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ABSTRACT 
 

In this paper, a generalized Bernoulli sub-ODE method is applied to seek exact solutions 
for nonlinear evolution equations. This method is based on the homogeneous principle, 
and is effective in seeking new travelling wave solutions. As applications, we apply this 
method to solve (2+1) dimensional Boussinesq and Kadomtsev-Petviashvili (BKP) 
equation, and with the aid of mathematical software, some new exact travelling wave 
solutions for this equation are found. 
 

 
Keywords: Bernoulli sub-ODE method; travelling wave solutions; (2+1) dimensional BKP 

equation; nonlinear evolution equation. 
 
1. INTRODUCTION  
 
Recently searching for exact travelling wave solutions of nonlinear evolution equations 
(NLEEs) has gained more and more popularity, and many effective methods have been 
presented so far. Some of these approaches are the homogeneous balance method [1,2], 
the hyperbolic tangent expansion method [3,4], the trial function method [5], the tanh-method 
[6-8], the non-linear transform method [9], the inverse scattering transform [10], the Backlund 
transform [11,12], the Hirota’s bilinear method [13,14], the generalized Riccati equation 
method [15,16] and so on. 
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Among the investigations for seeking exact solutions nonlinear equations, Prof. Wen-Xiu Ma 
has done much pioneer work [17-21]. In [17], Prof. Wen-Xiu Ma presented one combined 
ansätze method, the idea of which is to make the unknown variable u to be a practicable 
function g(v) of the ansätze unknown variable v, which satisfies a differential equation 
solvable by quadratures. The crucial point of this method is to choose the proper ansätze 
equations solvable by quadratures. The Bernoulli equation was also listed there as one 
useful ansätze equation, and the general solutions of the Bernoulli equation was also 
presented. Based on this method, some explicit traveling wave solutions to a Kolmogorov 
Petrovskii Piskunov equation were presented. It is worthy to note that the extended tanh 
function method and the G’/G-expansion method are both special cases of the method in 
[17]. In [18], a transformed rational function method was proposed and applied to seek exact 
solutions of (3+1)-dimensional Jimbo-Miwa equation. In [19], A multiple exp-function method 
to exact multiple wave solutions of nonlinear partial differential equations was proposed. 
Then in [20], the multiple exp-function method was used to construct three-wave solutions to 
the (3+1)-dimensional generalized KP and BKP equations. In [21], Frobenius integrable 
decompositions were introduced for partial differential equations. 
 
Motivated by the ideas in [17], in this paper, we apply the Bernoulli sub-ODE method [22, 23] 
to construct exact travelling wave solutions for NLEEs. Firstly, we reduce the NLEEs to 
ODEs by a travelling wave variable transformation. Secondly, we suppose the solution can 
be expressed in an polynomial in a variable G , where )(ξGG =  satisfied the Bernoulli 
equation. Thirdly, the degree of the polynomial can be determined by the homogeneous 
balance method, and the coefficients can be obtained by solving a set of algebraic 
equations. 
 
The rest of the paper is organized as follows. In Section 2, we describe the Bernoulli sub-
ODE method for finding travelling wave solutions of nonlinear evolution equations, and give 
the main steps of the method. In the subsequent sections, we will apply the method to find 
exact travelling wave solutions of (2+1) dimensional BKP equation. In the last Section, some 
conclusions are presented. 
 
2. DESCRIPTION OF THE BERNOULLI SUB-ODE METHOD 
 
In this section we give the main steps for Bernoulli Sub-ODE Method to seek exact solutions 
for nonlinear evolution equations. 
 
Consider the following ordinary differential equation (ODE): 
 

    2'G G Gλ µ+ =          (2.1) 
 
where 0, ( )G Gλ ξ≠ = . 
 
When 0µ ≠ , Eq. (2.1) is the type of Bernoulli equation, and we can obtain the solution as 
 

    1
G

deλξµ
λ

=
+

         (2.2) 

 
where d  is an arbitrary constant. 
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When 0=µ , the solution of Eq. (2.1) is denoted by 
 

λξ−= deG          (2.3) 
 
Suppose that a nonlinear equation, say in two or three independent variables ,x y  and t  , is 

given by 
 

,( , , , , , , , ......) 0t x y tt xt yt xx yyP u u u u u u u u u =       (2.4) 

 
where ( , , )u u x y t=  is an unknown function, P  is a polynomial in ( , , )u u x y t=  and its various 
partial derivatives, in which the highest order derivatives and nonlinear terms are involved. 
 
Step 1. We suppose that 
 

( , , ) ( ), ( , , )u x y t u x y tξ ξ ξ= =          (2.5) 

 
The travelling wave variable (2.5) permits us reducing Eq. (2.4) to an ODE for ( )u u ξ=  
 

( , ', '',......) 0P u u u =         (2.6) 

 
Step 2. Suppose that the solution of (2.6) can be expressed by a polynomial in G as follows: 
 

1
1( ) ......m m

m mu G Gξ α α −
−= + +        (2.7) 

 
where ( )G G ξ=  satisfies Eq. (2.1), and 1, ...m mα α −  are constants to be determined later, 

0mα ≠ . The positive integer m can be determined by considering the homogeneous 

balance between the highest order derivatives and non-linear terms appearing in (2.6). 
 
Step 3. Substituting (2.7) into (2.6) and using (2.1), collecting all terms with the same order 
of G  together, the left-hand side of Eq. (2.6) is converted into another polynomial in G . 
Equating each coefficient of this polynomial to zero, yields a set of algebraic equations for 

1, ,... ,m mα α λ µ− . 

 
Step 4.  Solving the algebraic equations system in Step 3, and by using the solutions of Eq. 
(2.1), we can construct the travelling wave solutions of the nonlinear evolution equation 
(2.6). 
 
In the following, we will apply the method described above to seek exact travelling wave 
solutions for the (2+1) dimensional Boussinesq and Kadomtsev-Petviashvili equation. 
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3. APPLICATION OF THE BERNOULLI SUB-ODE METHOD FOR (2+1) 
DIMENSIONAL BOUSSINESQ AND KADOMTSEV-PETVIASHVILI 
EQUATION 

 
Consider the (2+1) dimensional BKP equation [24,25]:  

xy qu =           (3.1) 

 

yx qv =          (3.2) 

 

yxyyyxxxt qvquqqq )(6)(6 +++=       (3.3) 

 
In order to obtain the travelling wave solutions of (3.1), (3.2) and (3.3), similar to the section 
3, we suppose that 
 

ctdyaxqtyxqvtyxvutyxu −+==== ξξξξ ),(),,(),(),,(),(),,(    (3.4) 
 
where cda ,, are constants that to be determined later. 
 
By using the wave variable (3.4), Eq. (3.1)-(3.3) can be converted into ODEs: 
 

0=′−′ qaud          (3.5) 
 

0=′−′ qdva           (3.6) 
 

06666)( 33 =′−′−′−′−′−′′′+ vdqqdvuaqqauqcqda    (3.7) 
 
Integrating the ODEs above, we obtain 
 

1gaqdu =−          (3.8) 

 

2gdqav =−          (3.9) 

 

3
33 66)( gdvqauqcqqda =−−−′′+       (3.10) 

 
Suppose that the solution of (10) can be expressed by a polynomial in G  as follows: 
 

∑
=

=
l

i

i
iGau

0

)(ξ         (3.11) 

 

∑
=

=
m

i

i
iGbv

0

)(ξ         (3.12) 
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∑
=

=
n

i

i
iGcq

0

)(ξ         (3.13) 

 
where iii cba ,,  are constants and ( )G G ξ=  satisfies Eq. (2.1). 

 
Balancing the order of u′  and q′  in Eq. (3.8), the order of v′  and q′  in Eq. (3.9) and the 

order of q ′′′  and qv ′ in Eq. (3.10), we have  
 

1 1, 1 1, 3 1 2l n m n n m n l m n+ = + + = + + = + + ⇒ = = = . So Eq. (3.11)-(3.13) can be 
rewritten as: 
 

2
2 1 0 2( ) , 0u a G a G a aξ = + + ≠        (3.14) 

 
2

2 1 0 2( ) , 0v b G b G b bξ = + + ≠         (3.15) 

 
2

2 1 0 2( ) , 0q c G c G c cξ = + + ≠        (3.16) 

 
where , ,i i ia b c are constants to be determined later. 

 
Substituting Eq. (3.14)-(3.16) into the ODEs (3.8)-(3.10), collecting all terms with the 
same power of G  together, equating each coefficient to zero, yields a set of 
simultaneous algebraic equations as follows: 
 
For Eq. (3.8) 
 

0
0 0 1: 0G a d ac g− − =  

 
1

1 1: 0G a d ac− =  

 
2

2 2: 0G a d ac− =  

 
For Eq. (3.9) 
 

0
0 2 0: 0G ab g dc− − =  

 
1

1 1: 0G ab dc− =  

 
2

2 2: 0G dc ab− + =  

 
For Eq. (3.10) 
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0
0 3 0 0 0 0: 6 6 0G cc g db c aa c− − − − =  

 
1 2 3 3

1 0 1 0 0 1 1 0 1: 6 6 6 ( ) 6 0G aa c db c db c c a d aa cλ− − − + + − =  

 
2 2 3 3

1 1 1 1 0 2 2 0 2 2: 6 6 6 6 4 ( )G aa c db c db c db c c a d ccλ− − − − + + −  
3 3

1 2 03 ( ) 6 0c a d aa cµλ− + − =  

 
3 2 3 3 3 3

2 1 2 1 1 2 1 2 1 2: 6 6 6 6 2 ( ) 10 ( ) 0G aa c db c db c aa c c a d c a dµ µλ− − − − + + − + =  

 
4 2 3 3

2 2 2 2 2: 6 6 6 ( ) 0G aa c db c c a dµ− − + + =  

 
Solving the algebraic equations above with the mathematical software Maple, yields: 
 
Case 1: 
 

2 2 2 2 2 2
0 0 1 2 0 0 1 2, , , , , , ,a a a a a a b b b d b d a aµλ µ µλ µ= = − = = = − = =  

2
0 0 1 2 2 0 0 1 0 0, , , , , ,c c c da c d a g ab dc g da ac d dµλ µ= = − = = − = − =  

3 3 4 2 2 2 4 2
0 0 0 06 6 6 6a c d c a d d b a a a d d a

c
ad

λ λ− − + − − +=  

3 3 4 2 4 2
0 0

0

6 6a c d c a d d a
g c

ad

λ λ− − + += −                            (3.17) 

where 0 0 0, , , ,a b c a d  are arbitrary constants. 

 
Assume 0µ ≠ , then substituting the results above into (3.14)-(3.16), combining with (2.2) 
we can obtain the travelling wave solution of (2+1) dimensional BKP equation as follows: 
 

2 2 2 2
1 0

1 1
( ) ( ) ( )u a a a

de deλξ λξ
ξ µ µλµ µ

λ λ

= − +
+ +

    (3.18) 

 

2 2 2 2
1 0

1 1
( ) ( ) ( )v d d b

de deλξ λξ
ξ µ µλµ µ

λ λ

= − +
+ +

    (3.19) 

 

2 2
1 0

1 1
( ) ( ) ( )q d a da c

de deλξ λξ
ξ µ µλµ µ

λ λ

= − +
+ +

    (3.20) 
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3 3 4 2 2 2 4 2
0 0 0 06 6 6 6a c d c a d d b a a a d d a

ax dy t
ad

λ λξ − − + − − += + −   (3.21) 

 
Case 2: 
 

2 2 2 2
0 0 1 1 2 0 0 1 1 2 0 0, , , , , , , 6 ( ),a a a a a d b b b a b d d d c d b aµ µ= = = = = = = = − +  

2 2
0 0 1 1 2 2 0 0 1 0 0 3, , , , , , 0,c c c a c d g db dc g da dc a d gµ= = − = − = − − = + = − =   (3.22) 

 
where 0 0 0 1, , , ,a b c a d  are arbitrary constants. 

 
Similarly under the condition 0µ ≠ , we can obtain another travelling wave solution of (2+1) 
dimensional Boussinesq and Kadomtsev-Petviashvili equation as follows: 
 

2 2 2
2 1 0

1 1
( ) ( ) ( )u d a a

de deλξ λξ
ξ µ µ µ

λ λ

= + +
+ +

    (3.23) 

 

2 2 2
2 1 0

1 1
( ) ( ) ( )v d a b

de deλξ λξ
ξ µ µ µ

λ λ

= + +
+ +

      (3.24) 

 

2 2 2
2 1 0

1 1
( ) ( ) ( )q d a c

de deλξ λξ
ξ µ µ µ

λ λ

= − − +
+ +

    (3.25) 

 

0 06 ( )ax dy d b a tξ = + − − +         (3.26) 

 
Case 3: 

2 2 2
0 0 1 2 0 0

1 1 3 1 3
, ( ), ( ), ,

2 2 2 2 2
a a a d i a d i b bµλ µ= = − ± = − ± =  

2 2 2 2 2 2
1 2 0 0 1 2

1 1 1 3 1 3
, , , ( ), ( )

2 2 2 2 2 2
b d b d c c c d i c d iµλ µ µλ µ= = = = ± = ±  

0 0 3

1 3 1 3
, ( ) , 6 ( ) 6 , 0,

2 2 2 2
d d a i d c da i db g= = ± = − ± − =  

 1 0 0 2 0 0

1 3 1 3
( ), ( ) ,
2 2 2 2

g da dc i g db i dc= − ± = ± −     (3.27) 

 
where 0 0 0, , ,a b c d  are arbitrary constants. Then 
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2 2 2 2
3 0

1 3 1 1 1 3 1
( ) ( )( ) ( )( )

2 2 2 2 2
u d i d i a

de deλξ λξ
ξ µ µλµ µ

λ λ

= − ± + − ± +
+ +

   (3.28) 

2 2 2 2
3 0

1 1 1
( ) ( ) ( )

2
v d d b

de deλξ λξ
ξ µ µλµ µ

λ λ

= + +
+ +

    (3.29) 

2 2 2 2
3 0

1 3 1 1 1 3 1
( ) ( )( ) ( )( )

2 2 2 2 2
q d i d i c

de deλξ λξ
ξ µ µλµ µ

λ λ

= ± + ± +
+ +

     (3.30) 

0 0

1 3 1 3
( ) [6 ( ) 6 ]
2 2 2 2

i dx dy da i db tξ = ± + + ± +      (3.31) 

 
where 0µ ≠ . 
 
Case 4: 
 

2 2 2
0 0 1 2 0 0

1 1 3 1 3
, ( ), ( ), ,

2 2 2 2 2
a a a d i a d i b bµλ µ= = − ± = − ± =  

2 2 2 2
1 1 2 0 0 1 1 2

1 3 1 3 1 3
( ), , , ( ), ( )
2 2 2 2 2 2

b a i b d c c c a i c d iµ µ= − ± = = = − − ± = ±  

0 0 3

1 3 1 3
, ( ) , 6 ( ) 6 , 0,

2 2 2 2
d d a i d c da i db g= = ± = − ± − =  

 1 0 0 2 0 0

1 3 1 3
( ), ( ) ,
2 2 2 2

g da dc i g db i dc= − ± = ± −     (3.32) 

 
where 0 0 0, , ,a b c d  are arbitrary constants. Then 

 

2 2 2 2
4 0

1 3 1 1 1 3 1
( ) ( )( ) ( )( )

2 2 2 2 2
u d i d i a

de deλξ λξ
ξ µ µλµ µ

λ λ

= − ± + − ± +
+ +

   (3.33) 

 

2 2 2
4 1 0

1 1 3 1
( ) ( ) ( )( )

2 2
v d a i b

de deλξ λξ
ξ µ µ µ

λ λ

= − ± +
+ +

    (3.34) 

 

2 2 2
3 1 0

1 3 1 1 3 1
( ) ( )( ) ( )( )

2 2 2 2
q d i a i c

de deλξ λξ
ξ µ µ µ

λ λ

= ± − − ± +
+ +

   (3.35) 
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0 0

1 3 1 3
( ) [6 ( ) 6 ]
2 2 2 2

i dx dy da i db tξ = ± + + ± +      (3.36) 

 
where 0µ ≠ . 
 
Remark 1: In [24], Zheng presented some exact solutions including hyperbolic function 
solutions, trigonometric function solutions, rational function solutions, and some soliton 
solutions for Eqs. (3.1)-(3.3). We note that our solutions (3.18)-(3.20), (3.23)-(3.25) are 
expressed in the Exp function, which are different from Zheng’s results. Furthermore, our 
solutions (3.28)-(3.30), (3.33)-(3.35) are complex solutions, which are essentially different 
from the solutions proposed in [24]. 
 
Remark 2: The travelling wave solutions mentioned above have not been reported by other 
authors to our best knowledge. 
 
4. CONCLUSIONS 
 
In this paper, some new travelling wave solutions of (2+1) dimensional BKP equation are 
successfully found by using the Bernoulli sub-ODE method. The main points of the method 
are that assuming the solution of the ODE reduced by using the travelling wave variable as 
well as integrating can be expressed by an m − th degree polynomial in G , where ( )G G ξ=  

is the general solutions of a Bernoulli sub-ODE equation. The positive integer m  can be 
determined by the general homogeneous balance method, and the coefficients of the 
polynomial can be obtained by solving a set of simultaneous algebraic equations. Also this 
method can be used to many other nonlinear problems. 
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