseless quantum models versus comparable classical models. Therefore, our
simulations and conclusions are only valid in the case of a fault-tolerant or high-quality quantum device, and
where we assumed as well we could use the Born’s amplitudes in the computational basis (limit of an infinite
number of readouts per circuit execution).

5. Outlook

Understanding whether quantum models designed for near-term quantum devices could have an impact in
industrial-scale applications is one of the most pressing milestones towards a quantum ready era. In this
work, we perform a direct comparison between QCBMs and RBMs, as two proposed models for tackling
generative models in unsupervised ML. Although our results are positive news for the quantum-based
models within a concrete probabilistic framework of portfolio optimization, several research directions could
be addressed as future work.

A natural extension of this work would be to include quantum simulations and computational
experiments to a larger number of qubits. Ideally, for it to be of interest from a commercial point of view, we
would require to reach the low hundreds of assets, and without resorting to preprocessing techniques, in our
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QCBMmodel this would amount to an equivalent number of qubits. Although not achievable in-silico via
quantum simulations, it is positive that such sizes are available within the NISQ era, assuming a steady pace
of the development of current technologies. Certainly simulations with∼40 number of qubits can be
reached, and this could be close to the limit that can be reached without resorting to supercomputing centers
to perform the quantum simulations of the quantum circuits and the generation of the training data set itself
for our proposed benchmarks. Although the circuit ansatz used for the comparison to RBMmodels is readily
implementable on ion-trap NISQ devices, it would be interesting to extend the comparison to native gates
and PQC on other hardware architectures, such as those in quantum processors based on superconducting
qubits. Another natural extension of our work would be to study the impact of noise and decoherence in the
quality of the QCBMmodels.

Another potential extension to consider emerges from the decision related to the number of samples
withdrawn from the target distribution, and used as the training set for both classical and quantum models.
In this work, this number of samples was high enough to reach the limit where we had an accurate
representation of the target distribution itself. The reason behind this experimental design choice was to
focus on answering the question of the capabilities of QCBMs or RBMs to represent the target distributions,
without binding our conclusions to another hyperparameter dictating the size of the training set. One
interesting question arises from this decision and it is part of ongoing work from this contribution. What are
generalization capabilities of each model and their statistical efficiency? This is, which model would be able
to better capture the features of the target distribution, given a very limited amount of observed data as part
of the training set? This question will be addressed in a subsequent version of this work.

Finally, we wanted to conclude with some remarks about the reasoning behind the financial model and
the design of the benchmarks. Although the probabilistic framework proposed here is not the canonical
portfolio selection optimization problem, the construction provides a benchmark scheme which is not only
generated from real stock market price data over a period of time but that also describes a desired target
distribution which captures investment risk. It is important to note that computing such target distributions
is intractable for the case of a large number of assets since it involves solving for each of the portfolio options
in this combinatorial search space. Nevertheless, approaching this optimization problem with an iterative
probabilistic Bayesian approach could be an interesting computational strategy in its own towards the hard
constrained optimization problem. This can be achieved, for example, by starting from a handful of
portfolios, evaluating their costs, and performing Bayesian updates until one finds a set of candidates with
the desired investment configurations.

Since we are not addressing the optimization problem itself directly, we prefer to refer to our approach as
an application-inspired benchmark, given that it has many elements of reality (the data itself and the
Markowitz model to estimate the investment risk) but the probabilistic construction is tailored to be able to
answer questions related to the complexity of quantum and classical ML models and to compare them on the
same footing. It is important to mention that the benchmarking approach proposed here is not limited to the
Markowitz model but can be extended to other portfolio optimization strategies based on other risk metrics.
In any other model, we can associate the value of the function to be optimized as the energy term in the
Boltzmann distribution, and the temperature would need to be scaled accordingly.

Having benchmarks similar to the one presented here and built on real data in contrast to synthetic data
or synthetic models, could be a gateway to answer one of the key questions in the field: what are the features
from classical distributions that could be more amenable to quantum, rather than to classical models? In
other words, where and how can we carve for quantum advantage in real-world scenarios and in problems of
commercial interest? This ‘more amenable’ qualification can be measured with many figures of merits. In our
work, we decided to use the number of parameters allowed for both models, since this limits the number of
degrees of freedom allowed to each model, but some other practical figures of merit to consider could be the
time of execution, the energy consumption and/or simply the cost of computational time. Our approach
consisted in addressing the comparison to the canonical and widely used model in ML known as RBMs.
Although a good starting point to compare to our quantum counterpart, further exploration should include
other modern ML generative models such as variational encoders (VAEs), generative adversarial networks
(GANs), and quantum-inspired models such as TNBMs [3, 37–39]; we performed preliminary studies to
include such cases but an apples-to-apples comparison might be challenging given that these are usually
tailored to tackle probability distributions over continuous variables and matching the number of
parameters might be challenging as well. Although examples of benchmarks using real-world scenarios or
data are limited (see e.g. reference [40]), these provide valuable and unique insights into the power of
quantum models and algorithms which might differ significantly from benchmarks with synthetic ones on
random generic problems. We believe these approaches would be key to the development of hardware and
quantum algorithms towards a demonstration of quantum advantage on real-world applications.
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Appendix A. Results for PCD-KRBM , withKRBM > 1

Figure A1. Performance scaling for quantum and classical learning schemes for KRBM ≥ 1: In this figure, we show three main panels
with the results for (a) KRBM = 1, (b) KRBM = 10 and (c) KRBM = 10. Every panel is headed by the comparison between the
median value of DKL out of all assets configuration due to the cardinality constraint and all expected return levels. Below of this,
we show scatter plots of the costs from QCBM and RBM for different amounts of available assets, for N= 4, 6, 8, and 10. We
depict 5 and 95 percentile of each median value of the cost as error bars.

Acknowledgment

The authors would like to acknowledge Marcello Benedetti, Dax Koh, and Yudong Cao for useful feedback
on an early version of this manuscript. V.L-O was supported by ASCR Quantum Testbed Pathfinder Program
at Oak Ridge National Laboratory under FWP #ERKJ332.

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable
request.

9



Mach. Learn.: Sci. Technol. 1 (2020) 035003 J Alcazar et al

ORCID iD

Alejandro Perdomo-Ortiz https://orcid.org/0000-0001-7176-4719

References
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