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Abstract
The ZARC element is a parallel connection between a constant phase element and an ohmic
resistor which describes the charge transfer and the double-layer capacitance at an
electrode–electrolyte interface. However, this mathematical object has been determined using
measurement data and cannot be derived from physical or chemical processes. In order to
understand the dynamics of ZARC and its parameters’ influence in frequency and in time
domain, we approximate it using fundamental equivalent circuits. Here, we introduce two
approaches using RC circuits whose behaviours are well-known. The first method consists of
infinitely many serially connected RC circuits which can be uniquely related to ZARC by
explicit equations. In contrast, the second uses just three serially connected RC circuits, but adds
a minimization problem. Both approaches depend only on three parameters: an ohmic
resistance, a capacitance, and a newly defined parameter which is a measure of the modification
of the single capacitances. Moreover, we show a decrease of the total capacitance of both
impedances for growing deviations from the behavior of an RC circuit. Finally, since the
properties of RC circuits are well known in frequency and in time domain, we deduce the
behaviours of both methods in the time domain.

Keywords: ZARC element, R/Q element, constant phase element, electrode–electrolyte
interface, charge transfer, double-layer capacitance

(Some figures may appear in colour only in the online journal)

1. Introduction

In 1941, Cole and Cole extended Debye’s theory [1] to the
frequency dependence of the dielectric constant of solids
and liquids [2]. After many measurements, they established
the influence of the frequency using an exponential damp-
ing factor, called α. Debye’s theory sets α equal to one,
whereas Cole and Cole defined the domain as the interval
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[0;1 ]; Jonscher restricts the interval to [0.6;0.95 ] [3]. In addi-
tion to the equation:

ϵ∗ − ϵ∞ =
ϵ0 − ϵ∞

1+(iωτ0)
α , (1)

for the dielectric constant ϵ∗, where ϵ∞, ε0, and τ 0 depend
on the analysed media, Cole and Cole also gave an equival-
ent electrical circuit describing the behaviour, which they ana-
lysed in the frequency domain. For this purpose, they chose the
constant phase element (CPE) introduced by Fricke in [4]. The
CPE is an impedance, with a constant phase that is independ-
ent of the frequency:

ZCPE (ω) =
1

(iω)αK
, (2)
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where K is a kind of capacitance, with units depending on α.
In [2], Cole and Cole also showed an approximation of the
measured data for the parallel connection of an ohmic resist-
ance R with the CPE, called the ZARC element or the RQ ele-
ment, which was a better fit than the parallel connection of an
ohmic resistor and a capacitor with resistance R and capacit-
anceC, called an RC circuit. The total impedance of the ZARC
element is:

ZARC (ω) =
R

1+(iω)αRK
. (3)

According to Fricke [4] andRandles [5], the ZARC element
can be interpreted as the charge-transfer reaction occurring, for
example, in batteries, supercapacitors, and fuel cells [6].

Cole and Cole were not the only ones to discover the
so-called CPE behaviour in their measurement data. There
are further electrochemical, physical, and biological systems
in which the same CPE characteristics have been detected
[7–13]. According to these reports, the origin of the CPE beha-
viour is a distribution of reactivity, faradaic reactions, or the
distribution of time constants as a consequence of geometrical
and electrical inhomogeneities. Brug et al confirmed the thesis
of the distribution of time constants in [6]; moreover, they
assumed a constant ohmic resistance and distributed capa-
citances. There have been various attempts to approximate
the CPE using RC networks, which started by approximating
the impedance using rational functions or continued fractions
[14–18]. Finally, Buller [19, 20, pp. 77 ff.], Farmann et al
[21] and Handschuh [22, pp. 143 ff.] supplied some optimized
algorithms to approximate the ZARC element using three or
five RC circuits in the frequency domain. Buller and Farmann
et al presented their results as a lookup table for certain values
of α. However, there has been no investigation of this beha-
viour in the time domain.

The ZARC element describes the measurement data of
electrochemical systems in the frequency domain very well
[2, 7]. However, there is also great interest in analysing these
systems in the time domain. For example, battery management
systems that monitor single cells and battery packs work in the
time domain [23]. Besides, many algorithms for state estima-
tion need time-dependent models [24–26]. Hence, it is neces-
sary to know the behaviour of the ZARC element in the time
domain. Using theMittag–Leffler function [27], the time beha-
viour of the ZARC element can be computed. However, the
result is an alternating series with non-integer exponents of
time. For this reason, the physical interpretation, in the sense
of dealing with dynamic systems with unique time constants,
is unclear.

In this paper, we introduce two approaches to the approx-
imation of the ZARC element using passive components that
have fixed time constants. For this purpose, we use the geomet-
ric properties of ZARC in a Nyquist diagram to construct two
impedances on the basis of serially connected RC circuits. The
first impedance, called ZAPP from Z for impedance and APP
for approximation of the ZARC element, follows the ansatz of
Brug et al described in [6] and uses infinitely many identical
ohmic resistances with varying capacitances. In this case, the
parameters of ZARC can be expressed as functions of the

ZAPP parameters. The impedance Z3RC of the second approx-
imation consists of three RC circuits with varying ohmic res-
istances and varying capacitances. Compared to ZAPP, the
additional degree of freedom, however, requires a minimiz-
ation algorithm to relate the three parameters of Z3RC to the
parameters of ZARC. In both cases, we also derive an explicit
distribution of the time constants, and show the behaviours of
the approximations and the ZARC element in the time domain.

For reasons of clarity and comprehensibility, we present
lengthy derivations in the appendices.

2. Approximation of the ZARC element

2.1. Mathematical properties of the ZARC element

As mentioned above, the ZARC element has a purely empir-
ical origin. In order to show that it is physical, we first have to
prove that it satisfies the general conditions of linearity, invari-
ance in time, finiteness, stability, and causality. According to
Urquidi-Macdonald and Macdonald, [28–30], the properties
are fulfilled iff the Kramers–Kronig relation is satisfied. How-
ever, this is a consequence of all analytic functions. So, it is
sufficient to prove that ZARC is an analytic function. From
complex analysis, we know that a function is analytic if and
only if the Cauchy-Riemann equations are applicable. In order
to show this, we start with a function f(x+ iy) = (x+ iy)α sat-
isfying the Cauchy–Riemann equations:

∂Re [ f(x+ iy)]
∂x

=
α

2

(
(x+ iy)α−1

+(x− iy)α−1
)

=
∂ Im [ f(x+ iy)]

∂y
, (4)

∂Re [ f(x+ iy)]
∂y

=
iα
2

(
(x+ iy)α−1 − (x− iy)α−1

)
=−∂ Im [ f(x+ iy)]

∂x
. (5)

Since all linear combinations of analytic functions are ana-
lytic, and at each maximal domain, the inverse of an analytic
function is also analytic, so is the function 1/1+(x+ iy)α and
hence ZARC is also analytic [31]. Therefore, the ZARC ele-
ment satisfies the Kramers–Kronig relation. In particular, the
proof includes the case α= 1, which represents an RC circuit.

Moreover, we proceed with some geometric properties of
the ZARC element. Cole and Cole correctly explained in [2]
that ZARC is an arc in the first quadrant of the Nyquist dia-
gram, hence the name ‘Z-ARC’! In appendix A, we prove that
the impedance corresponds to the equation for a circle:

(
Re [ZARC (ω)]−

R
2

)2

+

(
Im [ZARC (ω)]−

R

2 tan
(
α
2 π
))2

=

(
R

2 sin
(
α
2 π
))2

, (6)

2
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Figure 1. Geometry of ZARC with α= 0.75.

with

Re [ZARC (ω)] =
1+(ωαRK)cos

(
α
2 π
)

1+ 2 (ωαRK)cos
(
α
2 π
)
+(ωαRK)2

R (7)

Im [ZARC (ω)] =
−(ωαRK)sin

(
α
2 π
)

1+ 2 (ωαRK)cos
(
α
2 π
)
+(ωαRK)2

R. (8)

The centre of the arc is atMα =
(
R/2;R/2 tan

(
α
2 π
))

and the
radius is R/2 sin

(
α
2 π
)
. The geometric function of α repres-

ents a shift of the centre in the Im direction and an adap-
tion of the radius. There is no depressed semicircle at all.
Figure 1 shows more distances and angles that describe ZARC
in a Nyquist diagram. Moreover, the impedance moves coun-
terclockwise from ZARC (ω = 0 ) = R to ZARC (ω →∞) = 0.
Additionally, the local extrema of the imaginary part is at
ωαRK= 1 and takes the value −R/2 · tan(α/4π). Moreover,
the former condition gives a notion of the parameter K, which
is the velocity at which the arc is passed. The larger the value
of K, the faster the impedance moves in the direction of the
coordinate origin with respect to ω.

2.2. Behaviour of the ZARC element in the time domain

According to Heaviside’s definition of impedance [32, pp. 370
ff.] [33, pp. 61 ff.], the voltage response of a system with
impedance Z(z) to a current step with amplitude I is:

U(t) = I

tˆ

0

L−1 {Z(z)} (̃t) d̃t. (9)

Here, L−1 is the inverse Laplace transformation and z= σ+
iω. In the following, we set σ= 0, where ω is the non-negative

angular frequency, as above. Using the Mittag–Leffler func-
tion, the inverse Laplace transformation of the ZARC element
is:

L−1 {ZARC (z)}(t) =
1
K
tα−1

∞∑
n=0

1
Γ((n+ 1)α)

(
− tα

RK

)n

,

(10)

hence, the voltage response to a current step in the ZARC ele-
ment is:

UARC (t) = RI
∞∑
n=0

(−1)n t(n+1)α

(RK)n+1
Γ((n+ 1)α+ 1 )

, (11)

with the gamma function Γ(x). The detailed computation is
given in appendix B. In general, the Mittag–Leffler function
is used to describe anomalous relaxation, mass transport, and
diffusion processes with fractional kinetic equations that dif-
fer from the standard Debye relaxation [34, pp. 3 ff., pp.
259 ff.] and [35–37]. Due to the choice of α, the Mittag–
Leffler function represents an exponential function or a hyper-
bolic sinus of the square root, divided by the square root
[38, pp. 18 ff.].

2.3. Symmetric serial connection of two RC circuits

In the following, we introduce a new method that creates
a symmetric impedance in the Nyquist diagram out of two
serially connected RC circuits. The symmetry is mirror-
symmetric to a straight line through (R/2;0 ) and parallel to
the imaginary-part axis. For this purpose, we use the proper-
ties of the ZARC element from above and the properties of an
RC circuit with an ohmic resistance R and a capacitance C.
Moreover, for an impedance Z(ω), we define the angle φ at

3
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the vertex (R/2;0 ) enclosed by the ray through (R/2;0 ) and
Z(ω) and the real-part axis,

tan(φ) =
−Im [Z(ω)]

Re [Z(ω)]− R
2

. (12)

This equation relates the non-negative frequency ω ∈ R+
0

to the angle φ ∈ [0,π]. Therefore, the impedance, generally
expressed as a function of the frequencyω, can be expressed as
a function of φ, Z(ω) = Z(ω (φ)) = Z(φ). Thus, for a simple
RC circuit with impedance:

ZRC (ω) =
R

1+ iωRC
, (13)

the following equations hold true:

tan
(φ
2

)
= ωRC (14)

ZRC (φ) =
R
2
(1+ cos(φ))− i

R
2
sin(φ) =

R
2

(
1+ e−iφ

)
.

(15)

It is obvious that ZRC (φ) is correct, since it is just the geomet-
ric expression of the impedance in the Nyquist diagram. In
appendix C, we present a more detailed computation of (14)
and (15).

Using the following theorem, we show that for the serial
connection of two RC circuits to be mirror-symmetric only
requires identical ohmic resistances. Moreover, the mirror-
symmetric property is independent of the choice of the two
capacitances. Please note that the detailed derivations can be
found in appendix D.

Theorem 1. Let ZR+C+
(ω) and ZR−C− (ω) be the impedances

of two RC circuits with the parameters R+, C+ and R−, C−,
respectively. Let the two ohmic resistances be identical, i.e.
R+ = R− = R/2, then the serial connection of the impedances
Z2RC (ω) = ZR+C+

(ω)+ ZR+C+
(ω) is mirror-symmetric in the

Nyquist diagram, i.e. Z2RC (φ)+ Z2RC (π−φ) = R, with φ as
defined in (12). The bar denotes the complex conjugate of the
number.

Proof. Let φ+ and φ− be the angles of the single RC circuits
to the same frequency ω according to (14)

tan
(φ±

2

)
= ωR±C±, (16)

where the capacitances C+ and C− are arbitrary. The total
impedance is due to (15):

Z2 RC (φ+,φ−) =
R
2

(
1+ cos

(
φ+ −φ−

2

)
· e−i

φ++φ−
2

)
,

(17)

and φ, as defined in (12), is:

tan(φ) = tan

(
φ+ +φ−

2

)
=

tan
(φ+

2

)
+ tan

(φ−
2

)
1− tan

(φ+

2

)
tan
(φ−

2

)
=

(ωR+C+)+ (ωR−C−)

1− (ωR+C+)(ωR−C−)
. (18)

Let φ̃= π−φ= φ̃+ + φ̃−/2 be the angle at the mirror-
symmetric point of Z2RC (ω), denoted by Z2RC (ω̃), then the
angles φ̃± of each RC circuit can be related to φ∓ through:

φ̃± = π−φ∓. (19)

This holds true due to the comparison of the single terms and
the usage of the trigonometric relation of the tangent. Further
details of the explicit derivation are given in appendix D. Sub-
stituting this into (17) leads to:

Z2RC (φ)+ Z2RC (π−φ)

= Z2 RC (φ+,φ−)+ Z2 RC (φ̃+, φ̃−)

= Z2 RC (φ+,φ−)+ Z2 RC (π−φ−,π−φ+)

=
R
2

(
1+ cos

(
φ+ −φ−

2

)
· e−i

φ++φ−
2

)
+
R
2

(
1− cos

(
φ+ −φ−

2

)
· e−i

φ++φ−
2

)
= R (20)

which proves the mirror symmetry.

We continue with the two RC circuits and their serial con-
nection as in the theorem above. One question remains
unanswered: how does the choice of C+ and C− affect the
impedance graph of the serial connection in the Nyquist dia-
gram? From (16) and (17), we know that if the two capacit-
ances are approximately equal to each other, then it is also
true that the angles φ± almost coincide. Therefore, the cosine
in (17) is almost equal to one, and Z2RC (ω) behaves like a
single RC circuit with an ohmic resistance R and a capacit-
ance C+ ≈ C−. However, if the capacitances differ widely,
e.g. C+ ≫ C−, the angles are also distinguished, and con-
sequently, the cosine in (17) is less than 1. In particular, this
can be seen for frequencies in the range of ω ≈ 1/R+

√
C+C−.

In this case,

tan
(φ+

2

)
=

√
C+

C−
=

1√
C−
C+

=
1

tan
(φ+

2

)
= tan

(π
2
− φ−

2

)
≫ 1, (21)

holds true and hence φ+ = π−φ−. Furthermore, since

tan
(φ−

2

)
=

√
C−

C+
≪ 1, (22)

it is also the case that φ− ≪ π/2, thus, the difference φ+ −
φ− = π− 2φ− is close to π. Consequently, the cosine in

4
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(17) goes to zero and the graph of the total impedance
reaches a peak in the direction of the positive imaginary-
part axis. Moreover, since φ= φ+ +φ−/2= π/2 at ω =
1/R+

√
C+C−, the impedance lies on the mirror axis. As

a result, the total impedance always has a local extremum
at the point (R/2;

√
C+C−R/(C+ +C−)). In summary, the

more the two capacitances differ from each other, the more
the single RC circuits appear in the Nyquist plot of the total
impedance.

Furthermore, we insert a reference capacitance calledC that
scales the total impedance and choose ω = 1/RC to be the fre-
quency of the local extrema of Z2RC (ω) in the Nyquist diagram
at Re [Z2RC (ω)] = R/2. Therefore, φ= (φ+ +φ−)/2= π/2
holds true at that frequency. In order to regulate the local
extrema of the total impedance Z2RC (ω) in a more conveni-
ent way, we introduce a measure β for the deviation of the
two capacitances from each other. Accordingly, we define the
difference of the angles as follows:

φ+ −φ− = 2 β, (23)

and hence

φ± =
π

2
±β (24)

at the frequency ω = 1/RC, and as a consequence of (14), we
determine the single capacitances according to:

C± =
1

ωR±
tan
(φ±

2

)
= 2C tan

(
π

4
± β

2

)
, (25)

depending on β. Therefore, the angle β modifies the capa-
citances and can be interpreted as a measure of the devi-
ation of the two capacitances. Since φ± ∈ [0,π], the domain
of β is restricted to the interval [0,π/2 ). The choice β = π/2
is excluded, since it would lead to the unreasonable case of
C+ =+∞ (short circuit) and C− = 0 (open circuit). Further-
more, the total impedance of the two serially connected RC
circuits with identical ohmic resistances and C± as defined in
(25) is:

Z2RC (ω) =
R+

1+ iωR+C+
+

R−

1+ iωR−C−

=
cos2 (β)

(
1− (ωRC)2

)
+ 2 (ωRC)2

cos2 (β)
(
1− (ωRC)2

)2
+ 4 (ωRC)2

R

− i
cos(β)(ωRC)

(
1+(ωRC)2

)
cos2 (β)

(
1− (ωRC)2

)2
+ 4 (ωRC)2

R, (26)

and the angle φ is given by:

tan(φ) =
2 (ωRC)

1− (ωRC)2
1

cos(β)
, (27)

at the vertex (R/2;0 ). The computations of both the equations
above are shown in appendix D. Figure 2(a) shows how the

total impedance is composed of the individual RC circuits,
whereas 2(b) represents the Nyquist plots for varying β. This
confirms that the more the capacitances differ from each other,
i.e., the bigger β is, the more the local extrema are stressed in
the middle.

Additionally, we derive the relationship between two fre-
quencies, ω and ω̃, belonging to mirror-symmetric points on
Z2RC in the Nyquist diagram. Let φ and φ̃= π−φ again be
the angles corresponding to Z2RC (ω) and to Z2RC (ω̃), respect-
ively. The frequencies fulfil the condition (ωRC)(ω̃RC) = 1,
since

tan(φ̃) = tan(π−φ) =− tan(φ) =
2 1

(ωRC)

1− 1
(ωRC)2

1
cos(β)

=
2 (ω̃RC)

1− (ω̃RC)2
1

cos(β)
(28)

holds true.

2.4. Approximation with infinitely many RC circuits

2.4.1. Approximation in the frequency domain. According
to figure 2 (b), the Nyquist plots of two serially connected RC
circuits are not uniformly depressed but rather depressed at
a specific point. In order to create a uniform depression, we
connect 2N pairs of RC circuits as described above with one
special RC circuit. They fulfil the following conditions:

(a) The sum over all identical ohmic resistances is R, i.e.
N∑

n=−N
Rn = R, where Rn = Rm, for −N⩽ n,m⩽ N.

(b) For convenience, we choose the real part of the total
impedance of the serial connection at the frequency ω =
1
RC to be Re

[
Ztotal

(
ω = 1

RC

)]
= Re

[
Ztotal

(
φ= π

2

)]
= R

2 .

The pairwise capacitances are chosen in such a way that
the deviation of the angle φ from π/2 at ω = 1/RC is reduced
in equal steps from β to zero. The equal steps ensure a uni-
form curvature of the total impedance in the Nyquist diagram.
Otherwise, we get an oscillating graph in the diagram. Please
note that for reasons of notation, there is only one single RC
circuit which has no deviation, i.e. β= 0. However, due to the
choices made above, it fulfils the mirror symmetry by itself.
In this case, the minimum of the imaginary part of the imped-
ance lying on the symmetry axis is reached at ω = 1/RC.
Finally, the serial connection of 2N+1 RC circuits has the
parameters:

Rn =
R

2N+ 1
(29)

Cn = (2N+ 1 )C tan

(
π

4
+
n
N
· β
2

)
, (30)

with the integer−N⩽ n⩽ N. Moreover, the time constants τ n
of the RC circuits are:

τn = RnCn = RC tan

(
π

4
+
n
N
· β
2

)
. (31)

5
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Figure 2. (a) Nyquist plot of the impedance of two RC circuits and their serial connection with identical ohmic resistances R/2 and
capacitances due to (25) with β= 0.2π. The labelled points are all at the frequency ω = 1/RC. (b) Nyquist plots with varying β.

Indeed, the mirror symmetry is maintained due to the theorem
in 2.3 and the choice of the capacitances Cn. It is independ-
ent of the number of RC circuits. As a consequence, the total
impedance of the 2N+1 RC circuits is:

ZN (ω) =
N∑

n=−N

Rn
1+ i(ωRnCn)

=
N∑

n=−N

R
2N+ 1

·
1− i(ωRC) tan

(
π
4 + n

N · β
2

)
1+(ωRC)2 tan2

(
π
4 + n

N · β
2

) . (32)

However, the number of RC circuits influences the depression.
The larger the value ofN, the more uniform the depression. For
that reason, we take the limit N→∞ and get the impedance
ZAPP (ω) for the impedance of the approximation of the ZARC
element,

ZAPP (ω) = lim
N→∞

ZN (ω) =
R
β

π
4 +

β
2ˆ

π
4 −

β
2

1− i(ωRC) tan(x)

1+(ωRC)2 tan2 (x)
dx.

(33)

Following some analysis and trigonometry using

ˆ
αcos2 (x)+ 2 β sin(x)cos(x)+ γ sin2 (x)

acos2 (x)+ csin2 (x)
dx

=
(α− γ)x−β ln

(
acos2 (x)+ csin2 (x)

)
a− c

+
γa−αc√
ac(a− c)

arctan

(√
c
a
tan(x)

)
, (34)

from Gröbner and Hofreiter [39, p. 124], the real and imagin-
ary parts of ZAPP (ω) can be computed by:

6
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Re [ZAPP (ω)] =
R
2

1+
1+(ωRC)2

1− (ωRC)2
− 2 (ωRC)(

1− (ωRC)2
)
β

·arctan

(
2 (ωRC)

1+(ωRC)2
· tan(β)

))
,

(35)

Im [ZAPP (ω)] =−R
2
· 2 (ωRC)(

1− (ωRC)2
)
β

· artanh

(
1− (ωRC)2

1+(ωRC)2
· sin(β)

)
. (36)

For further details of the computation, we refer to
appendix E. The maximum of −Im [ZAPP (ω)] is at ωRC= 1
and has the value Rsin(β)/2 β. A comparison of the two cir-
cuits, ZAPP and ZARC, requires an expression connecting α
and β. We continue with two possibilities for connection: an
equation or a minimization problem. In the following, we let β
denote the parameter determined by the equation, while βmin

stands for the parameter determined by the minimization.
Firstly, we make an ansatz to choose a frequency such that

the global imaginary minima of ZAPP and ZARC coincide.
Therefore, the two equations:

R
2
tan
(α
4
π
)
=
R
2
sin(β)

β
(37)

α=
4
π
arctan

(
sin(β)

β

)
, (38)

are fulfilled. According to the method, 0 ⩽
β < π/2 holds true, restricting α to the interval
(4/π · tan(2/π)≈ 0.7218,1 ]. Conversely, analytically find-
ing β given α in (38) is not that easy. However, Newton’s
method is a good tool with which to compute the relation
numerically.

Secondly, we minimize the integrated quadratic deviation
from ZAPP to ZARC to get the relation between α and βmin.
This means that we minimize the squared area under the curve
|ZAPP (ω)−ZARC (ω)| using the L2 norm,

∆APP = ||ZAPP −ZARC||2

=

 +∞ˆ

0

|ZAPP (ω)−ZARC (ω)|2 dω


1
2

, (39)

and the minimum is:

∆APP,min = min
0 ⩽β<π

2

||ZAPP −ZARC||2

= min
0 ⩽β<π

2

 +∞ˆ

0

|ZAPP (ω)−ZARC (ω)|2 dω


1
2

.

(40)

Figure 3 graphically compares ZARC with the two
strategies for determining ZAPP. Figure 3(a) shows the
Nyquist diagram of the ZARC element for α= 0.75 and its
appropriate approximations due to (38) and due to the min-
imization (40). The figure also shows that the impedance
ZAPP (ω) is uniformly depressed for all β. Moreover, the solid
ZAPP and ZARC coincide at the local extrema and have their
biggest deviation at the sides. The reason for this is the approx-
imation of ZARC with semicircles. Hence, ZAPP always
intersects the real-part axis at an angle of π/2, whereas the
intersection of ZARC is atαπ/2. On the other hand, the dashed
ZAPP extremum is below the ZARC extremum, though the
deviation is smaller at the sides. Figure 3(b) represents the real
and imaginary parts for the case α= 0.75. Both the real and
imaginary parts almost lie on top of each other. By construc-
tion, the areas under the dashed lines, representing the minim-
ization problem in figure 3(c) are smaller than those enclosed
by the solid lines. Nevertheless, the deviation between β and
βmin for the same α is less than 0.01π. The relations between
α and β and between α and βmin are both shown in figure 3(d).
Finally, according to figure 3, the minimization method yields
slightly better results. However, we prefer the first method,
which relates α and β through (38). The equation is a clear
expression which can be used for further computation.

Moreover, the limit N→∞ also offers the opportunity
to analytically compute the total ohmic resistance and the
total capacitance of the approximal circuits using Kirchhoff’s
laws,

Rtotal,N =
N∑

n=−N

Rn =
N∑

n=−N

R
2N+ 1

→ R
2

1ˆ

−1

dx= R (41)

1
Ctotal,N

=
N∑

n=−N

1
Cn

=
N∑

n=−N

1

(2N+ 1 )C tan
(

π
4 + n

N · β
2

)
→ 1

2 βC

π
4 +

β
2ˆ

π
4 −

β
2

1
tan(x)

dx=
1

2 βC
· ln
(
1+ sin(β)
1− sin(β)

)
.

(42)

Regarding condition (a), the result for the total ohmic resist-
ance is clear. Due to the construction of the model, the depend-
ence of the total capacitance on β is evident. According to the
equation above, the total capacitance decreases if β increases.
Ctotal converges to zero in the limit β → π/2 . Therefore, we
can deduce that the more the semi-circle in the Nyquist plot
is depressed, the more the total capacitance decreases. In the
limit N→∞, the time constant goes to

τ (x) = RC tan

(
π

4
+

β

2
x

)
, (43)

with −1 ⩽ x⩽ 1. Its range has a total width of 2RC tan(β),
and the normalized distribution of τ is

ρ(τ) =
1
2
dx
dτ

=
1

RCβ
1

1+
(

τ
RC

)2 , (44)

7



Meas. Sci. Technol. 32 (2021) 104011 T Heil and A Jossen

Figure 3. (a) Nyquist plot of ZAPP and ZARC for α= 0.750 and β= 0.475π, respectively. (b) Real and imaginary parts of ZAPP and
ZARC for α= 0.750, β= 0.475π, and βmin = 0.482π versus the logarithmic scaled frequency. (c) The error |ZAPP (ω)− ZARC (ω)| for
α= 0.750 and their related β and βmin. (d) β and βmin as a function of α due to calculation and optimization and the corresponding
deviation ∆APP from ZARC in the L2 norm.

giving the ratio of RC circuits in the interval [τ ;τ + dτ ]. There-
fore, the number of small time constants decreases for increas-
ing τ . Figure 4 shows the distribution of the time constants and
the normalized density for β= 0.35π.

Finally, we show thatK can be related to the variables R, C,
and α. For this, we use the fact that ZARC and ZAPP coincide
at the point (R/2;−R/2 · tan(α/4π)). From condition (b), it
follows thatωRC= 1 holds true at this point.Moreover, ZARC
satisfies the condition ωαRK= 1. Plugging these expres-
sions into each other and solving for K leads to a modi-
fied capacitance K= (RC)α/R, and therefore, the impedance
follows:

ZARC (ω) =
R

1+(iω)αRK
=

R
1+(iωRC)α

, (45)

which is a much more physical expression, since the paramet-
ers do not change their units.

2.4.2. Behaviour in the time domain. The origin of
the behaviour of ZAPP in the time domain lies in the
Laplace transformability of the impedance of a single
RC circuit, since (9) connects the voltage response to
a current step using the inverse Laplace transform of
the impedance. From that, we can deduce the proper-
ties of ZAPP in the time domain. It is well known
that

URC (t) = RI
(
1− e−

t
RC

)
, (46)

8
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Figure 4. The solid line represents the distribution of the time constants for β= 0.35π and uses the lower x-axis. The upper x-axis belongs
to the normalized density, which is dashed.

Figure 5. Voltage responses to a current step of ZAPP for different β and the response of a single RC circuit.

is the reaction of an RC circuit to a current step at t= 0 with
an amplitude I ̸= 0. Without loss of generality, we set I> 0.
The approximation of the ZARC element that uses a number
of RC circuits converging to infinity behaves as follows:

UAPP (t) = lim
N→∞

N∑
n=−N

RnI
(
1− e−

t
RnCn

)

=
It
βC

t
RC tan(π

4 +
β
2 )ˆ

t
RC tan(π

4 −
β
2 )

1− e−u(
t
RC

)2
+ u2

du. (47)

However, it cannot be computed analytically, so we
need to approximate the integral using the sum. As a
consequence of the parameter choices, the behaviour

of the curve UAPP (t) compared to URC (t) is intuit-
ive. For increasing β, the interval of all time constants
[RC tan(π/4−β/2) ;RC tan(π/4+β/2)] becomes wider.
The contribution of time constants smaller than τ =RC results
in a faster growth of UAPP (t) for small times, whereas time
constants larger than τ flatten the graph faster for t> RC, com-
pared to URC (t). In figure 5, we show the voltage responses
for different β. The product of the ohmic resistance R and
the current I gives the total voltage delta. The capacitance C
influences the gradient of the function at the beginning and β
influences its curvature.

2.5. Approximation of a ZARC element with three RC circuits

2.5.1. Approximation in the frequency domain. In contrast to
the method above and Brug’s [6] ansatz, we now use three RC

9
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circuits with different ohmic resistances and different capacit-
ances. Two of the RC circuits have equal ohmic resistances
R2± which are, in general, different from the ohmic resistance
R1 of the remaining circuit. The additional degree of freedom
has to be compensated for by a minimization problem. Nev-
ertheless, R= R1 +R2+ +R2− is fulfilled. Moreover, we also
set the approximation equal to the ZARC element at the max-
imumof−Im [ZARC (ω)]. For symmetry reasons, the frequency
of this point satisfies ωαRK= 1= ωRC= ωR1C1, where C is
a reference capacitance, which is used later on to relate all
three capacitances and to determine the total capacitance of
the equivalent electrical circuit. According to this assumption
and (25), the single capacitances are:

C1 =
R
R1

C (48)

C2± =
R
R2±

C tan

(
π

4
± ξ

2

)
. (49)

Here, ξ is the parameter that regulates all other quantities of
the approximation and correlates with α. From the symmetry,
we know that at the minimum of the imaginary part,

R1

2
+
R2+

2
sin
(π
2
+ ξ
)
+
R2−

2
sin
(π
2
− ξ
)
=
R
2
tan
(α
4
π
)
,

(50)

is satisfied and, therefore,

R1 = R
tan
(
α
4 π
)
− sin

(
π
2 − ξ

)
1− sin

(
π
2 − ξ

) (51)

R2 ± =
R
2

1− tan
(
α
4 π
)

1− sin
(
π
2 − ξ

) . (52)

Finally, we get the total impedance for the serial connection
of the three RC circuits:

Z3RC (ω) =
R1

1+ i(ωR1C1)
+

R2+

1+ i(ωR2+C2+)
+

R2−
1+ i(ωR2−C2−)

=

R
tan

(
α
4 π

)
− sin

(
π
2 − ξ

)
1− sin

(
π
2 − ξ

)
1+ i(ωRC)

+

R
2

1− tan
(
α
4 π

)
1− sin

(
π
2 − ξ

)
1+ i

(
ωRC tan

(
π
4 + ξ

2

))
+

R
2

1−tan(α
4 π)

1−sin(π
2 −ξ)

1+ i
(
ωRC tan

(
π
4 − ξ

2

)) . (53)

Analogously to the minimization method above in (39), we
determine the dependence of ξ on α by:

∆3RC,min = min
0 ⩽ξ<π

2

||Z3RC−ZARC||2

= min
0 ⩽ξ<π

2

 ∞̂

0

|Z3RC (ω)−ZARC (ω)|2 dω

 1
2

. (54)

Moreover, due to Kirchhoff’s law, we can compute the total
ohmic resistance and the total capacitance. By definition, the
total ohmic resistance is R. The total capacitance is

1
Ctot,3RC

=
1
C1

+
1
C2+

+
1
C2−

=

(
1+

1− tan
(
α
4 π
)

sin
(
π
2 − ξ

) ) 1
C
, (55)

which equals C for α= 1 since, in this case, ZARC is identical
to an RC circuit.

2.5.2. Behaviour in the time domain. The computation of
the behaviour of Z3RC (ω) in the time domain can be deduced
from the behaviour of each RC circuit (46). The three time
constants are:

τ1 = R1C1 = RC (56)

τ2 ± = R2 ±C2 ± = RC tan

(
π

4
± ξ

2

)
, (57)

where τ2− < τ1 < τ2+, and therefore, the voltage response to
a current step of amplitude I is:

U3RC (t) = R1I
(
1− e−

t
τ1

)
+R2+I

(
1− e

− t
τ2+

)
+R2−I

(
1− e

− t
τ2−

)
=

RI

2
(
1− sin

(
π
2 − ξ

)) ((tan(α

4
π
)
− sin

(π

2
− ξ

))
×
(
1− e−

t
RC

)
+
(
1− tan

(α

4
π
))(

1− e
− t

RC tan(π
4
+

ξ
2 )

)
+

(
1− tan

(α

4
π
))(

1− e
− t

RC tan(π
4
− ξ

2 )
))

. (58)

TheR2−C2− circuit reacts first to the current step, then follows
R1C1 with the biggest voltage delta and finally the R2+C2+

circuit contributes for large times.

2.6. Comparison of the two approaches with ZARC

In this part, we graphically compare the two approaches from
2.4 and 2.5 with the ZARC element. We start with the compar-
ison of ZAPP and Z3RC in the frequency domain. Therefore,
we choose α= 0.750, such that ZARC deviates greatly from
a pure RC circuit. Figure 6(a) shows the Nyquist diagram of
ZARC and ZAPP with β= 0.475π according to (38) and Z3RC

with ξ= 0.397π, as determined byminimization. Due to (48)–
(52), the parameters have the following values:
R1 = 0.514R, R2 ± = 0.243R, C1 = 1.95C, C2+ = 15.3C

and C2− = 0.408C.
By construction, all graphs meet at the origin of the

coordinates, at the point (R;0 ) and at the maximum
of −Im [ZARC (ω)]. Furthermore, ZAPP, with a uniform
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Figure 6. (a) Nyquist diagram of ZARC with α= 0.750, of ZAPP with β= 0.475π and of Z3RC with ξ= 0.397π. (b) Absolute deviation of
ZAPP and Z3RC from ZARC with the corresponding parameters.

Figure 7. (a) Relation between the parameter α of ZARC and β of ZAPP; also, between α and ξ of Z3RC. (b) L2 norm of ZAPP − ZARC and
ZAPP − Z3RC. (c) Total capacitance of the equivalent circuits ZAPP and Z3RC.
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Figure 8. Voltage response to a current step with an amplitude I of ZAPP with β= 0.475π, Z3RC with ξ= 0.397π and a simple RC circuit
as approximations for ZARC with α= 0.750.

curvature, is always above ZARC, while Z3RC intersects
the graph of ZARC twice. Figure 6(b) shows the log-
arithmically scaled deviations |ZAPP (ω)−ZARC (ω)| and
|Z3RC (ω)−ZARC (ω)|. The graphs are symmetric up to the
frequency ωRC= 1, based on relation (28), between the fre-
quencies of the angles φ and π−φ. They are zero at ωRC= 1
and show a similar behaviour. The maximal deviation of the
two graphs is less than 0.01R.

Figure 7 (a), shows the relation between α and β, and α
and ξ. The parameter β goes to zero when α goes to one. As
a consequence, all infinitely many RC circuits are identical.
In the case of the approximation with three RC circuits, both
the R2 ±C2 ±-circuits vanish and ξ is arbitrary. Moreover,
in figure 7 (b), we show the absolute deviation of ZARC
from ZAPP and that of ZARC from Z3RC. The approxima-
tion of the ZARC element with three RC circuits has smal-
ler deviations from ZARC than from ZAPP in the interval
[0.77;1 ], which is due to the varying ohmic resistances. Fur-
thermore, figure 7 (c) presents the total capacitance of the two
equivalent electrical circuits with respect to α. Both graphs
show that for α < 1, the total capacitance is also reduced.
Therefore, the parameter α influences not only the single
capacitances, but also the total capacitance of the equivalent
circuit.

Finally, figure 8 shows the almost identical response
of ZAPP, Z3RC, and ZARC in the time domain to a cur-
rent step for α= 0.750, β= 0.475π, and ξ= 0.397π.
A comparison is made with a single RC circuit,
which satisfies α= 1.

3. Validation of the models

In order to validate the two approaches, we fit ZAPP and Z3RC

to the impedance measurement data and compare the results
to the parameters from the fit of the ZARC element. Here, we
present impedance measurement data from three high-energy

lithium-ion cells, Molicel IHR18650A by E-One Moli Energy
Corp., with a nominal capacity of 1.95 Ah. The anode material
is graphite, and lithium–cobalt–nickel–manganese oxide is the
cathode material. The impedance was measured after charging
the cells to a 50% state of charge and relaxing them for three
hours. Schuster et al describe the measurements in detail in
[40].

In general, the measurement data describe a superposition
of all processes which occur in the cell. They can be summed
up as the contributions of inductive effects, ohmic resistances,
the solid electrolyte interphase, the charge transfer, and the
diffusion processes [41]. Here, we model the charge transfer,
which is interpreted as the data starting on the right side of
the semicircle, see 10. Moreover, all three cells have α≈ 0.72,
such that the deviation from an RC circuit is maximal for
ZAPP.

We use a nonlinear least-squares Marquardt–Levenberg
algorithm to fit the imaginary parts of the different models
to the corresponding measurement data and to determine the
corresponding parameters. Furthermore, the parameters are
used to compute the real parts and to show that the meas-
urement data satisfy the Kramers–Kronig relation. Finally,
the Nyquist diagrams of the different models can be com-
pared to the measurement data. The results are shown in
figures 9 and 10.

Moreover, we present a table of the parameters of cell
C and the parameters R, C and α derived from them. Both
the figures and the table show that the parameters of the fit
of ZAPP and ZARC are almost identical in the considered
frequency range between 10 Hz and 300 Hz. According to
figure 7 (b), Z3RC deviates more from ZARC than from ZAPP
for α≈ 0, 72; see figure 10. Table 1 presents the paramet-
ers from the fit of cell C’s measurement data. Additionally,
we present a comparison of the relevant parameters obtained
from K= (RC)α/R, (38) and figure 7 (a). The parameters of
ZAPP and ZARC coincide, whereas the parameters of Z3RC

deviate.
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Figure 9. Real and imaginary parts of the measurement data from cells A, B and C and the appropriate approximations ZARC, ZAPP, and
Z3RC. The imaginary parts of the models were fitted to the imaginary part of the measurement data and the behaviour of the real parts
follows from this.

Figure 10. Nyquist diagram of the measurement data of three cells A, B, and C and the corresponding models ZAPP, ZARC, and Z3RC.
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Table 1. Parameters derived from the fit of cell C’s measurement
data to ZARC, ZAPP, and Z3RC. The second line contains the
corresponding values for R, C, and α.

ZARC ZAPP Z3RC

R= 0.0250 Ω R= 0.0247Ω R= 0.0230Ω
K= 0.251Asα/V C= 0.0330As/V C= 0.0376As/V
α= 0.714 β= 0.499 π ξ= 0.397 π

vs. R= 0.0250 Ω R= 0.0247 Ω R= 0.0230 Ω

C= 0.0329As/V C= 0.0330As/V C= 0.0376As/V
α= 0.714 α= 0.722 α= 0.748

4. Conclusions

The ZARC element is a mathematical object that describes
measured data very well. In this paper, we translated this
mathematical object into the language of electrical engin-
eering without any optimization algorithm. In doing so, we
approximated the ZARC element using RC circuits that
modelled a dynamic system with unique time constants.
Finally, we compared the results in the frequency and time
domains.

In this paper, we proved a theorem verifying the mirror-
symmetric impedance of two serially connected RC circuits
in a Nyquist diagram, given the condition that both ohmic res-
istances are equal to each other. On the one hand, we showed
that the ansatz of Brug et al in [6], which is to use identical
ohmic resistances but varying capacitances, is possible and
can be done by hand. Therefore, we introduced a new ZAPP
model to approximate a ZARC element with infinitely many
RC circuits. The origin of themodel depends on some analysis,
but does not require an optimisation algorithm. Moreover, this
model can be used to approximate the ZARC element for all
continuous values of α ∈ (0.722,1 ]. In total, we only need the
three parameters R, C, and β to determine the model. Here, R
is an ohmic resistance, and C is the capacitance of a capacitor.
The variable β is connected to the well-known α by an explicit
equation. Generally, it is a measure of the distribution of the
single capacitances and hence a measure of the deviation of
ZAPP from the behaviour of a single RC circuit. Furthermore,
β is restricted to the interval [0,π/2 ).

On the other hand, we used the approach of approximat-
ing ZARC with three RC circuits, where all parameters var-
ied. However, this degree of freedom required a minimization

problem to relate α to the equivalent of β, called ξ, on which
all parameters depended.

Moreover, we used an example to show that the new
approaches can be used to model the charge transfer of
lithium-ion cells and replace ZARC. Here, the results of ZAPP
are more precise than those of Z3RC.

Additionally, we realised that both approximations have
decreasing total capacitances for decreasing α.

Finally, we presented the influences of α, β, and ξ of
ZARC, ZAPP, and Z3RC, respectively, in the time domain. For
decreasing α and appropriate values of β and ξ, the curvature
of the voltage response to a current step is stronger than that
of a single RC circuit.

Despite this, this approach can also be used to approximate
a ZARC element with five serially connected RC circuits. The
results will be better, especially for smaller α. However, addi-
tional conditions are required, which significantly increase the
computational effort. Furthermore, the method can be trans-
ferred to all types of equivalent electrical circuits that deviate
from a semicircle in the Nyquist diagram, e.g., RL circuits.
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Appendix A. Computation in detail: the ZARC
element

In the appendix, we show the computation mentioned above
in detail.

We start with the ZARC element satisfying the
equation for a circle. Let x= α

2 π and y= ωαRK; then
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(
Re [ZZARC (ω)]−

R
2

)2

+

(
Im [ZZARC (ω)]−

R
2
· cos(x)
sin(x)

)2

=

(
1+ ycos(x)

1+ 2ycos(x)+ y2
R− R

2

)2

+

(
−ysin(x)

1+ 2ycos(x)+ y2
R− R

2
· cos(x)
sin(x)

)2

=
R2

4
·
(
2+ 2ycos(x)− 1− 2ycos(x)− y2

1+ 2ycos(x)+ y2

)2

+
R2

4
·

(
2ysin2 (x)+ cos(x)+ 2ycos2 (x)+ y2 cos(x)

(1+ 2ycos(x)+ y2) sin(x)

)2

=
R2
(
sin2 (x)

(
1− y2

)2
+ 4y2 + 4ycos(x)

(
1+ y2

)
+ cos2 (x)

(
1+ y2

)2)
4 sin2 (x)(1+ 2ycos(x)+ y2)2

=
R2
(
1+ y4 + 2y2

(
cos2 (x)− sin2 (x)+ 2

)
+ 4ycos(x)

(
1+ y2

))
4 sin2 (x)(1+ 2ycos(x)+ y2)2

=
R2
(
1+ 2y2 + y4 +(2ycos(x))2 + 4ycos(x)

(
1+ y2

))
4 sin2 (x)(1+ 2ycos(x)+ y2)2

=
R2
((

1+ y2
)2

+(2ycos(x))2 + 4ycos(x)
(
1+ y2

))
4 sin2 (x)(1+ 2ycos(x)+ y2)2

=
R2 (x)

(
1+ 2ycos(x)+ y2

)2
4 sin2 (x)(1+ 2ycos(x)+ y2)2

=

(
R

2 sin(x)

)2

. (A.1)

Appendix B. Computation in detail: time behaviour
of ZARC element

In order to compute the voltage response to a current step
in 2.2, equation (9), we rearrange Heaviside’s definition of
impedance,

Z(z) =
L{U(t)}(z)
L{I(t)}(z)

, (B.1)

to

U(t) = L−1 {Z(z) · L{I (̃t)}(z)}(t)
= L−1

{
L
{(

L−1 {Z(z̃)} ∗ I
)
(̃t)
}
(z)
}
(t)

=
(
L−1 {Z(z)} ∗ I

)
(t)

=

tˆ

0

L−1 {Z(z)} (̃t) · I ·Θ(t− t̃) d̃t

= I

tˆ

0

L−1 {Z(z)} (̃t) d̃t, (B.2)

where ∗ expresses the convolution and Θ is the Heaviside
step function. Consequently, we need to determine the inverse
Laplace transform of the ZARC element (10) to compute the
voltage response. In this case, we make the educated guess,

L−1 {ZZARC (z)}(t) =
1
K
tα−1

∞∑
n=0

1
Γ((n+ 1)α)

(
− tα

RK

)n

,

(B.3)

since,

L
{
L−1 {ZZARC (z)}(t)

}
(z)

=

∞̂

0

e−zt atα−1
∞∑
n=0

1
Γ((n+ 1)α)

(
− tα

b

)n

dt

= a
∞∑
n=0

1
(−b)n Γ((n+ 1)α)

ˆ ∞

0
e−ztt(n+1 )α−1dt

= a
∞∑
n=0

1
(−b)n Γ((n+ 1)α)

ˆ ∞

0
e−zt (zt)

(n+1 )α−1

z(n+1 )α−1

d(zt)
z

= a
∞∑
n=0

1
(−b)n Γ((n+ 1)α)

Γ((n+ 1 )α)

z(n+1 )α

= a(−b)
∞∑
n=0

1
(−bzα)(−bzα)n

=
a(−b)
−bzα

∞∑
n=0

1
(−bzα)n

=
ab
bzα

1

1− 1
−bzα

=
ab

1+ bzα
, (B.4)

with a= 1/K and b=RK, where we also used:

Γ(x) =

∞̂

0

e−ttx−1dt (B.5)
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∞∑
n=0

xn =
1

1− x
. (B.6)

Therefore, using Γ(x+ 1 ) = xΓ(x), the voltage response of
the ZARC element to a current step, (see (11)), is:

UARC (t) = I

tˆ

0

L−1 {ZARC (z)} (̃t) d̃t

= I

tˆ

0

1
K
t̃α−1

∞∑
n=0

1
Γ((n+ 1)α)

(
− t̃α

RK

)n

d̃t

= RI
∞∑
n=0

(−1)n

(RK)n+1
Γ((n+ 1)α)

tˆ

0

t̃(n+1 )α−1d̃t

= RI
∞∑
n=0

(−1)n

(RK)n+1
Γ((n+ 1)α)

· t(n+1)α

(n+ 1)α

= RI
∞∑
n=0

(−1)n t(n+1)α

(RK)n+1
Γ((n+ 1)α+ 1 )

. (B.7)

Appendix C. Computation in detail: one RC circuit

In order to compute (14), we take

tan(φ) =
−Im [Z(ω)]

Re [Z(ω)]− R
2

=

ωR2C

1+(ωRC)2

R

1+(ωRC)2
− R

2

=
2 ωRC

1− (ωRC)2
, (C.1)

and use

tan(2 ν) =
2 tan(ν)

1− tan2 (ν)
. (C.2)

Equation (15) follows from

ZRC (φ) =
R

1+ iω (φ)RC
=

R

1+ i tan
(φ
2

)
= R

(
cos2

(φ
2

)
− i sin

(φ
2

)
cos
(φ
2

))
=
R
2
(1+ cos(φ)− i sin(φ)) =

R
2

(
1+ e−iφ

)
,

(C.3)

with

cos2 (ν) =
1+ cos(2 ν)

2
(C.4)

cos(ν)sin(ν) =
sin(2 ν)

2
. (C.5)

Appendix D. Computation in detail: two RC circuits

The computation of the impedance of two serially connec-
ted RC circuits which depend on φ+ and φ− from (17) is as
follows:

Z2RC (φ+,φ−) =
R
4

(
1+ e−iφ+

)
+
R
4

(
1+ e−iφ−

)
=
R
4

(
2+ e−iφ+ + e−iφ−

)
=
R
4

(
2+

(
e−i

φ+−φ−
2 + ei

φ+−φ−
2

)
· e−i

φ++φ−
2

)
=
R
2

(
1+ cos

(φ+ −φ−

2

)
· e−i

φ++φ−
2

)
. (D.1)

Furthermore, the total angle φ at vertex (R/2;0 ) is:

tan(φ) =
−Im [Z2RC (φ+,φ−)]

Re [Z2RC (φ+,φ−)]−
R
2

=

R
2
cos

(
φ+ −φ−

2

)
sin

(
φ+ +φ−

2

)
R
2

(
1+ cos

(
φ+ −φ−

2

)
cos

(
φ+ +φ−

2

))
− R

2

= tan

(
φ+ +φ−

2

)
=

tan
(φ+

2

)
+ tan

(φ−

2

)
1− tan

(φ+

2

)
tan
(φ−

2

)
=

(ωR+C+)+ (ωR−C−)

1− (ωR+C+)(ωR−C−)
, (D.2)

using the trigonometric relation:

tan(ν+µ) =
tan(ν)+ tan(µ)
1− tan(ν) tan(µ)

. (D.3)

In order to derive equation (19) connecting the angles of the
single RC circuits at any frequency to the mirror-symmetric
point, we examine:

tan(φ̃) = tan(π−φ) =− tan(φ)

=− (ωR+C+)+ (ωR−C−)

1− (ωR+C+)(ωR−C−)

=

1
(ωR−C−)

+
1

(ωR+C+)

1− 1
(ωR+C+)

1
(ωR−C−)

=

tan

(
φ̃+

2

)
+ tan

(
φ̃−

2

)
1− tan

(
φ̃+

2

)
tan

(
φ̃−

2

) = tan

(
φ̃+ + φ̃−

2

)
.

(D.4)
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Comparing the single terms leads to:

tan

(
φ̃±

2

)
= ω̃R±C± =

1
ωR∓C∓

=
1

tan
(φ∓

2

) =− tan
(π
2
+

φ∓

2

)

= tan
(
π−

(π
2
+

φ∓

2

))
= tan

(π
2
− φ∓

2

)
. (D.5)

Finally, we prove the mirror symmetry of two RC circuits
with equal ohmic resistances and arbitrary capacitances,

Z2RC (φ)+ Z2RC (π−φ) = Z2 RC (φ+,φ−)+ Z2 RC (φ̃+, φ̃−) = Z2 RC (φ+,φ−)+ Z2 RC (π−φ−,π−φ+)

=
R
2

1+ cos

(
φ+ −φ−

2

)
· e

−i
φ+ +φ−

2

+
R
2

(
1+ cos

(
φ+ −φ−

2

)
· eiπe−i

φ++φ−
2

)

=
R
2

1+ cos

(
φ+ −φ−

2

)
· e

−i
φ+ +φ−

2

+
R
2

(
1− cos

(
φ+ −φ−

2

)
· e−i

φ++φ−
2

)
= R. (D.6)

Moreover, (26) follows from:

Z2RC (ω) =
R+

1+ iωR+C+
+

R−

1+ iωR−C−
=

R+

1+(ωR+C+)2
+

R−

1+(ωR−C−)2
+ i

(
−R+ (ωR+C+)

1+(ωR+C+)2
+

−R− (ωR−C−)

1+(ωR−C−)2

)
=

R+ +R− +R+ (ωR−C−)2 +R− (ωR+C+)2

1+(ωR+C+)2 +(ωR−C−)2 +(ωR+C+)2 (ωR−C−)2

+ i
−R+ (ωR+C+)−R− (ωR−C−)− (ωR+C+)(ωR−C−)(R+ (ωR−C−)+R− (ωR+C+))

1+(ωR+C+)2 +(ωR−C−)2 +(ωR+C+)2 (ωR−C−)2

=

R+
R
2
(ωRC)2

(
tan2

(
π

4
+

β

2

)
+ tan2

(
π

4
−

β

2

))
1+ 2 (ωRC)2

(
tan2

(
π

4
+

β

2

)
+ tan2

(
π

4
−

β

2

))
+(ωRC)4

(
tan

(
π

4
+

β

2

)
tan

(
π

4
−

β

2

))2

+ i
−
R
2
(ωRC)

(
tan

(
π

4
+

β

2

)
+ tan

(
π

4
−

β

2

))
−
R
2
(ωRC)3

(
tan

(
π

4
+

β

2

)
tan

(
π

4
−

β

2

))(
tan

(
π

4
+

β

2

)
+ tan

(
π

4
−

β

2

))
1+ 2 (ωRC)2

(
tan2

(
π

4
+

β

2

)
+ tan2

(
π

4
−

β

2

))
+(ωRC)4

(
tan

(
π

4
+

β

2

)
tan

(
π

4
−

β

2

))2

=

R+R(ωRC)2
1+ sin2 (β)
cos2 (β)

1+ 2 (ωRC)2
1+ sin2 (β)
cos2 (β)

+ (ωRC)4
+ i

−
R

cos(β)
(ωRC)−

R
cos(β)

(ωRC)3

1+ 2 (ωRC)2
1+ sin2 (β)
cos2 (β)

+ (ωRC)4

=
Rcos2 (β)+R(ωRC)2

(
1+ sin2 (β)

)
cos2 (β)

(
1+(ωRC)4

)
+ 2 (ωRC)2

(
1+ sin2 (β)

) + i
−Rcos(β)(ωRC)

(
1+(ωRC)2

)
cos2 (β)

(
1+(ωRC)4

)
+ 2 (ωRC)2

(
1+ sin2 (β)

)
=
Rcos2 (β)

(
1− (ωRC)2

)
+ 2 R(ωRC)2

cos2 (β)
(
1− (ωRC)2

)2
+ 4 (ωRC)2

+ i
−Rcos(β)(ωRC)

(
1+(ωRC)2

)
cos2 (β)

(
1− (ωRC)2

)2
+ 4 (ωRC)2

. (D.7)

Consequently, equality (27) is:

tan(φ) =
−Im [Z2RC (ω)]

Re [Z(ω)]− R
2

=
(ωR+C+)+ (ωR−C−)

1− (ωR+C+)(ωR−C−)

=

(
ωRC tan

(
π
4 + β

2

))
+
(
ωRC tan

(
π
4 − β

2

))
1−

(
ωRC tan

(
π
4 + β

2

))(
ωRC tan

(
π
4 − β

2

))

=
2 ωRC(

1− (ωRC)2
) 1
cos(β)

, (D.8)
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with

tan

(
π

4
+

β

2

)
tan

(
π

4
− β

2

)
= 1 (D.9)

tan2
(
π

4
+

β

2

)
+ tan2

(
π

4
− β

2

)
= 2

1+ sin2 (β)
cos2 (β)

(D.10)

tan

(
π

4
+

β

2

)
+ tan

(
π

4
− β

2

)
=

2
cos(β)

. (D.11)

Appendix E. Computation in detail: ZAPP

The computation of ZAPP is also split into a real part
and an imaginary part. We start with the real part (35):

Re [ZAPP (ω)] = lim
N→∞

Re [ZN (ω)] =
R
β

π
4 +

β
2ˆ

π
4 −

β
2

1

1+(ωRC)2 tan2 (x)
dx=

R
β

π
4 +

β
2ˆ

π
4 −

β
2

cos2 (x)

cos2 (x)+ (ωRC)2 sin2 (x)
dx

=
R
β

[
x

1− (ωRC)2
− (ωRC)

1− (ωRC)2
arctan((ωRC) tan(x))

]π
4 +

β
2

π
4 −

β
2

= R

 1

1− (ωRC)2
− (ωRC)(

1− (ωRC)2
)
β

(
arctan

(
(ωRC) tan

(
π

4
+

β

2

))
− arctan

(
(ωRC) tan

(
π

4
− β

2

)))
= R

 1

1− (ωRC)2
− (ωRC)(

1− (ωRC)2
)
β
arctan

 (ωRC) tan
(

π
4 + β

2

)
− (ωRC) tan

(
π
4 − β

2

)
1+(ωRC)2 tan

(
π
4 + β

2

)
tan
(

π
4 − β

2

)


=
R
2

1+
1+(ωRC)2

1− (ωRC)2
− 2 (ωRC)(

1− (ωRC)2
)
β
arctan

 2 (ωRC)(
1+(ωRC)2

) tan(β)

 , (E.1)

where we used,

arctan(x)− arctan(y) = arctan

(
x− y
1+ xy

)
(E.2)

tan(x)± tan(y) =
sin(x± y)

cos(x)cos(y)
(E.3)

tan(x)− tan(y)
1+ c tan(x) tan(y)

=
2sin(x− y)

(1+ c)cos(x− y)+ (1− c)cos(x+ y)
.

(E.4)

In order to compute (36), we need the following:

cos2 (x) =
1
2
(1+ cos(2x)) (E.5)

sin2 (x) =
1
2
(1− cos(2x)) (E.6)

artanh(x) =
1
2
ln

(
1+ x
1− x

)
for |x|< 1, (E.7)

and finally, we compute the imaginary part of ZAPP:

Im [ZAPP (ω)] = lim
N→∞

Im [ZN (ω)]

=−R
β

π
4 +

β
2ˆ

π
4 −

β
2

(ωRC) tan(x)

1+(ωRC)2 tan2 (x)
dx

=− R
2 β

π
4 +

β
2ˆ

π
4 −

β
2

2 (ωRC)sin(x)cos(x)

cos2 (x)+ (ωRC)2 sin2 (x)
dx

=− R
2 β

− (ωRC)(
1− (ωRC)2

)
× ln

(
cos2 (x)+ (ωRC)2 sin2 (x)

)]π
4 +

β
2

π
4 −

β
2

=−R
2

(ωRC)(
1− (ωRC)2

)
β

× ln


(
1+(ωRC)2

)
+ sin(β)

(
1− (ωRC)2

)
(
1+(ωRC)2

)
− sin(β)

(
1− (ωRC)2

)

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=−R
2

2 (ωRC)(
1− (ωRC)2

)
β

× artanh

(
1− (ωRC)2

1+(ωRC)2
sin(β)

)
. (E.8)

Appendix F. Computation in detail: three RC
circuits

The computation of the total capacitance of three
serial connected RC circuits (55) is as follows:

C
Ctot,3RC

=
C
C1

+
C
C2+

+
C
C2−

=
tan
(
α
4 π
)
− sin

(
π
2 − ξ

)
1− sin

(
π
2 − ξ

) +
1− tan

(
α
4 π
)

2 tan
(

π
4 + ξ

2

)(
1− sin

(
π
2 − ξ

)) + 1− tan
(
α
4 π
)

2 tan
(

π
4 + ξ

2

)(
1− sin

(
π
2 − ξ

))
=

1

1− sin
(
π
2 − ξ

)
tan

(α
4
π
)
− sin

(π
2
− ξ
)
+

1− tan
(
α
4 π
)

2

 1

tan
(

π
4 + ξ

2

) + tan

(
π

4
+

ξ

2

)
=

1

1− sin
(
π
2 − ξ

) (tan
(α
4
π
)
− sin

(π
2
− ξ
)
+

1− tan
(
α
4 π
)

sin
(
π
2 + ξ

) )

= 1+
1− tan

(
α
4 π
)

sin
(
π
2 − ξ

) . (F.1)
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