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Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with 

impairments in social and lingual abilities. The current gold standard for diagnosis is the autism 

diagnostic observation schedule (ADOS) combined with expert clinical judgement. The actual cause for 

autism is still unknown. Early ASD diagnosis is critical for conducting personalized treatment plans 

and can lead to significant development enhancements. Machine learning techniques, especially deep 

learning, have been widely incorporated in attempts to develop objective computer-aided technologies 

to diagnose autism with brain imaging modalities. Task-based functional magnetic resonance imaging 

(TfMRI) is a brain imaging modality that reveals functional activity of the brain in response to different 

experiments to study the effects of  a  brain  disease  or  disorder. This study provides a comprehensive 

review of research that deploys traditional machine learning and deep learning techniques in 

diagnosing ASD based on TfMRI. Classification results manifest that TfMRI holds early autism 

biomarkers and suggests future research to establish multi-modal studies that integrate TfMRI with 

structural, functional, clinical and gnomic data with higher number of participating subjects. 
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1. Introduction 

 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in 

social communication combined with language delay and repetitive behavior [1, 2].  Many etiologies of 

autism are idiopathic, and affected individuals fall in a wide range of linguistic and intellectual defect 

severity [3]. The term “spectrum” in autism spectrum disorder refers to the wide severity range.  

Autism, Asperger’s syndrome, pervasive developmental disorder not otherwise specified and childhood 

disintegrative disorder belong to the ASD [4] and are conditions that previously were considered 

separate.  Autism disorder is a severe form of ASD, whereas Asperger syndrome is a mild form.  

Common autistic behaviors include getting nervous by minor surrounding changes, having strong 

attachments to possessions, underestimation of danger, repeating phrases or movements, avoiding eye 

contact and having tendency to be alone [5, 6].  According to the centers of disease control (CDC) in 

2020, approximately 1 in 54 children living in the United States are diagnosed with ASD [7]. Boys are 

four times more likely to have autism than girls. One in 34 boys and 1 in 144 girls are identified with 

autism. Susceptibility to ASD is not affected by ethnicity, race, or socioeconomic status. 

Although symptoms of autistic children may emerge at the first year [8], ASD is generally diagnosed 

between the age of three to five years, coinciding with the emergent of noticeable symptoms. However, 

few ASD children develop normally during the first year. The exact cause and cure for ASD are still 

unknown. Researchers suggest that genetic factors together with environmental surroundings during the 

child’s upbringing are the main factors for autism [9].  

Early diagnosis and developing a personalized treatment plan are crucial for autistic children 

development. Educational, skill-oriented, behavioral and occupational therapies substantially improve 

autistic behavior when introduced at an early age. Early observation by parents contributes to the 

reduction of false positive rate and reduces unnecessary referrals [10]. However, the up-to-date 

convectional diagnostic methods for ASD rely mainly on several screening interviews starting at the age 

of one year or older. These interviews are performed by various professionals such as pediatricians, 

psychologists, speech language pathologists or psychiatrists [11].  

The common standard for ASD diagnosis employs a behavioral instrument such as the autism 

diagnostic observation schedule (ADOS) [12], autism in toddlers and young children, the American 

psychiatric association’s diagnostic and statistical manual of mental disorders (DSM)-5 [13], autism 

diagnostic interview revised (ADI-R) [14,15], the diagnostic  instrument for social communication 

disorders (DISCO),  and  the  computer-generated  developmental,  dimensional, and diagnostic 

interview (3di) [16] together with history and expert  clinical judgement.  

ADOS is the gold-standard for diagnosing and symptom quantification of ASD kids. It was published in 

2009 by western psychological services (WPS). ADOS provides standardized methods under controlled 

conditions in performing direct screenings by trained professionals, allowing for allow for 
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reproducibility. There are four different ADOS modules that are designed to handle age and functional 

level differences, toddler module, module 1, module 2, module 3 and module 4. ADOS total score is a 

direct sum of diagnostic items raw scores. Previously, it has been an indicator for ASD severity. 

However, ADOS total scores could not address severity comparison in different ASD groups over time 

because of the influence by chronological age and language aptitude. Gotham et al. [12] proposed 

calibrated severity score (CSS) as a standardized comparison measure of ASD symptom severity 

independent of age and other conditions. CSS is less affected by developmental functionality over time, 

such as language ability and maternal education, than ADOS total scores. 

The aforementioned exams and assessments coupled with parental observation provide a subjective 

evaluation. The final diagnosis depends on the individual experience of consulting physicians, the 

behavior of the patient at the time of assessment, the parent’s judgement ,and answers on various 

questionnaires. Therefore, ASD diagnosis instruments are subject to human perceptual and 

observational errors and cannot be relied upon for handling a quantified correct and accurate diagnosis.  

Currently, objective computer aided diagnosis (CAD) systems are gaining more attention for their 

necessity in understanding autism.  Several techniques are used for developing CAD systems such as:  

genetic and blood analysis, magnetic resonance imaging (MRI), electroencephalography (EEG) based 

analysis, wearables and sensors, and computer vision techniques. 

This survey is organized as follows: section two describes TfMRI acquisition and preprocessing. The 

third section reveals the contribution of machine learning in brain diagnosis. An overview on ASD 

datasets and main ML and DL classifiers incorporated in the reviewed papers are presented. Section 4 

provides a detailed review on ASD diagnosis research using TfMRI. Section 5 discusses several aspects 

for comparison. Section 6 reveals some limitations and challenges in the reviewed ASD CAD systems. 

Finally, section 7 concludes the study and provides suggestions for future work. 

 

2. Functional brain imaging  

 

ASD is typically diagnosed at the age of three. However, ASD diagnosis can be investigated as early as 

12-14 months old with the advent of brain image modalities such as structural magnetic resonance 

imaging (sMRI), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI) 

[17].  The clinical diagnosis is stable by this time in development [18].  SMRI is a high-resolution brain 

scanning technique that enables professionals to examine in detail the anatomy of the brain. EEG is the 

basic modality for identifying functional activity of the brain. It records high temporal resolution (in 

order of milliseconds) electrical activity of the brain from the scalp. Adopting task-based fMRI (TfMRI) 

and resting fMRI characteristics can function as early biomarkers of autism [19] for their high spatial 

resolution (in the order of millimeters). 

 

2.1. Functional MRI acquisition 

 

FMRI is a technique for measuring the activity of the brain. It detects the changes in blood flow and 

measures the blood oxygen level dependent (BOLD) signals in response to various activities. When a 

neuron is emitted, the BOLD signal fluctuates in a typical response scenario called the hemodynamic 

response (HR). As shown in Figure. 1. First immediately after emission, the blood oxygen level 

decreases causing an initial dip. Then a flow of the blood increases towards the activated brain region, 

which takes 4 to 5 seconds until it reaches the peak. Then when no further activation is required, the 
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signal decreases again and undershoots, preparing to rise again to the baseline level. The resolution of 

the fMRI is usually lower than the resolution of the sMRI because of the fact than fMRI requires 

multiple scans over time. The resolution normally ranges between 2 and 4 mm, depending on the 

magnetic field strength of the scanner, e.g. 1.5T, 3T or 7T. The bright colors represent the gray matter, 

whereas the dark colors represent the white matter, which is the opposite of sMRI representation.  There 

are two designs of the functional experiments: event-related or block designs to record TfMRI scans, 

and the resting-state designs to record resting-state fMRI scans.  

 

Figure 1 The hemodynamic response signal 

 

event-related design: The subjects in the scanner are administered to brief and random stimuli for a 

short period.  Typically, there are visual, motor, or audible stimulus.  Therefore, the BOLD response 

includes peaks manifesting short activities.  

block design: Multiple similar stimuli (not necessarily identical) are organized in blocks of 10-30 

seconds, separated by blocks of baseline.  Such a block design elevates the peak in the BOLD signal for 

a longer time, whereas the peak in the event-related design is just attained for a short period.  This 

plateau introduces the advantage of simplifying the detection of the increase in activation. Figure. 2 

demonstrates the difference between both event-related and block design. 

resting-state design: Images in the resting-state designs are acquired without any stimulation. The 

scanning procedure requires subjects to lay still and rest. This design is used to record the functional 

connectivity of the brain during the absence of external stimuli.  

 

 
Figure 2 Block and event-related design. 

 

2.2. Task-based FMRI preprocessing 
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FMRI data are complex and require many preprocessing steps to be prepared for analysis and 

classification. Low-level analysis preprocesses fMRI images for each subject, independently. High-level 

analysis produces group inferences. The pipeline for performing preprocessing entails many common 

steps. The most employed software tools for preprocessing are fMRI's software library (FSL) [20], 

FMRI expert analysis tool (FEAT) [21], FreeSurfer [22] and SPM [23]. Such tools have set normal 

standard preprocessing steps that can be tuned based on preferences and individual cases. They provide 

efficient performance and reduce execution time. Standard steps for preprocessing mainly include [24]: 

 Slice time correction by shifting the voxel's time series of each slice to align all slices within a 

volume to a reference time point, usually the time of the first slice.  

 Motion correction to remove artifacts caused by subject's motion in the scanner. Rigid-body 

transformations with 6 or 12 DOF can be applied [25] to align volumes to a reference one. The 

residual motion remaining after motion correction can be added as a confound regressor if found 

to be substantial.  

 Spatial smoothing to enhance noise caused by high frequencies by averaging adjacent voxels.  

 High pass temporal filtering to correct for scanner drifts by removing low frequencies.  

 Brain extraction using BET on both sMRI and fMRI data, to remove all non-brain data such as 

the scalp and cerebellum.  

 Registration to standardize the fMRI brain images using fMRIB's linear image registration tool 

(FLIRT) [25] by applying two steps: 1) registration of the functional volumes to their high 

resolution anatomical sMRI scan, and 2) registration of the anatomical sMRI scan to MNI-152 

space [26]. This allows for comparisons between groups and is used to divide the brain into 

areas and regions of interest (ROI). Widely used atlases are automated anatomical labeling 

(AAL) [27], Harvard-Oxford (HO) [28], Talaraich and Tournoux (TT)[29], Craddock 200 

(CC200) and Craddock 400 (CC400) [30].  

 

 

 

3. Machine Learning for Brain Diagnosis 

 

Machine learning (ML) has made it possible to develop intelligent and automated systems for several 

pattern recognition applications. The emergence of noninvasive or minimally invasive medical 

screening devices created massive informative data structures that allowed for the exploitation of ML 

for automated diagnosis. Medical diagnostic applications assist in accurate kidney, heart, prostate, 

retinal, and lung diagnosis and abnormality detection. One application is renal transplant functional 

assessment, utilizing different image modalities (e.g., ultrasound, computed tomography (CT), MRI, 

etc.) [31,32]. The clinical assessment of myocardial perfusion plays a major role in the diagnosis, 

management, and prognosis of ischemic heart disease patients [33,34]. Optical coherence tomography 

has become a powerful modality for the noninvasive diagnosis of various retinal abnormalities [35, 36]. 

Abnormalities of the lung could also be another promising area of research  [73,73 .]  

Machine learning and deep learning (DL), which is a subset of ML that involves deep networks, have 

played a very important rule in many neuroscience applications because they enable for an accurate 

detection and assessment of the brain functionality. High performance is attained specially with the 

availability of high-quality brain scans such as MRI, fMRI, CT, positive emission tomography (PET), 
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magnetoencephalography (MEG) and EEG. Brain image segmentation [39,40] , and detection of brain 

tumors [41] are ML applications in neural imaging. Moreover, ML applications in psychiatric disorders 

include the early detection of Alzheimer [42,43], epilepsy [44,45], epileptic seizures detection [46,47] 

,and Parkinson's disease  [83,84.]  

 

To develop diagnosis system for ASD and comprehensive study of ASD brain mechanisms, a large 

dataset is essential. Single laboratories cannot afford and manage large-scale samples. The national 

database for autism research (NDAR) is considered the largest heterogeneous data repository of 

neuroscience and genomic data (" https://ndar.nih.gov/") funded by the US National Institutes of Health 

(NIH) [50,51]. Data created by ASD research centers and collected at NDAR contain: biomedical data, 

genetic and genomic findings, clinical assessments, imaging modalities ,and quantitative behavioral 

assessments [52]. NDAR introduced a global unique patient identifier (GUID) which is a very important 

component that facilitates the replication of research finding and data heterogeneity [53]. There are 

117,573 subjects (57,510 ASD subjects and 59,763 typically developed subjects) with data shared at 

NDAR. Data available for these subjects include 4000 EEGs, 2000 MRIs, more than 10,000 whole 

exome sequences, and 800 clinical measures. 

 

After preprocessing, some classification studies feed the classifiers with raw preprocessed data. Other 

studies perform high-level analysis as a feature extraction step. Examples of high-level analysis include 

general linear model (GLM), sliding window, functional connectivity (CF) matrix, and signal 

processing techniques such as fast Fourier transformation (FFT), independent component analysis 

(ICA), and wavelet transforms. Figure 3 demonstrates the main pipeline steps for ASD diagnosis with 

TfMRI. 

 

Figure 3 General framework for ASD diagnosis with TfMRI 
 

 

4. ASD diagnosis using task-based fMRI 

Recently, with the advent of ML and DL, brain image modalities have been a strong contender for 

understanding brain and behavior and in diagnosing different brain diseases. Despite the fact that 
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TfMRI can be considered as a potential autism biomarker, few attempts to deploy it for classification 

have been recorded; for its limited public availability compared to other scans. The commonly utilized 

and widely available image modalities used for classification with ML approaches are EEG [54, 55], 

structural MRIو and resting state fMRI [56-58]. 

Guillaume Chanel in [59] applied multivariate pattern analysis on fMRI scans of two social stimuli 

experiments, static facesو and dynamic bodies. Support vector machines (SVMs) and recursive feature 

elimination (RFE) were applied for classification on each experiment independently, then an average 

fusion was applied to get final classification decision. They recorded accuracies between 69% and 

92.3% in classifying between 15 ASD and 14 TD subjects. They also derived activation maps based on 

the selected voxels after RFE. Finally, they correlated the phenotypic information with the classification 

results. 

Another attempt to classify children with ASD from TfMRI scans is demonstrated in [60]. They 

examined various methods to train generalizable recurrent neural networks (RNN) with long short-term 

memory (LSTM) on the whole brain including a small medical dataset. Then an augmentation step was 

performed by resampling the time series of each brain region by calculating the average signal of sub 

voxel groups, with replacement. Finally, they included non-imaging variables to generate subject-

specific initialization of the LSTM network. The classification accuracy for 42 subjects ranged from 

51.8% to 69.8% correct diagnosis of 20 ASD vs. 19 TD subjects. They also predicted treatment 

outcome for 20 ASD individuals.  

Xiaoxiao Li et al. [61] attempted to utilize both the temporal and spatial information exhibited in 

TfMRI. They applied a sliding window method that calculates the mean and standard deviation to 

extract the temporal statistics. To capture the spatial information, they developed a 3D convolutional 

neural networks (CNNs) that is fed with 2-channel images created by the sliding window. Finally, they 

interpreted middle layer outputs of their CNN model to identify useful spatial local information for 

classification. The dataset included 82 ASD children and 48 age-matched (p > 0.1) controls. The mean 

F-scores in the proposed framework increased by 8.5%. In continuation of their research, in [62] they 

added a stage after classification that analyzes ROI extracted feature's effect on the classifier. A 

frequency-normalized sampling method that created images with corrupted separate ROI in each image 

was developed. Afterwards, a comparison between the classifier performances on normal and corrupt 

input was analyzed. Another recent research by Xiaoxiao Li et al. [63] developed a two-stage pipeline 

for ASD biomarker identification. First, they tested the classification accuracy of an inductive graph 

neural networks (GNN) on TfMRI scans using different atlases. Second, feature importance of each 

brain region was evaluated by analyzing the developed GNN. 

A study in [64] proposed a pipeline based on TfMRI for predicting treatment of social responsiveness 

scale. They extracted brain features using GLM and classified using the random forest (RF) classifier. 

They proposed two step feature selection approaches: first, a "shadow" approach selecting all relevant 

variables, second, a step wise approach selecting variables that are minimally optimum for prediction. 

Their study included 20 autistic children (mean age: 5.90 years, SD=1.07 years; 7 females, 13 males). 

For performance evaluation, they measured mean square error (MSE) and correlation between true and 

predicted SRS scores in 10 rounds of leave-one-subject-out cross-validation. In comparison to other 

classifiers, they achieved lower MSE of 125.5 ± 18.5 and higher correlation of 0.75 ± 0.05. The 

experiment used to scan TfMRI images in [60-64] presented coherent biological and scrambled point-

light biological motion movie. It followed a block design of 24s duration for each block [65]. 

A recent research by [66] proposed a local and global diagnosis for ASD toddlers. They analyzed GLM 

extracted features from Brainnetome atlas (BNT) parcellated brain areas. The study classified 30 ASD 

toddlers against 30 TD toddlers using stacked non-negativity constraint auto-encoder (SNCAE) with an 

accuracy of 75.8%. 
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Another recent study graded the severity of autism into 3 groups [67, 68]. GLM analysis for low 

individual level analysis, to extract features, and high group level analysis, to infer statistical differences 

between groups and validation, were applied. They utilized different approaches to extract features from 

GLM analyzed whole brain areas. After applying several classifiers, best accuracy of 78% was achieved 

by RF. The most recent research in ASD diagnosis with TfMRI was proposed by [69]. They developed 

a comprehensive feature extraction framework for both temporal and spatial feature extraction. First, in 

the spatial dimensionality reduction steps, they selected significantly activated ROI after performing a 

group analysis. Second, they clustered each brain area using k-means and extracted from each cluster a 

variating number of voxels. For temporal feature reduction, they compressed the BOLD Signal using 

discrete wavelet transform (DWT) compression. They fed the reduced features to a 2D CNN classifier. 

After testing several parameters, they achieved a classification accuracy of 78%. 
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Table 1 Summary of articles published in ASD diagnosis with TfMRI 

Author Year Subjects 

(ASD/TD) 

Age(years) Atlas Task Feature extraction Classifier Testing Evaluation results 

Guillaume Chanel 

[59] 

2016 15/14 ASD: mean: 28.6 

SEM: 1.87 [19–43] 

TD: mean: 31.6 

 SEM: 2.61 [19–53]  

Data driven 

from whole 

brain  

Static 

faces and 

dynamic 

bodies 

GLM using SPM SVM 

RFE 

Leave one 

subject out  

Between 69% 

and 92.3% 

accuracy 

Nicha C. Dvornek 

[60]  

2018 21/19 ASD: 6.05 ± 1.24 

TD: 6.42±1.29 

AAL  Biopoint 

task 

ROI, augmentation 

with bootstrapping 

averaging 

RNN 

with 

LSTM 

10-fold 

cross 

validation 

69.8% 

accuracy 

 Xiaoxiao Li cite 

[61]   

2018 82/48 none Data driven 

from whole 

brain  

Biopoint 

task 

Down sampling and 

sliding window 

2CC3D  85% train, 

7%validate 

8% test 

increased F-

scores over 

8.5%. 

Xiaoxiao Li [62] 2018 82/48 none AAL Biopoint 

task 

Down sampling and 

sliding window 

2CC3D  85% train, 

7%validate 

8% test 

87.10% 

accuracy 

Xiaoxiao Li [63]  2019 75/43 none Destrieux 

atlas and the 

Desikan-

Killiany atlas 

Biopoint 

task 

Signal statistical 

measures, GLM,  

augmentation, 

Down sampling and 

sliding window 

GNN 5-fold 

cross 

validation 

0.76±0.06 

accuracy 

Juntang Zhuang [64]  2018 20/0 ASD 5.90 +- 1.07 Data driven 

from whole 

brain  

Biopoint 

task 

t-statistic image , 

Social ROI 

selection, GLM, 

feature selection 

RF 10 rounds 

of leave-

one-out 

cross-

validation,  

MSE:125.5 ± 

18.5, 

correlation: 

0.75 ± 0.05    

 Reem Haweel [66] 2019 30/30 [1.1 to 3.1] BNT Response 

to speech 

GLM SNCAE 4-fold 

cross 

validation 

 75.8% 

accuracy 

Reem Haweel 

[67,68] 

2019 39 (13 

Mild, 13 

Moderate, 

13 Severe) 

1.7 +- 0.42 [1-2.2] BNT Response 

to speech 

GLM RFE, RF 10-fold 72-78% 

accuracy 

Reem Haweel [69] 2020 50/50 [1-3.3] Harvard–

Oxford 

probabilistic 

atlas 

Response 

to speech 

DWT, Speech ROI 

selection, clustering 

2DCNN 4-fold,2-

flod,10-

fold cross 

validation 

78% accuracy 
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5. Discussion 

In recent years, TfMRI based ML and DL approaches have emerged and started to gain more attention, 

especially DL networks. Yet, there is no common protocol for designing experiments while acquiring 

TfMRI and in choosing scanning parameters. Therefore, it is inconvenient to provide a direct and 

objective comparison between included studies. However, some useful inferences and general 

observations can be derived. Moreover, suggestions for future work are also discussed. 

Table 1 provides a detailed representation of main characteristics of each included research. The total 

number of subjects at each study ranged from 20 to 130, which is considered a limited number. The 

high performance of DL depends on an adequate number of subjects, which is limited in TfMRI studies. 

However, convenient accuracies above 75% in [59] [62,63] [68-69] have been achieved. These high 

accuracies suggest TfMRI to hold promise as an ASD biomarker and a valuable contributor in 

identifying ASD. 

The main aim for incorporating brain imaging for diagnosis is to develop an early identifier for autism. 

The research in [59] performed their fMRI task on adults. [60, 64] included young children above 4 

years old in their study. Inference based on brain images of children and adults can be generalized to 

young children and toddlers to a limited extent. Therefore, studies in [67-69] established their analysis 

and classification on toddlers with ages in the range of 1 to 3 years old to pursue more reliable and 

stable diagnosis. 

Since fMRI is a high dimensional 4D data with too many data points, feature extraction and reduction 

techniques are very crucial before developing a classifier, especially traditional ML classifiers. 

Although DL networks perform automated feature extraction, it is still important to reduce the 

dimensionality. This is due to the fact that networks perform inefficiently with higher dimensions as in 

the 4D fMRI data, especially, when the number of extracted features is much less than the number of 

input samples, which is the common in medical applications. Fortunately, the spatial dimension 

representing the whole brain contains many redundant data shared in each brain area. Therefore, many 

studies perform ROI selection [60][64][69]. Either when ROI selection is performed or not, features are 

selected from each brain area by average, histogram, k-means clustering or down sampling with 

bootstrapping. The temporal dimension can be reduced without losing information. Approaches 

performed for temporal reduction include GLM, sliding window and DWT. Another advantage in 

feature engineering is to introduce a possibility augmentation as in [60][63]. 

It is desired to produce informative inference from the performance of the classifiers and correlate it 

with literature, as performed in several included studies. Another opposite approach designs their 

classifiers based on prior statistical inference. They begin their pipeline with selecting ROI based on 

literature or GLM group analysis as a feature reduction step [64][69]. 

Some studies included datasets from public shareable data repository with a license such as NDAR [67-

69]. Other studies collected data from their labs. The number of available public TfMRI data for autistic 

children is still limited in both cases. 

CAD systems aim to classify autistic subjects against typically developed peers. Although such 

diagnosis is useful, it is not sufficient for identifying differences among subjects and locating them 

across the wide autism spectrum. Haweel et al. [67] has developed an autism severity analysis and 

grading approach to identify each ASD toddler on the autism spectrum as mild, moderate or severe 

based on the ADOS CSS score. 

 

 

 

 



A REVIEW ON AUTISM SPECTRUM DISORDER DIAGNOSIS USING TASK-BASED FUNCTIONAL MRI 

33 

 

6. Challenges 

 

The incorporated TfMRI studies have a relatively small sample size and lack a real control for 

variability that might exist for performed task and age across a population. These small sample sizes 

could also fail to provide detection of small differences across groups or more complex developmental 

influences.  

Previous studies suggest a multi-modal approach that may lead to more accurate classification [70]. 

These modalities may include ERP/EEG, MEG, fNIRs, and DTI/Rest/Structural MRI [71-76]. Such 

attempts need to combine evidence of MRI modalities, genetics, and early clinical behavioral 

assessment in larger sample sizes where the prevalence of ASD subgroups could be accurately 

quantitated. Such classification would also need to include non ASD populations such as larger sample 

size of TD group, global developmental delay group, and language delayed groups. Therefore, there is a 

critical need for more public databases with multi-modals. 

 

7. Conclusion 

Current ASD diagnosis research is drawing more inference on autism brain image markers. This paper 

provided a survey on machine learning studies that aim to develop computer aided autism diagnosis by 

analyzing brain activation related to task-oriented experiments. A comprehensive investigation on 

sample sizes, ages, feature extraction techniques, ML networks and other performance evaluations have 

been provided.  

In recent years, the number of researches utilizing DL for classification has increased. Out of the 9 

referenced studies, 6 employed deep learning algorithms. The majority used CNNs for the popularity, 

efficient performance and favorable results compared to other networks. Autoencoders and RNN 

achieved promising results as well. More research to apply DL and ML is encouraged. Examples of 

such networks include generalized probabilistic neural network, neural dynamic classification, 

Polynomial Series functional-link artificial neural network (FLANN) [77, 78], Legendre FLANN [79] 

and deep reinforcement networks.  

The performance of current research cannot contribute to a reliable clinical establishment. The reason 

for that is the limited number of subjects and limited generalizable heterogeneous research that trains 

and tests performance on data collected from various sites. However, it is expected in the next years that 

CAD systems will be available for clinicians, especially with the development of multi-modal based 

studies. 

 

8. Appendix A 

In order to analyze the performance of a proposed classifier, there are several used calculations that are 

either expected to be maximized or minimized. One of the main metrics for evaluation is the confusion 

matrix, which consists of four main items: 

• True Positive (TP): the number of cases classified as having the disease and actually they do have it. 

• True Negative (TN): the number of cases classified as not having the disease and actually they don't 

have it. 

• False Positive (FP): the number of cases classified as having the disease and actually they don't have 

it. 
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• False Negative (FN): the number of cases classified as not having the disease and actually they do 

have it. 

 

There are different metrics that can be concluded from the confusion matrix: 

• Sensitivity (True Positive rate): measures the percentage of positive classifications that correctly 

diagnose a disease. 

TPR = TP/P = TP/ (TP + FN) = 1-FNR                                                                (1) 

• Specificity (True Negative rate): measures the percentage of Negative classifications that correctly 

diagnose not having a disease. 

TNR = TN/N = TN/ (TN + FP) = 1-FPR                                                              (2) 

• False Positive Rate (FPR): 

FPR = FP/N = FP/ (TN + FP) = 1-TNR                                                                (3) 

• False Negative Rate (FNR): 

FNR = FN/P = FN/(TP + FN )= 1-TPR                                                                (4) 

• False Discovery Rate (FDR): 

FDR = FP/(FP + TP)                                                                                             (5) 

• Accuracy (ACC): 

ACC = (TP + TN)/(P + NP) = (TP + TN)/(TP + TN + FP + FN) = 1-TPR                      (6) 

• Receiver Operating Characteristic (ROC) curve: a graph that manifests the performance of the 

classifier by presenting the TPR versus the FPR at each classification threshold and plotting a curve 

connecting them. TPR is represented on the Y-axis and FPR is presented on the X-axis.  

• Area Under the Curve (AUC): calculates the area under the ROC curve. It aggregates the 

classification performance values of all thresholds into a value between 0 and 1. More correct 

classifications lead to higher AUC value. 

 
 

Table 2 List of abbreviation 

ASD Autism spectrum disorder AAL automated anatomical labeling 

ADOS autism diagnostic observation schedule HO Harvard-Oxford 

TfMRI Task-based functional magnetic resonance imaging TT Talaraich and Tournoux 

CDC centers of disease control CC200 Craddock 200 

DSM-5 diagnostic and statistical manual of mental disorders CC400 Craddock 400 

ADI-R autism diagnostic interview revised FFT fast Fourier transformation 

DISCO diagnostic instrument for social communication 

disorders 

ICA independent component analysis 

3di developmental, dimensional, and diagnostic interview SVM Support vector machines 

WPS Western Psychological Services RFE recursive feature elimination 

CSS calibrated severity score RNN recurrent neural networks 

CAD computer aided diagnosis LSTM long short-term memory 

MRI magnetic resonance imaging CNN convolutional neural networks 

EEG electroencephalography GNN graph neural networks 

sMRI structural magnetic resonance imaging GLM general linear model 

fMRI functional magnetic resonance imaging FC functional connectivity  

DTI diffusion tensor imaging RF random forest 

BOLD blood oxygen level dependent MSE mean square error 
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HR hemodynamic response BNT Brainnetome atlas 

ML Machine learning SNCAE stacked non-negativity constraint auto-

encoder 

CT computed tomography DWT discrete wavelet transform 

DL deep learning TP True Positive 

PET positive emission tomography TN True Negative 

MEG magnetoencephalography FP False Positive 

NDAR national database for autism research FN False Negative 

NIH US National Institutes of Health FPR False Positive Rate 

 GUID global unique patient identifier FNR False Negative Rate 

FSL fMRI's software library FDR False Discovery Rate 

FEAT FMRI expert analysis tool ACC Accuracy 

FLIRT fMRIB's linear image registration tool ROC Receiver Operating Characteristic 

ROI region of interest AUC Area Under the Curve 

2CC3D 2 channel 3D CNN   
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