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Abstract
Maximum permissible errors (MPEs) are an important measurement system specification and
form the basis of periodic verification of a measurement system’s performance. However, there
is no standard methodology for determining MPEs, so when they are not provided, or not
suitable for the measurement procedure performed, it is unclear how to generate an appropriate
value with which to verify the system. Whilst a simple approach might be to take many
measurements of a calibrated artefact and then use the maximum observed error as the MPE, this
method requires a large number of repeat measurements for high confidence in the calculated
MPE. Here, we present a statistical method of MPE determination, capable of providing MPEs
with high confidence and minimum data collection. The method is presented with 1000
synthetic experiments and is shown to determine an overestimated MPE within 10% of an
analytically true value in 99.2% of experiments, while underestimating the MPE with respect to
the analytically true value in 0.8% of experiments (overestimating the value, on average, by
1.24%). The method is then applied to a real test case (probing form error for a commercial
fringe projection system), where the efficiently determined MPE is overestimated by 0.3% with
respect to an MPE determined using an arbitrarily chosen large number of measurements.
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1. Introduction

When a measurement instrument is purchased from some
instrument vendor, the user of the instrument generally
requires a guarantee that that instrument will perform in such
a way that the measurements produced by that instrument
can be trusted. In mature manufacturing industries, trust is
established by the rigorous application of specification stand-
ards frameworks, which are, in turn, agreed internationally
by experts in industry and academia. To this end, in dimen-
sional measurement, the ISO 10360 series [1] is used in the
first instance for performance verification of co-ordinatemeas-
urement systems [2].

Performance verification allows a measurement system
user to verify that said measurement system is performing
within its specification and specification standards exit to
assist users in performing performance verification [3]. For
example, ISO 10360-5 [4] provides instruction for perform-
ance verification of co-ordinate measuring machines (CMMs)
using single and multiple stylus contacting probing systems.
Performance verification is generally performed as part of
the commissioning of a new instrument. Following the ini-
tial performance verification test upon delivery, performance
verification is then commonly used to periodically check the
continued performance of a measurement system. Perform-
ance verification relies on checking the test system’s ability
to meet certain performance metrics and is not possible if a
system has no supplied performance metrics.

The most used metric within the ISO 10360 framework is
‘maximum permissible error’ (MPE) [1, 3]. An MPE is the
‘maximum difference, permitted by specifications or regula-
tions, between the instrument (reading) and the quantity being
measured’ [5]. MPEs are used for the description of measur-
ing instruments that do not have a traceable calibration cer-
tificate. An MPE can be used either as one influence quant-
ity in an uncertainty evaluation [6] or as the threshold in a
performance verification test. MPEs are chosen by the instru-
ment manufacturer, and any performance verification process
will involve comparing a test system to the MPE specified
by the instrument manufacturer. It is generally expected that
instrument manufacturers will specify the smallest possible
MPE that will not fail a performance verification test due
to random chance. This expectation arises because a smal-
ler MPE may be desirable for marketing purposes, whilst
a performance verification test failed due to chance, rather
than machine malfunction, will incur unnecessary costs for
the manufacturer and may erode the customer’s trust in their
product.

Manufacturers of measurement systems will generally
quote performance metrics in a manner consistent with the
relevant international standards, and it should be noted that
the methods used by instrument manufacturers to determine
MPE are proprietary. However, due to the large amount of
time required in collecting many thousands of repeat meas-
urements, it is not unimaginable that some manufacturers
might forego rigorous statistical analysis by taking a few tens
of repeat measurements and using the maximum error value
(potentially multiplied by a proprietary safety factor) as the

MPE. If such a method is employed, it is likely to empiric-
ally provide a performance verification test that will not com-
monly fail because of random chance but may provide artifi-
cially inflated MPE values.

It is also possible for a measurement system user to wish
to quote an MPE for a specific measurement condition that is
not covered by manufacturer supplied figures; for e.g. when a
system is supplied with incomplete compliance to the respect-
ive part of ISO 10360, or for measurement technologies where
standards are not yet published. In this case, a user may
struggle to fully utilise their system and may be prevented
from applying crucial measurement tasks.

Where a minimum MPE is sought, it is desirable to cal-
culate the statistically smallest value that an MPE can take,
without allowing a performance verification test to fail due
to random chance. To this end, we propose a method of
statistical MPE determination; using the smallest number of
repeat measurements of calibrated features possible to determ-
ine an MPE in a particular measurement case. The perfect-
case method of MPE determination would involve an infin-
ite number of real-world measurements, but such a method
is practically impossible, and some realistic method must be
used to approximate the infinite-measurement case. As such,
large numbers of repeat measurements will increase the statist-
ical confidence in the determined MPE, but there will always
be a trade-off between the number of measurements and the
time taken to acquire the data, with excessive repetition of
measurements being unnecessarily expensive and slow. There-
fore, determining theMPEwith minimal repeat measurements
is desirable and requires significant statistical analysis. At
present, there is no clear method for the determination of MPE
in the literature, and MPEs are commonly used as the primary
comparator for commercial systems. There is also a need in
academia for a clear method for determining anMPE for novel
measurement systems developed in academic contexts. In this
paper, we present an efficient method of MPE determination,
capable of providing an MPE that we state, with estimated
99.9% confidence, will not be failed due to random chance
in 99.9% of measurements and go some way towards present-
ing a transparent route to MPE determination. We present the
method alongside a case study using a fringe projection sys-
tem, testing the system against the as yet unpublished proced-
ures documented in ISO 10360-13 [2, 7].

2. Terminology and assumptions

To report the method devised for MPE determination, we must
first clarify a number of concepts, definitions and assumptions
considered throughout this work. We present these concepts,
definitions and assumptions here.

2.1. MPEs

A complete performance verification procedure can generally
be broken down into separate measurement tasks and asso-
ciated constituent MPEs, and a single measurement task can
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be used to test performance against multiple MPEs by analys-
ing the measurement data in multiple ways. In the test case
used here, we consider only one MPE and treat it as statist-
ically separate from other MPEs, as any unknown correlation
between MPEs does not affect the validity of the presented
analysis. However, it should be noted that there may be cor-
relation between the realised MPEs and further treatment may
be necessary.

To ensure a representative coverage of the measurement
range is achieved, it is common for a measurement task to
require multiple varied measurement setups. This approach is
intended to ensure sampling of maximum errors across a range
of measurement setups and to account for the case in which
varying the measurement setup also varies unconsidered con-
founding influence factors.

2.2. Confidence, prediction and tolerance intervals; and
uncertainty

A stated measurement uncertainty is a non-negative parameter
characterising the dispersion of the quantity values being
attributed to a measurand, based on the information used [8],
and the expanded uncertainty is the product of a combined
standard measurement uncertainty and a coverage factor k
which is larger than unity. Here, the expanded uncertainty rep-
resents a coverage interval (CI) surrounding a mean value,
within which a measurement value can be expected to lie [9]
with a probability equal to some statistical confidence level
(referred to within a metrological context as a ‘coverage prob-
ability’ [9]). The width of this CI depends on the ascribed cov-
erage probability. An example of such a measurement uncer-
tainty is when a 95% (or k = 1.96, often approximated to two
for an infinite number of degrees of freedom, justified via the
central limit theorem [9]) CI is quoted with a measurement.
This approach is generally considered as valid for Gaussian
uncertainty, in the majority of measurement cases.

It then follows that an MPE is the upper limit of a 100%
prediction interval for the measurement error, for a specific
measured feature and measurement procedure, where a pre-
diction interval is a range of values that predicts the value of a
new observation. A prediction interval represents the interval
in which a measurement will fall, given previous observations,
with a certain probability. As such, a 100% prediction interval
implies that all future measurements made will fall within that
interval. A tolerance interval then combines features of both
confidence and prediction intervals, by predicting the expec-
ted range of values of future samples, with an associated con-
fidence level. Applied to the reporting of an MPE, a tolerance
interval would correspond to an interval containing a propor-
tion p of the future population of measurement errors, with a
given level of confidence, 1−α, for a specific measured fea-
ture and measurement procedure. Specifically, following the
definition of an MPE, the tolerance interval would correspond
to saying that 100% of future measurement errors would be
less than or equal to the stated MPE, with a given level of con-
fidence of 1−α, for a specific measured feature and measure-
ment procedure [10].

2.3. Populations and distribution

A set of repeated measurement results represents a sample of
the population that contains all possible measurement results,
with their distribution being a population distribution. A sum-
mary statistic of the sample (e.g. mean, maximum or stand-
ard deviation) is an estimator of the population summary stat-
istic. The distribution of the values of estimators calculated on
repeated samples is a sampling distribution. Due to the central
limit theorem [9], it is possible for the sampling distribution
to be considered normal even if the population distribution is
not. When using an estimator, there are two main properties
that describe their behaviour: bias and consistency [11]. Bias
is the difference between an estimator’s expected value and the
true value of the parameter being estimated. Consistency is the
tendency, as the number of sampled data points is increased,
for an estimator to converge to the true value of the parameter
being estimated.

Whilst it is commonwithin the field of metrology to assume
a normal distribution for repeated measurements [9], it is not
guaranteed that such a distribution will be a reasonable model,
and a generalised extreme value distribution is often more
appropriate, as the values taken by any particular measurement
are generally bounded by the spatial frequency response of
the measurement instrument (i.e. the instrument transfer func-
tion) [12]. The class of generalised extreme value distributions
is a series of continuous distributions that combine type I–III
extreme value distributions, which are an appropriate model
for the minimum/maximum of a large number of independent,
randomly distributed values from a common distribution [13].
It should be noted here that the conditions in which ‘repeat’
measurements are made will depend on the specific meas-
urement scenario (e.g. moving the measurement instrument
between measurements, or not, as the case may be). Here, we
detail those conditions in the specific cases discussed in rela-
tion to the method.

Determining which distribution best describes the popula-
tion of measurements is nuanced, since multiple distributions
can appear to fit equally well, especially when there is a small
sample size. One graphical representation of the ‘goodness of
fit’ is a Q–Q plot, which, in this scenario, is used to compare
the predicted quantiles of a distribution with the experimental
data’s quantiles. Deviations from linearity of the fitted distri-
bution are deviations of the sample from a perfect fit, with
the magnitude, location and pattern of such deviations being
important when determining whether the fitted distribution is
appropriate.

2.4. Resampling

When attempting to improve the confidence in a measurement,
taking more measurements is the obvious first step. However,
there are practical and economic limits on the number of repeat
measurements possible. Therefore, when the data has been
collected, and it would still be desirable to reduce the error
on the estimator, resampling the data can be a solution. Res-
ampling is a method of statistical analysis that uses a fixed
number of measurements to simulate what would be expected
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to happen, if more measurements had been taken. Bootstrap-
ping is a common resampling technique that has been applied
to metrology problems in the literature (for e.g. see [14, 15]).

2.5. Bootstrapping

‘Bootstrapping’ is when an original dataset is used to generate
the new data sets. This process is possible because the dis-
tribution of collected samples approximates the distribution
of all possible samples that could be collected. Therefore, a
bootstrap sample of the same length as the original sample
can be created by randomly selecting individual samples, with
replacement. By using random selection with replacement, the
distribution of the bootstrap samples approximates the distri-
bution from which the samples are drawn. There are (2n−1)!

n!(n−1)!
possible bootstrap samples when sample order is unimportant,
which for sample sizes greater than ten (92 378 possible boot-
strap samples), means that exhaustive bootstrapping is often
not feasible because of the associated computational expense
[16]. If the size of each bootstrap is varied from the original
number of repeat measurements, we can simulate the standard
errors for a varying number of repeat measurements. By vary-
ing the bootstrap size, we can calculate the expected stand-
ard errors on estimators in the case where more repeat meas-
urements were taken [16]. For bootstrapping to be successful,
the distribution of the samples should be a good approxima-
tion for the population distribution. In fact, to approximate the
99.9% quantile using purely nonparametric bootstrap, wemust
‘know’ the distribution until that 99.9% quantile well, which
itself is quite restrictive: to know this would require at the
very least ten observations above the 99.9% quantile, which on
average requires 10/(1− 0.999) = 10000 observations. Here,
we have adopted a hybrid approach, between standard res-
ampling (which itself can be used to produce CIs but requires a
very large volume of data) and parametric modelling (in which
the 99.9% quantile can not only be estimated but also inferred
with confidence, since the uncertainty on the mean and stand-
ard deviation is known). Particularly, we are estimating the
99.9% quantile using parametric modelling so we can collect
the smallest amount of data possible but are combining this
approach with standard resampling to provide a more robust
input for the parametric modelling approach.

3. A method for the empirical determination of MPE

In this section, we present the proposed method of MPE
determination using fabricated synthetic data, to illustrate the
various steps of the method. In section 4, we will then present
a validation of the method using an example measurement sys-
tem. The synthetic data was generated from a set of arbit-
rarily defined normal distributions, from which individual
‘measurements’ were randomly generated. For this fictitious
measurement system and the associated synthetic data, the dis-
tributions for the measurement deviations were set up so that
the analytically true value of the MPE was 1 arbitrary unit.
Throughout this work, we have implemented this method in
Matlab [17].

Firstly, we assume that any MPE commonly specifies the
expected error in a ‘worst case’ scenario for any measure-
ment acquired by an instrument within its specification. Meas-
urement instruments generally allow for some variation in
measurement setup (e.g. the position of the measurand within
the measurement volume, acquisition settings or lighting),
and some measurement setups are likely to be more, or less,
optimal than others. Some measurement systems present a
large array of different measurement setups, so the setups
required to determine any particular MPE are generally spe-
cified by the relevant ISO standard (e.g. ‘measure distance x at
y positions within the measurement volume’). Such specific-
ation should be followed to prevent undue amounts of work
for the user or manufacturer wishing to test any one MPE for
a system.

The simplest route to confidence in a determined MPE
would be to take a large number of repeat measurements for
all measurement setups. However, this ‘brute force’ method is
often excessively time consuming. As such, we propose a tar-
geted procedure for efficient data collection, supplemented by
statistical resampling. This procedure follows four steps, out-
lined here, summarised in figure 1 and detailed throughout the
following sections.

(a) Step 1: Acquire a small number of measurements for each
measurement setup and determine the setup most likely to
contribute the maximum error measurement.

(b) Step 2: Take a large number of measurements for this setup
and determine the minimum number of repeat measure-
ments required for each other measurement setup to suit-
ably determine the MPE.

(c) Step 3: Take the required number of repeat measurements
in all remaining measurement setups.

(d) Step 4: If there appear to be multiple setups that could con-
tribute a maximum error measurement, consider taking a
large number of measurements for those setups to reduce
uncertainty in MPE determination.

It should be noted that, while an MPE theoretically repres-
ents the upper bound of the 100% prediction interval for the
measurement error, it will rarely actually represent the 100%
prediction interval in practice. If we assume the value taken
by any one measurement acquired using some instrument will
lie along some generalised extreme value distribution bounded
by the spatial frequency response of the instrument, we must
also assume that it is statistically possible to acquire a value for
any measurement made by the instrument anywhere between
the bounds of the distribution. In practice, this means that any
MPE representing the 100% prediction interval must be equal
to the largest distance that instrument is capable of measur-
ing, irrespective of how unlikely many measurements are to
take this value. Such an MPE would be of little value to either
consumers or instrument manufacturers, so, in practice, the
MPE must represent the upper bound of some other predic-
tion interval. For this e.g. we have set the coverage level of that
interval at 99.9%, though other (high) coverage levels could be
used.

4



Meas. Sci. Technol. 32 (2021) 105013 A Thompson et al

Figure 1. Flowchart summarising the MPE determination method.

Figure 2. Synthetic example data for 50 initial measurement errors for ten measurement setups.

3.1. Step 1—determining the ‘worst’ measurement setup

First, we determine which measurement setups are most likely
to provide the largest error (and hence dominate the eventual
MPE value). Performing this step allows a drastic reduction in
the required number of measurements, made possible by the
fact that an MPE is, by definition, an extreme measurement
error, which allows us to discard cases where the expected
error is small. To make this decision, we must acquire a small
number of repeat measurements in each available measure-
ment setup for a given system.We arbitrarily suggest that 50 or
more repeat measurements are made in each setup, depending
on the available time, and expected inter-measurement vari-
ation. Fifty measurements are suggested to present a reas-
onable distribution in many cases, but this number may dif-
fer in certain scenarios (see figure 2 as an example). The
important consideration in choosing this number is that the
number of measurements must be able to provide an approx-
imate picture of the most influential measurement setup(s).
To enable quantitative selection of the critical measurement
setups, both the absolute mean error and the variance of each

setup must be considered. Setups that have large absolute
mean error and/or large variance are more likely to increase
the MPE.

In figure 2, we present ten arbitrarily different, fictitious
‘measurement setups’, with 50 synthetic ‘measurements’ gen-
erated for each setup. These fictitious setups do not translate
to any tangible measurement setups in some real instrument,
their only real characteristics are that they differ in an arbit-
rarily chosen fashion from one another, in terms of the ‘meas-
urements’ they provide. In the fabricated example, we have
deliberately produced data that exhibits an approximately nor-
mal distribution for each setup. As can be seen in the figure,
some setups result in greater deviations from nominal than oth-
ers. The synthetic data are simulated by, first, randomly gen-
erating means and standard deviations for ten normal distri-
butions with a set of means between −1 and 1 and standard
deviations between 0 and 0.3. Some randomness is then added
on top for the standard deviations (multiplying the standard
deviation by a random floating-point number between 0.5 and
1.5) to blur the hard cut-offs set for the different parameter
limits, and the greatest maximal endpoint of the symmetric
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Figure 3. Maximal endpoint of the 99.9% CIs for each measurement setup presented in figure 2.

99.9% CIs centred on the mean of each of the ten distribu-
tions is taken as the MPE. The distributions are then modi-
fied so that the MPE is 1 arbitrary unit, by multiplying the
mean of each distribution by a normalisation factor equal to
1 divided by the calculated MPE. These final distributions are
then, finally, randomly sampled to create the final ten sets of
synthetic data with an analytically correct MPE of 1 arbitrary
unit.

While in this example, the implication from a visual assess-
ment of the data is that measurement setup 3 is dominant,
through examination of figure 2 alone we cannot quantify
(or, consequently, automatically determine) which setup is
most likely to dominate the MPE determination process. As
such, each measurement setup dataset was quantified using
a metric, calculated as the endpoint of the 99.9% CI (using
t-distributions with 49 degrees of freedom) and taking the
maximal endpoint of each synthetic dataset. To calculate these
values, a distribution is fitted to each dataset and the CI of that
distribution calculated. We then record the absolute values of
the endpoints of the CI to determine the dominant measure-
ment setup. The distribution used is chosen based on a reas-
onable assumption about the distribution of the data. As the
synthetic data in this example were deliberately approximately
normally distributed, a normal distribution is fitted. The end-
points of the 99.9% CI are then calculated for these normal
distributions as:

m+ /−σ× q0.9995

where m is the estimated mean, σ is the estimated stand-
ard deviation and q0.9995 is the 99.95% quantile of the nor-
mal distribution (see figure 3 for a plot of these values; here
q0.9995 = 3.29). As can be seen in figure 3, the maximal (in
absolute terms) endpoint of the 99.9% CI for measurement
setup 3 is the greatest, so we assume that this setup is the most

likely to dominate the MPE determination process and pass
this setup into step 2.

Before moving to step 2, the success of the distribution fit-
ting should also be evaluated, using, for e.g.Q–Q plots. In this
synthetic example, theQ–Q plots presented in figure 4 confirm
that a normal distribution is appropriate for describing each
of the ten samples of 50 observations, as an approximate lin-
ear relationship between the quantiles of a normal distribution
and the quantiles of the data is present in each measurement
setup. For brevity, here, a simple visual check is used but an
automatic check could also be carried out using a statistical
test (e.g. the Kolmogorov–Smirnov test [18] or the Anderson–
Darling test [19]). Visual checks and automatic checks com-
plement each other: automatic checks return a single number
that is easy to interpret, while Q–Q plots give more extensive
information about the distribution and will indicate where (if
any) departures from the model distribution occurs.

3.2. Step 2—determining the number of measurements
required for each measurement setup

Once the measurement setup most likely to define the MPE
value is determined, a large number of repeat measurements
should be taken for the chosen measurement setup (we arbit-
rarily suggest at least 1000 measurements where a level of
99.9% is required). Thousand measurements are suggested
to present a reasonable distribution in many cases, but this
number may differ in certain scenarios. Ultimately, this num-
ber should be as large as the user is capable of measuring
within a reasonable timeframe. The larger the number of repeat
measurements made at this stage, the better—for the synthetic
example, we have fabricated a sample of 10 000measurements
(see figure 5(a)).

We then use the measurement data to calculate the min-
imum number of repeat measurements required for other
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Figure 4. Q–Q plots of the 1st 50 synthetic measurements for a normal distribution fitted to each dataset.

Figure 5. Determination of the of repeat measurements required for each other measurement setup using measurement setup 3:
(a) deviation from nominal value for 10 000 measurements; (b) normal distribution fitted to deviations; (c) PDF of the maximal endpoint
of the 99.9% CI for each bootstrap, with a normal distribution fitted to infer the maximal endpoint of the 99.9% CI of the population; and
(d) convergence of the setup-specific MPE to the estimated maximal endpoint of the 99.9% CI.

measurement setups. To this end, we fit a normal distribu-
tion to the data (figure 5(b)) and calculate the maximal end-
point of the 99.9% CI for this sample, which takes the value
of −1.0010 arbitrary units (represented by the dashed ver-
tical line in figure 5(b)). In this instance, the value is negative
because setup 3 generally produced negative deviations from
the nominal, but a modulus of this value can be taken as the
maximum deviation from nominal.

Next, we use bootstrapping to simulate 10 000 bootstrap
samples (each containing 10 000 measurements) and calcu-
late the maximal endpoint of the 99.9% CI for each of the
bootstrap samples. Ultimately, this number should be as large
as the user is capable of simulating in a reasonable timeframe.
These 10 000 values for the maximal endpoint of the 99.9%CI
of each bootstrap sample are then plotted on a 2nd frequency
plot (figure 5(c)). To facilitate the next step in this process, we

fit a normal distribution to this plot to create a probability dens-
ity function (PDF). We then calculate the mean of the PDF,
which approximates the mean of the sample of potential end-
points of 99.9% CIs. The mean value in this case was−1.0009
arbitrary units (represented by the dashed vertical line in the
centre of figure 5(c)).

With this information, as we are interested in defining an
MPE, we can construct a confidence interval for the endpoint
of the 99.9% CI at a given confidence level, 100(1− p)%, and
think of the appropriate endpoint of this confidence interval as
an MPE for this particular setup. The point is to ensure that
the provided value is almost always an over-estimate of the
‘true’ maximal endpoint of the 99.9% CI. A conservatively
appropriate choice is p = 0.1%, which ensures that a meas-
urement instrument would fail a performance verification test
against this MPE 0.1% of the time, though other confidence
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levels could be chosen. The value taken by the setup-specific
MPE in this example is −1.0155 arbitrary units (represented
by the dashed vertical line to the left side of figure 5(c)).

The value taken by the setup-specific MPE depends upon
the number of measurements made—with an infinite number
of measurements, the value will equal the true 99.9% quantile,
with the value diverging further from the true value the smal-
ler the number of measurements. To determine a reasonable
minimum number of measurements required in other setups,
we propose the following procedure.

(a) Record the estimated mean of the distribution of endpoints
of the 99.9% CI (i.e. the dashed vertical line in the centre
of figure 5(c), which here is −1.0008 arbitrary units).

(b) For a given fictitious sample size, m, calculate the setup-
specific MPE based on bootstrap samples of m measure-
ments (for m = 10 000, this would be the dashed vertical
line to the left side of figure 5(c)).

(c) Plot the deviation of the setup-specific MPE in (b) against
the estimated mean in (a) as a function of m.

This deviation gives us an idea of the uncertainty in the
measurement of the MPE, which should be suitably small to
ensure that the calculation of the MPE is reliable. In (a), the
mean of the distribution acts as a (hopefully good) estimate of
the true value of the endpoint of the 99.9% CI, which is, of
course, unknown.

In figure 5(d), the deviation from the estimated max-
imal endpoint of the 99.9% CI rapidly reduces as the num-
ber of measurements increases. Increasing the number of
repeat measurements from the 10 000 measured to 15 000
via bootstrapping does not greatly improve the estimator’s
convergence or the expected standard errors. Fifteen thou-
sand bootstrap samples are used here to simulate the effects
of performing significantly more measurements than initially
acquired—we (arbitrarily) recommend the number used here
should be 150% of the number of measurements acquired in
the initial run. The deviation against the number of measure-
ments is presented in figure 5(d) as amean and upper and lower
bound, computed by repeating this step three times, generating
new sets of 10 000 bootstrap samples for each number ofmeas-
urements each time. While we have presented this informa-
tion in figure 5(d) below, the upper and lower bound lines are
almost indiscernible from the mean line because of small devi-
ations between repeat experiments. In figure 5(d), a modulus
of the calculated population 99.9% CI is presented to provide
a positive maximum deviation from the nominal value.

When calculating the convergence plot (figure 5(d)), con-
tinuous sub-sections of size m of the data collected for
that measurement setup are first randomly chosen. Bootstrap
samples are then created from these sub-sections, also of size
m and the setup-specific MPE is calculated for each m from
the bootstraps. The deviation of these setup-specific MPEs
from the estimated mean of the distribution of endpoints of the
99.9% CI is then plotted against m. This whole process is then
repeated three times, and a different continuous sub-section is
chosen for each repeat of the process. In the figure, the dashed
lines show the envelope of the highest and lowest calculated

MPE against the number of measurements, across the num-
ber of repeats employed (three, here). In this implementation,
if the number of measurements multiplied by the number of
convergence test repeats is less than the number of available
measurements, the raw data is separated into the same number
of sections as there are repeats, and each simulated data col-
lection run is randomly positioned within that section. If the
number of measurements multiplied by the number of conver-
gence test repeats is more than the number of available meas-
urements, the beginning of the simulated data collection runs
is overlapped with a random offset, without overhanging the
end of data collection (as wraparound sampling is not ideal
because of the potential presence of drift [8]). If the simulated
number of measurements is more than the number of available
measurements (so wraparound sampling is unavoidable), the
data are tiled to the extent specified by the oversampling ratio
and a random starting point offset is again used. This overall
procedure is used to limit the influence of small-scale irregu-
larities when the number of measurements is small.

The data presented in figure 5(d) is finally used to determ-
ine the number of measurements required for other meas-
urement setups to determine the overall MPE, by applying a
threshold to the convergence. The value at which this threshold
is applied is ultimately determined by the user; here we have
arbitrarily set the value to 5% of the calculated setup-specific
MPE (the central dashed line in figure 5(c)), which in this syn-
thetic example is 0.0508 arbitrary units (represented by the
dashed horizontal line in figure 5(d)). By examining the inter-
section between the upper bound of the convergence line and
the threshold and rounding up to the nearest integer, in this
synthetic example we determine that the required number of
measurements is 2147.

3.3. Step 3—calculating the MPE

Once the minimum number of measurements per setup has
been determined, that number of measurements is made in all
remaining measurement setups (nine setups, in this example).
Bootstrapping of all the repeat measurements from these
setups is then carried out, creating a very large number of boot-
strap samples (100 000 bootstrap samples, in this example).
One lakh bootstrap samples are used here to simulate the
effects of performing a much larger number of measurements
than initially acquired—we (arbitrarily) recommend the num-
ber used here should be 1000% of the number of measure-
ments acquired in the initial run. As in step 2, this number
should be as large as the user is capable of simulating in a
reasonable timeframe. These bootstrap samples contain the
number of measurements equivalent to the number of meas-
urements taken for each setup (here, 10 000 for measurement
setup 3 and 2147 for all other setups). Frequency plots are gen-
erated for each setup (similar to that shown in figure 5(c)) and
a normal distribution is fitted to each of these plots). These
normal distributions are shown plotted on a single graph in
figure 6(a). To generate figure 6(b), we first take the cumulative
distribution function (CDF) related to each of the individual
frequency functions, and then take the product of all these
functions to create the overall CDF presented in the figure.
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Figure 6. First-pass calculation of the MPE: top; distribution of the maximal endpoint of the 99.9% CIs from bootstrapped data for each
measurement setup; and bottom; product CDF, with the 99.9% quantile highlighted.

Mathematically, this step corresponds to estimating the CDF
of the maximum deviation across the ten independent setups.
In this overall CDF, the 99.9% quantile (i.e. corresponding in
some sense to a one-sided tolerance interval) then represents
the calculatedMPE. The calculated value of theMPE is finally
1.0152 arbitrary units (represented by the dashed vertical line
to the right side of figure 6(b)).

3.4. Step 4—validating the calculated MPE

Having collected and analysed all the required data, it is
important to evaluate the quality of the calculated MPE. In
this example, measurement setup 3 is clearly the most dom-
inant contributor to increasing the MPE. However, cases are
likely to exist in practice where more than one measurement
setup will have similar contributions to increasing theMPE, or
where the dominant setup is not sufficiently sampled. If there
are multiple measurement setups that similarly dominate the
MPE determination, or a lack of measurements in the domin-
ant measurement setup, it is prudent to collect further repeat
measurements, to reduce overestimation of the MPE due to
uncertainty caused by insufficient sampling.

To determine whether the calculated MPE is ‘good
enough’, some user-defined criteria must be employed. In this
case, the dominant measurement setup is chosen after the ini-
tial set of measurements, steps 1–3 are followed and the MPE
recalculated. Then, the areas under the frequency plots presen-
ted in figure 6 are examined, and the measurement setup with
the greatest area beyond the calculated MPE is chosen. If the
90% interquantile range of the product CDF (given by the
curve in figure 6(b)) is greater than some predefined toler-
ance (here, arbitrarily, 5% of the calculatedMPE), then further
measurements should be acquired in the chosen measurement
setup, the assumption being that the uncertainty on the calcu-
lation of the MPE is still too high for this estimate to be reli-
able. We suggest that this number of measurements is equal
to the difference between the large number of measurements

used at the beginning of step 2 and the number of measure-
ments already acquired (unless this value is zero, in which
case, we suggest taking an extra number of measurements as
in the beginning of step 2, i.e. to take 20 000 observations in
total if the original number was 10 000).

This process should be iterated until the gap is smaller than
the predefined tolerance. In this synthetic example, this test
was passed in the 1st MPE calculation and no further meas-
urement was required. As such, the final efficient determined
MPE for this synthetic example is 1.0152 arbitrary units, as
calculated in step 3. This value is, as expected, over-estimated
with respect to the analytically true MPE of 1 arbitrary unit
but is, in fact, within 1.6% of that value.

In this example, the method has been used to define anMPE
(i.e. corresponding to a prediction interval) that is valid for
99.9% ofmeasurements (i.e. one random failure is to be expec-
ted per 1000measurements). Using themethod described here,
we can provide a confidence level for that prediction interval,
which we have also set at 99.9%. In summary, we are (approx-
imately, and subject to checks on the underlying distribution of
measurement deviations) 99.9% certain that this method pro-
duces an MPE value that, when tested, will result in one per-
formance verification failure in every 1000 tests, solely as a
result of random chance. This statement represents a tolerance
interval for this method.

3.5. Synthetic validation

To demonstrate the validity of the method, we repeated the
whole process 1000 times, determining 1000 separate MPEs,
using an entirely new set of synthetic data each time. Further
repetitions are possible, but running the whole experiment is
computationally expensive.

As discussed in the introduction to section 3, the analytic-
ally true MPE for this synthetic example is 1 arbitrary unit. As
can be seen in figure 7, over 1000 repeats of the whole pro-
cess, the method resulted in an underestimation of the MPE
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Figure 7. The efficient determined MPE over 1000 repeat experiments, where the true value is 1. Values greater than one represent the
efficient MPE being larger than the true MPE (i.e. overestimation), with values less than one representing the converse.

eight times (underestimated, on average, by 0.13% and at most
by 0.22% of the true value). The method resulted in no large
overestimations of the MPE (>10% of the true value). The
mean and standard deviation of the determinedMPE over 1000
repeats of the whole process were 1.0124 and 0.0070 arbitrary
units, respectively, equivalent to an error of 1.24% ± 2.30%
(at 99.9% confidence, using a t-distribution with 999 degrees
of freedom equivalent in practice to a normal distribution).

4. Experimental validation of the method

We present the results of a practical implementation of the
method reported in this paper, using a commercial fringe pro-
jection system. The system used here is tested against an
example MPE discussed in the current draft of ISO 10360-13
[2, 7], particularly the ‘probing form dispersion error’ for
a single-view sphere measurement (i.e. the thickness of a
spherical shell which encompasses measured data acquired
using a single fringe projection measurement). In this case,
100% of measured points were used to calculate the probing
form dispersion error. Using the symbol convention presen-
ted throughout the ISO 10360 series, this MPE is denoted
PForm.Sph.All:SMV:SV:O3D,MPE. The 100% probing form dispersion
error was chosen for its relative simplicity as a real-world test
case. In this example, the distribution of errors is expected to
be a generalised extreme value distribution, which can have
significant tails and is, therefore, likely to be more challenging
to accurately fit distributions to than a normal distribution [7].

It should be noted that, as ISO 10360-13 [7] has not yet
been published, existing systems cannot yet be expected to
conform to the standard and so performance verification res-
ults may differ from those expected by the instrument man-
ufacturer. Particularly, the MPE generated using our method
may not necessarily marry up to any MPE(s) that have been
published for the test system. As such, details regarding the

specific test system used in this work have been withheld,
to prevent misrepresentation of a commercial measurement
system.

4.1. Measurement procedure

A calibrated sphere was measured in eight different measure-
ment setups (defined in ISO 10360-13, where they are referred
to as ‘positions’ [2, 7]) using the fringe projection system.
These positions are obtained by placing the sphere at different
locations within the instrument measurement volume. Under
the assumption that the instrument measurement volume is a
cube, that cube is subdivided into eight equally sized cubes
and the sphere is place in each of these cubes in sequence.
The positions are numbered such that the four cubes closest
to the instrument are 1–4 and those furthest away are 5–8.
At each level, the lowest numbered cube is in the top left of
the field of view, as seen by the instrument, with increasing
numbers progressing anticlockwise from the top left (see [2]
for a visualisation of this setup). Each measurement setup was
achieved by either moving the measurement system, the meas-
ured artefact or a combination of both actions. In each case, the
sphere was positioned close to the edge of the measurement
volume. For reasons of practicality of data collection, repeat
measurements were made in each measurement setup, before
moving the physical measurement setup into the next pose.
This method reduces the number of measurement setup trans-
itions, which reduces the time required for measurement and
breaks any correlation between measurement setups. It should
be noted that if, in some practical application, a strong correl-
ation between measurements is introduced by the ordering of
measurements, the measurement procedure should be modi-
fied to reduce such effects. Although theoretically possible, it
is beyond the scope of this paper to account for such temporal
correlations when calculating an MPE.
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Figure 8. Measured data for 50 initial measurement errors for eight measurement setups.

Figure 9. Maximal endpoint of the 99.9% CIs for each measurement setup presented in figure 8.

The sphere measured during this work adhered to the spe-
cification presented in ISO 10360-13 and had minimum and
maximum deviations from a Gaussian substitute sphere of—
(0.88± 1.8) µm and (1.07± 1.8) µm, respectively (expanded
uncertainty presented at k = 1.96). The sphere was calibrated
using a CMM by an ISO 17025-accredited 3rd party [20].

4.2. Step 1—determining the ‘worst’ measurement setup

To begin, 50 measurements were acquired of the calibrated
sphere in each of the eight measurement setups. In each case,
a minimum-zone spherical shell encompassing 100% of the
data points was fitted to the acquired point cloud data and the
probing form dispersion error was calculated as the thickness

of these shells. Data acquisition was performed using the man-
ufacturer’s proprietary software, while sphere fitting and cal-
culation of the probing form dispersion error was performed
in Polyworks 2019 [21]. The probing form error calculated
from each measurement is presented in figure 8. The plot of
the maximal endpoint of the 99.9% CIs for each measurement
setup presented in figure 9 suggests that measurement setup 7
represents the worst measurement. The Q–Q plots presented
in figure 10 confirm that the assumption that measurements
follow a generalised extreme value distribution is overall reas-
onable in this case, up to small-sample variability in setups 4
and 7. The specific type (I–III) of generalised extreme value
distribution is automatically determined according to best fit
using maximum likelihood estimation, on a dataset-by-dataset
basis.
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Figure 10. Q–Q plots of the 1st 50 measurements for a generalised extreme value distribution fitted to each dataset.

Figure 11. Determination of the of repeat measurements required for each other measurement setup using measurement setup 7:
(a) deviation from nominal value for 1000 measurements; (b) generalised extreme value distribution fitted to deviations; (c) PDF of the
maximal endpoint of the 99.9% CI for each bootstrap, with a generalised extreme value distribution fitted to infer the maximal endpoint of
the 99.9% CI of the population; and (d) convergence of the setup-specific MPE to the estimated maximal endpoint of the 99.9% CI.

4.3. Step 2—determining the number of measurements
required for each measurement setup

With measurement setup 7 chosen as the measurement setup
most likely to define the MPE, 1000 measurements were
acquired in this setup, to determine the minimum number
of measurements required in each of the other measure-
ment setups. This information is presented in figure 11. By
fitting a generalised extreme value distribution to the data
(figure 11(b)), we calculate the maximal endpoint of the
99.9% CI for this sample, which in this example takes the
value of 0.496 mm (represented by the dashed vertical line in
figure 11(b)).

Using bootstrapping to simulate 10 000 samples, we then
calculate the maximal endpoint of the 99.9%CI for each of the
bootstrap samples, plot these as a frequency plot (figure 11(c))

and fit a generalised extreme value distribution to this plot to
create a PDF. The mean and upper value of the 99.9% CI of
the PDF were 0.496 mm (represented by the dashed vertical
line in the centre of figure 11(c)) and 0.523 mm (represented
by the dashed vertical line to the right side of figure 11(c)),
respectively. This latter value is the estimation of the setup-
specific MPE for setup 7.

The convergence threshold was taken as 5% of the max-
imal endpoint of the 99.9% CI (here, 0.026 mm) and the inter-
section between the upper bound of the convergence line and
this threshold determined using the plot in figure 11(d). In this
example, the convergence line crosses the threshold more than
once, sowe take the larger of these intersections as the required
number of measurements, which in this case is 512. Here, it is
important to note the slightly erratic behaviour of the three
curves for a number of measurements lower than 250, due
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Figure 12. First-pass calculation of the MPE: top; distribution of the maximal endpoint of the 99.9% CIs from bootstrapped data for each
measurement setup and bottom; product CDF, with the 99.9% quantile highlighted.

to small-sample variability; this behaviour is another reason
why taking a relatively large number of measurements is
important.

We can also use this step to perform further validation
of the decisions made as part of the method. Particularly,
figure 11(b) shows that the distribution of deviations from the
nominal in measurement setup 7 is reasonably well approx-
imated by a generalised extreme value distribution. Also, the
convergence to the estimated population mean with increasing
bootstrap size (shown in figure 11(d)) suggests that the 1000
measurements performedwere sufficiently numerous to accur-
ately estimate the maximal endpoint of the 99.9% CI. This
conclusion is supported by two aspects of the figure 11(d),
particularly: above around 500 measurements, the difference
between the upper and lower bound of the convergence plot is
small compared to the measured deviations; and there seems
to be no significant benefit to acquiring more than around 700
measurements.

4.4. Step 3—calculating the MPE

Five hundred and twelve measurements were then made in all
remainingmeasurement setups. Bootstrapping of all the repeat
measurements from these setups is then carried out, creating
a very large number of bootstrap samples (100 000 bootstrap
samples, in this example). These bootstrap samples contain the
number of measurements equivalent to the number of meas-
urements taken for each setup (here, 1000 for measurement
setup 7 and 512 for all other setups). Frequency plots were gen-
erated for each setup and a generalised extreme value distribu-
tion fitted to each of these plots (see figure 12(a)). Figure 12(b)
is then the CDF created from taking the product of all of
the pertaining CDFs, with the calculated value of the MPE,
determined as the 99.9% quantile of this distribution, being
0.537 mm (represented by the dashed vertical line to the right
side of figure 12(b)).

4.5. Step 4—validating the calculated MPE

In this example, measurement setup 7 was initially chosen
as the most dominant contributor to increasing the MPE. On
examination of the area under the frequency plots presented in
figure 12, measurement setup 8 was found to have the greatest
area beyond the calculatedMPE and the width of the tolerance
interval (i.e. the 99.9% quantile of the curve in figure 12(b))
was greater than the predefined tolerance (here, 5% of the cal-
culated MPE) multiplied by the calculated MPE. As such, a
further 488 (i.e. 1000 total) measurements were acquired in
measurement setup 8. A recalculation of the MPE, following
further measurementsmade inmeasurement setup 8, is presen-
ted in figure 13, where the calculated value of the MPE is
0.528 mm (represented by the dashed vertical line to the right
side of figure 13(b)).

Further examination of the area under the frequency plots
for this new MPE showed that measurement setup 8 retained
the greatest area beyond the calculatedMPE, but that the width
of the tolerance interval was now smaller than the 5% pre-
defined tolerance multiplied by the calculated MPE. As such,
no further measurements were deemed necessary and the effi-
cient determined value of the MPE is 0.528 mm, as calculated
above. This final MPE was calculated with 512 measurements
acquired in measurement setups 1–6 and 1000 measurements
acquired in measurement setups 7 and 8.

To finally demonstrate the validity of this method, we
acquired 1000 measurements for each of the other six meas-
urement positions and repeated step 3 of the analysis, to
provide a brute-force approach to MPE determination. The
outcome of this validation is presented in figure 14, where the
brute-force value taken by the MPE is 0.526 mm (represented
by the dashed vertical line to the right side of figure 14(b)).
As shown in figure 14, measurements setups 7 and 8 remained
dominant. The efficiently determined MPE is over-estimated
with respect to the MPE determined using a significantly lar-
ger amount of data but is within 0.3% of that value.
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Figure 13. Determination of a final MPE following additional measurement in measurement setup 8: top; distribution of the maximal
endpoint of the 99.9% CIs from bootstrapped data for each measurement setup and bottom; product CDF, with the 99.9% quantile
highlighted.

Figure 14. Brute-force validation of the data-efficient determined MPE, using 1000 measurements for each measurement setup: top;
distribution of the maximal endpoint of the 99.9% CIs from bootstrapped data for each measurement setup and bottom; product CDF, with
the 99.9% quantile highlighted.

5. Discussion

The procedure described here provides a statistical method
for determining an MPE that requires few user-defined para-
meters and a minimum number of repeat measurements. The
method has been illustrated using both synthetic and experi-
mental data. Here, we discuss the efficiency of themethodwith
respect to a brute-force method of MPE determination, as well
as potential drawbacks (such as user-defined algorithm control
parameters) and improvements to the method presented.

The first question to ask, with respect to the example exper-
imental MPE produced using this method, is how the value
compares with the equivalent MPE supplied by the manufac-
turer. However, as discussed previously, no comparisons can
be made between the value calculated in this example and
the manufacturer supplied MPE, as the manufacturer does not

yet apply an ISO 10360-13 performance verification proced-
ure (because the standard is still in a draft form). However,
comparison between the efficient MPE and the MPE determ-
ined using a large number of measurements can be used as an
indicator of effects of using a relatively small sample size. The
efficient MPE was larger by 0.3%.

Beyond comparison between efficient and brute-forceMPE
values, the next question to ask is how efficient the method
is with regards to a brute-force method of MPE determina-
tion. To demonstrate the efficiency of the MPE determination
method (i.e. the time savings provided by this method relative
to a brute-force method involving many measurements in each
possible setup), we present the measurement and computation
time required for each of the steps of the procedure in table 1.
While the measurement time heavily dominates the total time
taken in both the efficient and brute-force cases, we have noted
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Table 1. Measurement and computation time for each step of the
method.

Process
step

Efficient
measurement
time/hours

Brute force
measurement
time/hours

Efficient
computation
time/hours

Brute force
computation
time/hours

Step 1 3.0 0 0.0 0.0
Step 2 5.6 0 1.6 0.0
Step 3 25.1 60.3 0.2 0.6
Step 4 2.6 0 0.1 0.0
Total 36.4 60.3 1.9 0.6

the general specifications of the computer used for computa-
tion here, alongside computation times. A desktop computer
with a four core, 3.4 GHz CPU and 32 GB RAM was used
for the analysis, with parallelisation used for the bootstrap-
ping process. The time required to generate an MPE by col-
lecting a large number of measurements (1000 per measure-
ment setups) was 60.9 h, including computation time, but by
employing the efficient method, the total time to calculate an
MPE was reduced to 37.3 h (including computation time).

Whilst the experimental validation of the method followed
a specific performance verification process, the estimation
approach presented is general and can be used to determine a
type AMPE (i.e. by the statistical analysis of a series of obser-
vations [9]) for any scenario. If a new measurement routine
and environment was developed for an existing measurement
system, for e.g. the efficient collection of data would allow
for robust error analyses for arbitrary measurement proced-
ures and environments. Although the experimental data was
collected manually, automation systems, such as robot arms
and rotation stages would significantly reduce the need for
required operator intervention. Due to the minimal require-
ment for operator decisionmaking during the analysis process,
it would be feasible for the MPE determination process to be
automated. Automation would reduce the additional resource
needed for MPE determination to just the measurement time
required to collect sufficient data, which could potentially be
carried out during planned idle periods. Whilst the bootstrap-
ping required by the analysis is somewhat computationally
intensive, the experimental determination procedure was per-
formed using a relatively basic desktop computer in approx-
imately 2 h, using data that required approximately 36.4 h to
collect. Graphical processing units could be used to acceler-
ate the bootstrapping process and significantly reduce the time
taken to complete the data analysis [22], but we expect that the
time taken for data collection will exceed the required analysis
time in the majority of applications.

It is clear that there is also potential for interrogating meas-
urement data to carry out type B uncertainty analysis of the
measurement system (i.e. by means other than the statistical
analysis of series of observations [9]), for e.g. by examining
the large number of repeat measurements alongside environ-
mental monitoring, to evaluate the sensitivity of the measure-
ment systems to variables such as temperature and humidity.
This is a caveat to the proposed method: if the measurement

environment changes significantly from that present during
MPE determination (such as a temperature change in themeas-
urement volume, beyond a defined tolerance), then the determ-
ined MPE is invalid (though this issue is true of any type A
MPE determination). A full type B assessment is a more com-
plex and resource intensive process that, as far as we are aware,
has not yet been reported for a fringe projection system in lit-
erature [23]. Such investigations are beyond the scope of this
paper but present an interesting avenue for future research.

Additionally, while the majority of the steps in this method
are automated, there are eight parameters that control the
outcome of the analysis, meaning that the determined MPE
remains somewhat user-defined. Certain checks should ideally
be implemented regarding these user-defined parameters to
ensure a reasonably defined MPE. These parameters, and
appropriate checks, are as follows.

Two parameters are fully user-defined without checks.
These parameters should be fixed at the beginning of the MPE
determination process, to prevent the user artificially lowering
the calculated MPE post-analysis.

• Desired CI (i.e. the probability that a performance verifica-
tion test will not be failed due to random chance)—defined
by the user for use throughout the process.

• Desired confidence level (i.e. the confidence held in the
desired CI)—defined by the user for use throughout the
process.

Four parameters are user-defined but checked by both the
Q–Q plots and the convergence test in step 2.

• Expected statistical distribution of the measured data—
checked with Q–Q plots.

• Initial sample size—checked with Q–Q plots.
• Number of repeats used for large datasets—checked with

convergence plot (i.e. figures 4(d) and 10(d)).
• Number of bootstraps used—tested with convergence plot.

Q–Q plots illustrate the variation in fitting success at the
tails of the distribution. Decisions about which distributions
to use for fitting require knowledge of the measurement and
should be made by an experienced user of the measurement
system, although they will typically be chosen among a small
range of well-known probability distributions, such as the nor-
mal and generalised extreme value distributions. The other two
parameters are checked by the convergence test in step 2. Par-
ticularly, if increasing the sample size beyond the initial user-
defined number of repeat measurements is shown by the test
to be beneficial, the user is notified of the need to acquire addi-
tional measurements. Additionally, the bootstrap sample size
determination provides the repeatability of the bootstrapped
CI estimates, where, if the number of bootstraps is too low,
then the CI estimate will be unstable.

Two final parameters affect efficiency and are not inher-
ently checked by the process. This uncertainty is accoun-
ted for in the calculated MPE, so the user can choose their
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desired compromise between measurement efficiency and
MPE uncertainty.

• Number of repeats used to create the convergence plot—
minimally affects the accuracy of the determined MPE
but increasing the number of repetitions is computationally
more expensive.

• Remeasuring criteria—affects efficiency, but the trade-off
between performance and measurement efficiency is a user
choice.

It is also useful to note areas where the method may be
improved. Themost obvious deficiency in themethod is during
step 4, in the case where the tolerance interval is greater than
the predefined tolerance multiplied by the currently calculated
MPE and further measurement in one or more measurement
setups is deemed to be required. In this instance, the ideal ver-
sion of the method would include a prediction for the num-
ber of additional measurements required in each measurement
setup, to ensure that when recalculated, the tolerance interval
is smaller than the predefined tolerance multiplied by the cur-
rently calculatedMPE. Such a prediction is complex, however,
due to noise in the measurement data, so some checking and
additional further measurement would likely be required even
if this prediction were made. Here, to reduce the number of
user interventions in the process, we have recommended that
the user acquire another large set of measurements, under the
assumption that doing so will often provide enough data if the
number of measurements for the setup initially thought to be
most influential was large enough. However, a prediction of
the minimum number of additional measurements may further
reduce the total time for the MPE determination process. Such
a reduction would be relatively small and designing this pre-
diction algorithm would be complex. As such, this exercise is
beyond the scope of this work, but represents an interesting
avenue for future refinement of this method.

Additionally, we should note that throughout this work,
bootstrap CI estimation has been performed without using
a bias correction (despite being commonly employed). This
approach has potential ramifications to the analytical accur-
acy of the method. However, bias correction is generally used
when there is a significant skew in the data, which is not seen
in the data we acquired throughout this work. When designing
the implementation of the method inMatlab, the default distri-
bution fitting function occasionally failed to fit an appropriate
distribution to the synthetic data used to test the algorithm.
As such, some small modifications were made to the fitting
algorithm to cope with this issue, and CIs were then computed
on the fitted distributions. This version of the CI computation
algorithm did not include a bias correction, but as the skew
of our data was small in both the synthetic and real cases, no
further modification of the algorithm was deemed to be neces-
sary. Research on this topic (e.g. see [24]) also notes that the
greatest risk of not using bias correction is under estimation
of the CI, which we have shown does not happen in 99.2% of
synthetic cases when ourmethod is employed. Of course, there
is scope for incorporating a bias correction into the method in
the future.

6. Conclusion

In this work, we have demonstrated a statistical method of
determiningMPEs within the ISO 10360 framework [1], using
theminimumnumber ofmeasurements possible to determine a
value that fits within a user-defined specification. In addition to
the statistical foundation to the determinedMPE, themethod is
efficient in both time and data volume, compared with a brute-
force MPE determination method involving the acquisition of
an arbitrarily large volume of data. Through the application
of 1000 separate synthetic experiments and a real test case,
we have shown the method to be reliable. A framework for
associating confidence levels with MPEs has also been intro-
duced to allow for MPEs to be specified to meet measurement
requirements.

Whilst determining an MPE does not involve evaluation
of measurement uncertainty and cannot be used to calibrate a
measurement system, within the remit of performance verific-
ation and comparison between measurement systems, MPEs
are useful tools. Specifying an MPE using solely a large
volume of data without any formal statistical foundation does
not provide instrument users with the confidence that is com-
monly desired. This method could be employed by machine
manufacturers for specifying MPEs in some general cases, or
directly by instrument users to specify task-specific MPEs.

Further research on this topic should examine the most effi-
cient ways to collect and analyse large volumes of measure-
ment data to determine MPEs, as well as theoretical investiga-
tion of the accuracy and precision of such techniques. Because
of the scarcity of rigorous determinations of MPEs in the lit-
erature, we hope that the presented methodology will be con-
sidered when quoting MPEs for measurement systems in the
future.

Data availability statement

The data that support the findings of this study are available
upon reasonable request from the authors.

Acknowledgments

A T and R K L would like to acknowledge the European
Regional Development Fund (‘ARTEFACT’ collaborative
R&D Grant) and AddQual Ltd for supporting this work, as
well as Professor Nicola Senin for fruitful discussions on the
topic.

ORCID iDs

Adam Thompson https://orcid.org/0000-0003-3215-2757
Nicholas Southon https://orcid.org/0000-0001-6585-1218
Florian Fern https://orcid.org/0000-0002-1159-0670
Gilles Stupfler https://orcid.org/0000-0003-2497-9412
Richard Leach https://orcid.org/0000-0001-5777-067X

16

https://orcid.org/0000-0003-3215-2757
https://orcid.org/0000-0003-3215-2757
https://orcid.org/0000-0001-6585-1218
https://orcid.org/0000-0001-6585-1218
https://orcid.org/0000-0002-1159-0670
https://orcid.org/0000-0002-1159-0670
https://orcid.org/0000-0003-2497-9412
https://orcid.org/0000-0003-2497-9412
https://orcid.org/0000-0001-5777-067X
https://orcid.org/0000-0001-5777-067X


Meas. Sci. Technol. 32 (2021) 105013 A Thompson et al

References

[1] ISO 10360 2000 Geometrical Product Specifications
(GPS)—Acceptance and Reverification Tests for Coordinate
Measuring Systems (CMS) (Geneva: ISO)

[2] Thompson A and Southon N 2020 Performance verification
for optical co-ordinate metrology Advances in Optical Form
and Coordinate Metrology ed R K Leach (Bristol: IOP
Publishing) pp 8-1–25

[3] Leach R K and Shaheen A 2020 Post-process form metrology
Precision Metal Additive Manufacturing ed R K Leach
and S Carmignato (Boca Raton, FL: CRC Press)
pp 237–69

[4] ISO 10360-5 2010 Geometrical Product Specifications
(GPS)—Acceptance and Reverification Tests for Coordinate
Measuring Machines (CMM)—Part 5: CMMs Using Single
and Multiple Stylus Contacting Probing Systems (Geneva:
ISO)

[5] ISO/IEC 98-4 2012 Uncertainty of Measurement—Part 4:
Role of Measurement Uncertainty in Conformity
Assessment (Geneva: ISO)

[6] Wiora J, Kozyra A and Wiora A 2016 A weighted method for
reducing measurement uncertainty below that which results
from maximum permissible error Meas. Sci. Technol.
21 035007

[7] ISO/DIS 10360-13 Geometrical Product Specifications
(GPS)—Acceptance and Reverification Tests for Coordinate
Measuring Systems Part 13: Optical 3D CMS (Geneva:
ISO)

[8] JCGM 200 2012 International Vocabulary of
Metrology—Basic and General Concepts and Associated
Terms (VIM) (Saint-Cloud, France: BIPM)

[9] JCGM 100 2008 Evaluation of Measurement Data—Guide to
The Expression of Uncertainty in Measurement
(Saint-Cloud: BIPM)

[10] De Gryze S, Langhans I and Vandebroek M 2007 Using the
correct intervals for prediction: a tutorial on tolerance
intervals for ordinary least-squares regression Chemometr.
Intell. Lab. Syst. 87 147–54

[11] Dodge Y and Commenges D 2006 The Oxford Dictionary of
Statistical Terms (Oxford: Oxford University Press)

[12] Dietrich C F 1991 Uncertainty, Calibration, and Probability:
The Statistics of Scientific and Industrial Measurement 2nd
edn (Boca Raton, USA: Routledge)

[13] de Haan L and Ferreira A 2006 Extreme Value Theory: An
Introduction (NY, USA: Springer Science and Business
Media)

[14] Hiller J, Genta G, Barbato G, De Chiffre L and Levi R 2014
Measurement uncertainty evaluation in dimensional x-ray
computed tomography using the bootstrap method Int.
J. Precis. Eng. Manuf. 15 617–22

[15] Ciarlini P and Regoliosi G 2000 An application of bootstrap
regression to metrological data with errors in both variables
Advanced Mathematical and Computational Tools in
Metrology IV ed P Ciarlini, A B Forbes, F Paverse and
D Richter (Singapore: World Scientific) pp 36–44

[16] Hesterberg T C 2015 What teachers should know about the
bootstrap: resampling in the undergraduate statistics
curriculum? Am. Stat. 69 371–86

[17] MathWorks 2020 Matlab 2020a (available at: https://
uk.mathworks.com/products) (Accessed 5 March 2021)

[18] Massey F J 1951 The Kolmogorov–Smirnov test for goodness
of fit J. Am. Stat. Assoc. 46 68–78

[19] Anderson T W and Darling D A 1952 Asymptotic theory of
certain ‘goodness of fit’ criteria based on stochastic
processes Ann. Math. Stat. 23 193–212

[20] ISO/IEC 17025 2017 General Requirements For the
Competence of Testing and Calibration Laboratories
(Geneva: ISO)

[21] InnovMetric 2019 Polyworks (available at: www.innovmetric.
com/products/products-overview) (Accessed 4 February
2021)

[22] Iida M, Miyata Y and Shiohama T 2018 Bootstrap estimation
and model selection for multivariate normal mixtures using
parallel computing with graphics processing units Commun.
Stat. Simul. Comput. 47 1326–42

[23] Senin N, Catalucci S, Moretti M and Leach R K 2021
Statistical point cloud model to investigate measurement
uncertainty in coordinate metrology Precis. Eng. 70 44–62

[24] Puth M-T, Neuhäuser M and Ruxton G D 2015 On the variety
of methods for calculating confidence intervals by
bootstrapping J. Anim. Ecol. 84 892–7

17

https://doi.org/10.1088/0957-0233/27/3/035007
https://doi.org/10.1088/0957-0233/27/3/035007
https://doi.org/10.1016/j.chemolab.2007.03.002
https://doi.org/10.1016/j.chemolab.2007.03.002
https://doi.org/10.1007/s12541-014-0379-9
https://doi.org/10.1007/s12541-014-0379-9
https://doi.org/10.1080/00031305.2015.1089789
https://doi.org/10.1080/00031305.2015.1089789
https://uk.mathworks.com/products
https://uk.mathworks.com/products
https://doi.org/10.1080/01621459.1951.10500769
https://doi.org/10.1080/01621459.1951.10500769
https://doi.org/10.1214/aoms/1177729437
https://doi.org/10.1214/aoms/1177729437
https://www.innovmetric.com/products/products-overview
https://www.innovmetric.com/products/products-overview
https://doi.org/10.1080/03610918.2017.1311916
https://doi.org/10.1080/03610918.2017.1311916
https://doi.org/10.1016/j.precisioneng.2021.01.008
https://doi.org/10.1016/j.precisioneng.2021.01.008
https://doi.org/10.1111/1365-2656.12382
https://doi.org/10.1111/1365-2656.12382

	Efficient empirical determination of maximum permissible error in coordinate metrology  
	1. Introduction
	2. Terminology and assumptions
	2.1. MPEs
	2.2. Confidence, prediction and tolerance intervals; and uncertainty
	2.3. Populations and distribution
	2.4. Resampling
	2.5. Bootstrapping

	3. A method for the empirical determination of MPE
	3.1. Step 1—determining the `worst' measurement setup
	3.2. Step 2—determining the number of measurements required for each measurement setup
	3.3. Step 3—calculating the MPE
	3.4. Step 4—validating the calculated MPE
	3.5. Synthetic validation

	4. Experimental validation of the method
	4.1. Measurement procedure
	4.2. Step 1—determining the `worst' measurement setup
	4.3. Step 2—determining the number of measurements required for each measurement setup
	4.4. Step 3—calculating the MPE
	4.5. Step 4—validating the calculated MPE

	5. Discussion
	6. Conclusion
	Acknowledgments
	References


