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Classification based levodopamine response prediction in 
parkinson’s disorder
Aman Jatain , Shalini Bhaskar Bajaj, Ritika Agarwal, and Haziq Rahat Bullah

Department of Computer Science, Amity University, Gurgaon, India

ABSTRACT
Parkinson’s disease (PD) is a progressive neurodegenerative disor
der that affects a sizable fraction of the population and degrades 
the quality of life. Levodopamine (L-Dopa) is the first-line treatment 
drug for PD and remains ubiquitously used. However, the drug 
response prediction of L-Dopa is still an exigent task and there is an 
unresolved absence of any substantial biomarkers for a robust 
prediction of L-Dopa response for a robust prediction of L-Dopa 
response in Parkinson’s disease. The present study intends to 
develop a robust prediction model to predict the L-Dopa drug 
response in PD using machine learning approaches. This work 
intended to utilize the MJFF Levodopa Response Study data of 
Parkinson’s subjects with conclusive pre-clinical and clinical assess
ments for resolving the significantly impending task of drug 
response prediction. The problem was identified as a classification 
task which employed four different supervised machine learning 
classification algorithms for data analysis and predictive learning. 
The underlying task of predictive classification of drug response 
classified the responders as “good” and “bad,” based on compre
hensive analysis on the selected feature space which identified the 
participants with an improvement in the symptoms as “good” 
responders and the ones with degraded or no improvement in 
the symptoms as “bad” responders. The decision tree’s (classifica
tion and regression tree) classification accuracy was 88.89% (area 
under receiver operating characteristics curve 0.9) for predicting 
levodopamine response. The presence or absence of the symptoms 
along with Unified Parkinson’s Disease Rating Scale (UPDRS) scores 
and Hoehn and Yahr scale (H and Y) scores were recognized as the 
most distinguishing feature subset. The research stipulates the 
required preliminary evidence to the adaptive advancement of 
decision trees as an illuminating technique that can facilitate the 
prediction of the drug treatment response for Parkinson’s disorder, 
however, an extended effort is necessary to provide efficient pre
dictive performance.
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Introduction

Parkinson’s disorder (PD) is a persistent, progressive neurodegenerative dis
order impacting around seven to ten million people across the globe (Ritika 
et al. 2020; McGuire et al., 2012). It is a multi-systemic condition that arises 
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due to the dysfunction in various neural networks of the brain (Khoo et al. 
2013; Luo et al., 2014; Erik et al. 2014). PD is characterized by various motor 
and non-motor symptoms – with tremors, gait impediments, and muscle 
rigidity among the most common motor symptoms, and cognitive disorders 
and depression-like mental health issues among the most common non-motor 
symptoms (Jankovic 2008; Brooks and Pavese, 2011; Khoo et al., 2013). 
Levodopamine (L-Dopa) remains the most sought-after drug to ameliorate 
the symptoms of PD to date (Poewe et al. 2010). As a result of its persistence in 
the treatment of the disorder, L-Dopa remains a benison after more than 
50 years of its discovery and is hitherto used in the primary treatment of 
symptomatic PD, hence, acting as the first-line medicament in the course of 
PD treatment (Rao et al. 2006; Thanvi et al. 2004). Despite its high response 
rates and being a highly prescribed drug for the treatment of PD, the subject of 
its responsiveness remains a prominent issue in the field of medicine. Being 
valuable in the inceptive phase of the dysfunction, various shortcomings also 
follow the administration of the drug comprising of dopa resistant motor 
(posture instability) and non-motor (cognitive impairment) symptoms along 
with drug-induced side effects including psychosis and dyskinesia as the most 
perilous disorders. Due to this underlying disparity between an individual’s 
response to the treatment and the absence of any clinical biological markers, 
which can immaculately predict the treatment response of L-dopa, the exi
gency of L-Dopa drug response prediction is perceptible.

PD has an estimated heritability of 0.41 and is mostly regarded as an 
autosomal disorder (Hamza and Haydeh 2010). The mutations in LRRK2 
(PARK8) and SNCA (PARK1 = 4) account for the autosomal dominant 
form of PD whereas, the mutations in the Parkin (PARK2), ATP13A2 
(PARK9), PINK1 (PARK6), and DJ-1 (PARK7) are responsible for the auto
somal recessive variant of the disorder (Klein and Westenbergeret 2012). In 
response to the genetic mutations, several potential neurochemical biomarkers 
like orexin (GFAP), α-Synuclein (α-syn) and Apolipoprotein A1 (ApoA1) 
have also been hypothesized to aid the modification and detection of ther
apeutic response to PD. Further, the severity of PD can be directly related to 
D3R dopamine receptor along with MHPG as a substantial biomarker to 
distinguish the various forms of PD and CSF concentrations of DOPAC and 
DOPA which when notably depleting, can facilitate the detection of at-risk 
individuals within the healthy population. In addition to this, the prolonged 
increase in accumulation of the catecholaldehyde metabolite of dopamine, 
DOPAL, can result in the decrease of dopamine levels as it can engender the 
death of dopaminergic neurons. However, after all the substantial progress in 
theorizing PD with the genetic heritability, the early onset of familial PD is 
reported in only 10–15% of PD cases. This clearly states that the disorder has 
more idiopathic cases, evincing a major contribution of non-genetic factors 
(Emamzadeh and Surguchov 2018). PD, therefore, has a complex pathology, 
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where the amalgamation of genetics, epigenetics, and environmental factors 
play a significant role in determining the onset of the disease as well as its 
therapeutic response.

The existing studies elucidating the structural and functional imaging of PD 
subjects have insinuated the association of palladium and thalamus regions 
along with caudate and putamen regions with the correlation in PD and 
L-Dopa response as neuroimaging shreds of evidence. Although the putamen 
and caudate regions are less prominent contributors when compared to the 
palladium and thalamus region, this PD-related covariance pattern evaluation 
itself has unearthed the relationship between regions of basal ganglia and 
L-Dopa response. The reduced functional connectivity magnetic resonance 
imaging (fcMRI) between striatum, palladium, and thalamus corresponds to 
a degraded L-Dopa response. There has been an identified association of the 
nonconformity in the BG connectivity patterns mapped using resting state 
functional magnetic resonance imaging (fMRI) with the disparate degrees of 
response to L-Dopa therapy. This is in line with the rationale that the remap
ping of functional connectivity in the brain translates into the clinical effects of 
dopamine. Relatively higher connectivity is exhibited by the networks linked 
to cognitive motor inhibition as opposed to lower connectivity of networks 
linked to reactive motor inhibition with an improved dopamine response. 
Moreover, there is relatively stronger connectivity in-between BG structures 
having improved dopaminergic response (Harith et al. 2017). The above 
discussed factors evidence their large medical significance in the robust pre
diction of L-Dopa treatment response in PD. Machine learning is a scientific 
endeavor in the ambit of artificial intelligence pertaining to the study and 
development of systems that can train on large scores of data (Graziella et al. 
2012). Recent shreds of evidence are suggestive of the fact that response 
predictive analysis in psychiatry can benefit from the pervasive use of machine 
learning at an individual level (McGuire et al. 2012). It is maintained that these 
methods can be very helpful in informing and assisting medical experts to 
make more efficient objective choices before the treatment, thereby leading to 
increased trial success rates and higher response rates. More effective predic
tive analytics could be beneficial for PD, in particular, because of the clinical 
heterogeneity, high prevalence, and societal costs associated with the disease 
(Lang Anthony and Andres 1998). Machine learning techniques are being 
extensively used in the field of medicine to identify drug responsiveness 
toward a particular disease. These measures are rising to prevalence due to 
their noninvasive approach, decreased costs, and reduced risk of inflicting side 
effects. However, trivial work has been done in mapping the L-Dopa respon
siveness in PD patients also, due to the lack of any evident biomarkers for 
a robust prediction of the drug response. Further, no study has shown up 
which resorts to finding the response of PD patients to L-Dopa drug using 
demographic, clinical, and sensor data.
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The current study is an attempt to redefine the technique of predictive 
analysis with respect to PD. The present study aims to employ machine 
learning algorithms using the pretreatment demographics, clinical assess
ments, and sensor data for a robust prediction of the L-Dopa treatment 
response in PD subjects. Further, the study aims at classifying the predicted 
response as “Good” or “Bad” to give an overview of the long-term adminis
tration of the drug for the subject and to give a convenient and summarized 
result for further facilitating the decision of drug administration.

Figure 1 shows the basic idea behind the proposed model. The intention of 
selecting the most accurate model remains to classify the treatment responders 
as an overall “Good” or “Bad,” based on a comprehensive assessment of the 
collected data. Moreover, the study brings about a comparative analysis 
between various machine learning models deployed to accomplish the above- 
mentioned task. It further aims at selecting the most accurate and reliable 
machine learning algorithm for accomplishing the task in an efficient manner. 
The study emphasizes the use of pre-clinical information and diagnostic data 
for drug response prediction which can give deeper insights into the effect of 
the drug at a very early stage, preventing patients from any unresponsive, 
aggressive or inappropriate medication.

As it is, the whole concept of using machine learning approaches for 
predictive analysis is new to the industry and with not many attempts, it 
remains a comparatively unexplored field in the area of unconventional 
science. The present study, being one of a kind, works on similar grounds of 
predictive analysis and incorporates it in a profound neurodegenerative dis
order in an attempt to improve the quality of life of the affected population. 
The study adds a novel approach of using pre-clinical data as the data input to 
predict the drug response at an extremely early stage to save the patient from 
further ordeal. The current work, being first of its kind, presents a fresh and 
novel outlook on the use of predictive analysis by deploying it in drug response 
prediction for PD. However, just like any other unique invention, the present 
research does come with some limitations. Firstly, the study restricts itself to 
deploying the supervised machine learning algorithms for the predictive 
classification of the drug response. Whereas, with the increasing scope of the 

Figure 1. Overview of the proposed pipleline.
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unsupervised machine learning algorithms, they present a huge potential for 
better and more efficient response prediction. Also, the usage of pre-clinical 
and diagnostic information as the foundation of drug response prediction 
might not be the best approach for the task as it can be a little misleading on 
judging the condition of the subject, very early in the disorder. Furthermore, as 
the study remains limited to the diagnostic information, it also remains 
rudimentary with its dataset as it lacks neuroimaging data and advanced 
genetic information which might bring about some correlation of subjects to 
PD. The above-listed limitations, present the currently existing constraints in 
the study. However, as the study is an all-together new and innovative step 
toward integrating different sciences, it does set up the foundation of a potent 
breakthrough in therapeutic science.

Materials and methods

MJFF dataset

The current study employed the synapse dataset from the Levodopa Response 
Study conducted by Michael J. Fox Foundation (MJFF) for Parkinson’s 
Research (Bionetworks, 2020). The study comprised of 28 PD subjects 
(66.5 ± 8.8 years, 19 males) enrolled from two different clinical sites in 
Boston, Massachusetts, and New York City, New York in the United States. 
All the participants were mostly in the preliminary stage of the disorder, being 
at least in the second stage of PD. The subjects were assessed as a part of the 
pre-clinical diagnosis, based on symptoms experienced by them so far, in the 
course of the disorder. The subject evaluation also included the H and Y score 
(Hoehn and Yahr scale) and the UPDRS score (Unified Parkinson’s disease 
rating scale) assessment along with the demographic data evaluation. The 
study was originally intended to understand the viability of monitoring the 
PD motor fluctuations and symptoms at home, which was later utilized in the 
present research to predict the L-Dopa treatment response in PD. The subjects 
volunteered for a 4-day trial study which included both in-clinic and at-home 
activity assessment. The study tried to map the fluctuations in the UPDRS 
scores of the patients by comparing the “ON” state of medication with the 
“OFF” state of medication, in the 4-day trial program. The “on” state of 
medication implied the action of taking their medication by the patient 
(administration of L-Dopa), whereas the “off” state denotes the patient’s 
response when the patient does not take the medication.

The day-one of the study evaluated the patient response based on a set of 
activities that were conducted during in-clinic assessment when the patients 
were required to be present in an “on” state of medication while wearing all the 
required sensors. The activities included all the sections, that is, parts I, II, III, 
and IV of the MDS-UPDRS (Movement Disorder Society-Sponsored Revision 
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of the Unified Parkinson’s Disease Rating Scale), which is a more sensitive 
scale as compared to the traditional UPDRS. Subsequently, the patients were 
required to perform a set of additional motor tasks based on activities of daily 
living (ADL). The activities were continuously evaluated by clinicians to 
measure the severity of symptoms as well as the disorder and side effects (if 
any). Following these evaluations, the patients were sent home, still wearing 
the sensors.

The following two days of the study, that is, Day 2 and Day 3, the partici
pants were required to continue with their daily activities being at home. On 
the last day of the 4-day response trial study, the sequence of events from the 
first day was followed, with the patients being in an “off” state of medication. 
The study being completely voluntary, a continuous feedback was also taken 
from the subjects (Bionetworks, 2020). The current study employed the pre
viously discussed levodopa response trial study dataset and additionally 
mapped the drug response by mapping the difference between the UPDRS 
scores of participants in the “on” state and “off” state of medication which is 
further used for robust prediction model to classify the treatment response as 
“good” or “bad.”

Computational methods

The recent advancement in high-throughput sequencing technologies has 
made it possible for the scientific community to have access to large scores 
of datasets. With the growth of these datasets and the extensive use of internet 
services, researchers were able to put large amounts of data online for scientific 
purposes. This paved the way for the scientific community to search for novel 
methods to analyze, interrogate and process data thereby infer associated 
knowledge and make new inferences. Because of its ability to handle large 
datasets, and to make predictions on them through accurate statistical models, 
machine learning has spread rapidly and became extensively used in the 
scientific community, particularly in computational biology. Machine learning 
is a computational approach based upon statistics, implemented in software, 
able to discover hidden patterns in a dataset and to make reliable statistical 
predictions about similar new data. The basic idea behind machine learning is 
that a computer algorithm is trained to learn behavior presented as part of 
previous experience or dataset to the extent that an outcome can be produced 
by the computer algorithm when it is presented with a never-before-seen 
dataset or situation.

ML offers three broad categories of learning: Supervised – the target is 
known and learning is based on the data that contains both the inputs and 
the desired outputs, Unsupervised – the data is unlabeled and the learning is 
done by finding structures in the data by grouping or clustering data points, 
and Reinforcement – based on the idea of reward learning where the 
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machine takes actions to maximize the cumulative reward. Depending upon 
the complexity and the nature of the scientific problem, these learning 
techniques are extensively used in the scientific community to provide 
a robust solution to real-life problems. A machine learning problem requires 
three pivotal steps to ensure a solution – understanding and manipulating 
the data to remove inconsistencies, training and testing various machine 
learning models on the data, and selecting the most efficient model and fine- 
tuning it to improve its efficacy. Machine learning models are the statistical 
algorithms that perform various mathematical calculations and manipula
tions on the data to provide significant inferable results. The recent advance
ment in machine learning has ushered in new and more robust algorithms 
that can yield surprising results. With the increase in more and more robust 
algorithms, machine learning has seen extensive use in numerous computa
tional biology problems allowing scientific researchers to unearth knowledge 
about various facets of biology.

The current problem required to predict the responsiveness of an individual 
to a drug. Analyzing the dataset, the availability of labeled data, and the 
suitability of the data with the various statistical measures in machine learning, 
supervised learning was chosen to be the best resort in finding the optimal 
solution to the problem. Moreover, an individual can respond to a particular 
drug positively or negatively. Therefore, the responsiveness can be seen as 
a categorical measure classifying a patient’s responsiveness into two catego
rical values. Considering the need for classification in the current task, classi
fication algorithms were deemed to be suited best for the problem. Of all the 
classification algorithms four potent algorithms were chosen to be used for 
predicting levodopa response – decision tree (a tree-like model of decisions 
and their possible consequences), logistic ridge regression (a regression-based 
algorithm which suitably deals with multi-collinearity in data), random forest 
(Zlotnik et al., 2015) (a collaborative training machine taken as an ensemble of 
decision trees), and support vector machines (a supervised algorithm based on 
the idea of finding a hyperplane that best divides a dataset into two classes). 
The main reasons behind choosing these algorithms were their extensive use 
in computational biology and strong potential to yield robust results. Another 
reason for resorting to only a set of four selected algorithms out of a large 
number of potential classifiers was that training only a specific set of algo
rithms was computationally more time and cost effective as compared to using 
all the algorithms to solve the problem.

The proposed pipeline

The underlying objective of the research remains the classification of the 
L-Dopa treatment response as “good” or “bad” in PD subjects. Hence, the 
problem definition robustly determines the objective as a classification task in 
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the expanse of supervised machine learning approaches. Furthermore, the 
pipeline included several steps of data processing applied to the synapse data 
to conclusively classify the therapeutic response of the drug. Figure 2 shows 
a detailed structure of the proposed pipeline. The dataset comprised of parti
cipant demographics, clinical data like UPDRS, and other scores along with 
symptom assessments, which then followed the sequence of several machine 
learning tasks. The data preprocessing was performed as the initial step of 
implementing machine learning algorithms consisting of tasks like noise 
removal, filling up of missing values, and label encoding for enhancing the 
overall functional efficacy of the classification algorithms. Subsequently, the 
difference between the UPDRS scores was calculated for all the subjects while 
in “on” and “off” medication states.

Training and testing

The data was subjected to the process of feature selection for which the 
Wrapper Subset Evaluation method was employed. The method assessed the 
features by deploying a training stratagem and detected the attribute sets 
which enhanced the overall predictive efficiency (Ron and George 1997). 
The bidirectional variant of the feature selection algorithm was applied 
which searched the feature space performing continuous feature evaluation 
by the means of an exhaustive approach. This method extended an optimized 

Figure 2. Research methodology.
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solution by implementing a greedy hill-climbing algorithm enhanced with 
a back-propagation algorithm that probes into the attribute set and identifies 
a feature subset. To overcome the issues like overfitting, which are prominent 
in classification tasks and to increase the computation of more generalized 
outcomes, the wrapper subset evaluation method was employed with 10-fold 
cross-validation. Further, this generated a feature subset in addition to the 
number of times they were selected (varied from 0% to 100%) out of the 10 
folds. The attributes, which were iteratively selected across every fold, exhib
ited a selection weight of 100%, whereas, the attributes which were not ever 
chosen carried a selection weight of 0%. The resulting feature space generated 
for the current study was selected from the set of features selected across each 
fold of the 10 folds. The subset of features comprised principally of features 
with uniformly good performance across all the 10 folds (25% or more) of the 
cross-validation framework. Subsequently, the outcome was less vulnerable to 
overfitting and was more generalized to new inputs. The final set of features in 
the dataset were filtered on the basis of the feature space generated by the 
wrapper subset evaluation method. The dataset was divided into two mutually 
exclusive datasets – training and testing dataset. The splitting of the dataset 
was performed in such a way so as to avoid the possibility of underfitting and 
overfitting. The training dataset contained 70% of the data while the testing 
dataset contained 30% of the data. The initial dataset was reshuffled several 
times before splitting into training and testing datasets to ensure uniform 
distribution of data in both the datasets. The training and testing datasets 
remained the same for all the machine learning algorithms.

The study employed four distinct supervised machine learning algo
rithms: decision tree, logistic ridge regression, random forest, and support 
vector machines. The models were first tuned by altering the training 
parameters so as to improve the efficacy. For SVM, the grid search cross- 
validation method was used with 10-folds cross validation to find the 
optimal parameters for training the model (‘C’: 100, ‘gamma’: 0.0001, ‘ker
nel’: ‘rbf’). Similarly, the parameters for Logistic Regression were optimized 
(penalty = ‘l2ʹ, max_iter = 1000, solver = ‘bilinear,’ dual = True) so as to 
provide maximum efficacy with the given data. The parameters of Random 
Forest and Decision Tree algorithms were optimum at default. All the 
models were trained using the training dataset and validated against the 
testing dataset with 10-fold cross validation for performing a comparative 
analysis in the implementation of these assorted algorithms. The 10-fold 
cross-validation has been regarded as an improved estimate for assessing the 
implemented accuracy and efficiency of the different classifiers for datasets 
with a small sample size (Kim Jae, Sharma, and Ryan 2015; Hawkins et al. 
2003). The confusion matrices were calculated in order to evaluate the 
predictive ability of the models. Successively, the classification accuracy 
and area under the receiver operating characteristics (ROC) curve (AUC) 
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of the employed algorithms were evaluated to select the most reliable and 
the most suitable classifier for the predictive analysis of therapeutic 
response.

Results and discussion

Participant characteristics

The characteristics of the subjects were calculated based on the various 
clinical and pre-clinical assessments across the selected feature subset. 
Amongst the 28 participants studied, 17 patients showed a “good” response 
and hence were characterized as good responders to the drug therapy, 
leaving the remaining 11 participants as bad responders who are prone to 
drug-induced side effects and inhibitory drug-resistant mechanisms. There 
were no notable peripheral differences that were discovered in their demo
graphic characteristics including age, heights and weight, symptoms and PD 
stages, and clinical scoring comprising of UPDRS scores and H and Y scores 
(Table 1).

H and Y, Hoehn and Yahr score; UPDRS, Unified Parkinson’s Disease 
Rating Scale score.

Prediction of treatment response

The classification accuracy of the CART decision tree was 88.89% (AUC 0.9) 
for the prediction of L-Dopa drug response in PD (Table 2). The feature space 
generated by the Wrapper subset evaluation method comprised of patient 
demographics including gender, age, height, weight, along with the presence 
or absence of symptoms and quantification of clinical scores comprising of: 
the most affected side, gait impediments, posture instability, tremors, 
Bradykinesia, disrupted sleep, freeze of gait, dyskinesia and rigidity, followed 
by UPDRS and H and Y scores. SVM, Logistic Ridge Regression and Random 
Forest classification accuracies (and AUCs) were calculated as follows: 55.56% 
(AUC 0.575), 77.78% (AUC 0.8) and 66.67% (AUC 0.7), respectively. Figure 3 
shows a comparison of AUCs of the various applied classifier algorithms for 
the prediction of L-Dopa response.

Table 3 exhibits the confusion matrix of the performance of the classifiers on 
the L-Dopa response. The employed classification algorithms furnish a decision 
curve acknowledging the distinct alternatives for the tradeoff between the false- 
positive rate and sensitivity (1-sensitivity). An increased sensitivity generally 
results in an increased false-positive rate, making the two directly proportional 
to each other and varying the best tradeoffs with respect to the usage.

Response (+), good responder; Response (-), poor responder
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Discussions

The current study, in the purview of research, is the first of its kind to 
apply machine learning approaches for an effective prediction of the 
L-Dopa drug response in PD. The study incorporates demographic data 
along with symptoms and clinical scores for the predictive analysis. The 

Table 1. Demographic and clinical characteristics along with clinical scores of the good and poor 
responders to L-Dopa in PD subjects.

Good Responders (n = 17) Poor Responders (n = 11)

Age, mean(SD) years 66.18 (8.28) 67 (9.52)
Female, n(%) 5 (29.411%) 4 (36.36%)
Height, mean(SD) cms 175.68 (9.96) 172.87 (12.68)
Weight, mean(SD) kgs 92.75 (29.44) 79.61 (11.89)
Most Affected Side, n(%)
Right 10 (58.82%) 9 (81.82%)
Left 5 (29.41%) 2 (18.18%)
Bilateral 2 (11.77%) 0 (0%)
Gait Impediments, n(%)
With 12 (70.59%) 9 (81.82%)
Without 5 (29.41%) 2 (18.18%)
Posture Instability, n(%)
With 12 (70.59%) 6 (54.55%)
Without 5 (29.41%) 5 (45.45%)
Tremor, n(%)
With 11 (64.71%) 11 (100%)
Without 6 (35.29%) 0 (0%)
Bradykinesia, n(%)
With 17 (100%) 9 (81.82%)
Without 0 (0%) 2 (18.18%)
Disrupted Sleep, n (%)
With 12 (70.59%) 5 (45.45%)
Without 5 (29.41%) 6 (54.55%)
Freeze of Gait, n (%)
With 8 (47.06%) 4 (36.36%)
Without 9 (52.94%) 7 (63.64%)
Dyskinesia, n (%)
With 14 (82.35%) 9 (81.82%)
Without 3 (17.65%) 2 (18.18%)
Rigidity, n (%)
With 16 (94.12%) 7 (63.64%)
Without 1 (5.88%) 4 (36.36%)
H and Y Score, n (%)
1 0 (0%) 0 (0%)
2 15 (88.24%) 8 (72.72%)
3 1 (5.88%) 2 (18.18%)
4 1 (5.88%) 1 (9.10%)
5 0 (0%) 0 (0%)
UPDRS Rating Scale, mean(SD)
Part 1 11.29 (6.58) 10 (5.39)
Part 2 13.35 (5.57) 13.91 (4.40)
Part 3 28 (15.66) 44.64 (16.04)
Part 4 6.47 (3.82) 6.64 (2.90)

Table 2. Classification accuracy and area under receiver operating characteristics (ROC) curve 
(AUC) performance of the classifiers for predicting L-Dopa response.

Support Vector Machine Random Forest Decision Tree Logistic Regression

Accuracy (%) 55.56 66.67 88.89 77.78
AUC 0.575 0.7 0.9 0.8
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indagation led to the unearthing of a potentially useful approach for the 
development of substantial biomarkers for a robust prediction of the drug 
response. The feature space used for training the machine learning models, 
incorporated the patient demographics, the clinical scores including the 
UPDRS scores and the H and Y scores, and the presence or absence of 
various symptoms associated with the disorder. The subset of features that 
were identified to increase the overall predictive performance included 
gender, age, height, weight, the most affected side, gait impediments, 
posture instability, tremors, Bradykinesia, disrupted sleep, freeze of gait, 
dyskinesia and rigidity, followed by UPDRS and H and Y scores. It was 
noted that the physical measures including, dominant_hand, upper_arm_
length, lower_arm_length, thigh_length, shank_length significantly 
reduced the predictive performances of the machine learning models.

It is obvious that other than the diagnosis, the presence or absence of the 
symptoms can also describe any significant effect (positive or negative) of the 
treatment on the patient. Therefore, the symptomatic analysis of a patient has 
been widely associated with treatment response monitoring and prediction for 
PD (He et al. 2018). In addition to this, the outcomes of the current study have 

Figure 3. Comparison of area under the curve (AUC) performance of the classifiers on levodopa
mine response. ROC, area under receiver operating characteristic (ROC) curve.

Table 3. Classification of L-Dopa response (confusion matrix).
Support Vector Machine CART

Classification (no.)
Classification (no.)

Positive Negative Positive Negative
Response (+) 3 1 Response (+) 4 0
Response (-) 3 2 Response (-) 1 4
Random Forest Logistic Ridge Regression

Classification (no.)
Classification (no.)

Positive Negative Positive Negative
Response (+) 4 0 Response (+) 4 0
Response (-) 3 2 Response (-) 2 3
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evinced the relevance of the symptomatic analysis in the prediction of L-Dopa 
drug response in PD. As noted, very few outlining differences were identified 
in the demographics and clinical scorings of the patients. This included the 
mean weight and mean UPDRS 3 scoring. It was noted that the good respon
ders were on the heavier side whereas the poor responders were on the lighter 
side of the weighing scale. It is also worth mentioning that the mean UPDRS 3 
scoring of the poor responders surpassed the mean UPDRS 3 scoring of the 
good responders with a good margin. It was identified that an increase in the 
UPDRS 3 score resulted in the bad response of the patients to the L-Dopa 
treatment. The symptomatic analysis also included the presence or absence of 
signs of dyskinesia in the participants, enhancing the overall predictive poten
tial of the model. Dyskinesia is a class of involuntary movement disorders that 
develop as a side-effect of long-term L-Dopa drug administration. It is 
observed in PD patients with prolonged administration of L-Dopa which 
leads to muscle spasms, reduced magnesium levels, and weakened muscles 
(Ritika et al. 2020; The Michael J. Fox Foundation for Parkinson’s Research, 
Parkinson’s Disease 2020). Hence, the presence of dyskinesia can act as 
a significant indicator of the patient response to the drug therapy which was 
further evident in the outcomes of the current research. Subsequently, 
(Movement Disorder Society Task Force on Rating Scales for Parkinson’s 
Disease 2003) discussed the clinical scores like the UPDRS scores and the 
H and Y scores which have been largely instrumental in diagnosing and 
assessing the severity of PD. Hence, along with the disease progression, such 
clinical scores can also potentially act as an insightful clinical marker for the 
prediction of the treatment response in PD. The present study comprised of 
such clinical scores as inputs, which made the results insightful and improved 
the overall performance of the model, making it more effective and accurate in 
its predictive performance. The performance of the models was cumulatively 
evaluated using the accuracy and the roc_auc metrics. The overall performance 
of the models was identified in the following order – Decision Tree, Logistic 
Regression, Random Forest, SVM. Significant improvement was shown by the 
Decision Tree after fine-tuning the parameters.

The relevance of the patient demographics in the drug response prediction is 
presently uncertain. As per genetic information, neuroimaging data, and other 
environmental factors no other diagnostic information for PD was used in the 
predictive analysis conducted in the current study. However, such factors do 
exhibit a substantial predictive potential for drug response in PD. Further, there 
is an underlying potential in the neural structural and functional imaging of the 
brain to map any variation in the connectivity patterns of the brain which can 
further be of great importance in the drug response prediction. Also, the genetic 
data can identify the potential risk of any ill effects that the patient is prone to, 
which when added to the input data can enhance the overall predictive ability of 
the model. Additionally, PD being a commonly occurring clinically heterogeneous 

APPLIED ARTIFICIAL INTELLIGENCE 1299



disorder, any additional information has great potential in a more efficient clinical 
prediction. However, the current model also provides a substantial basis to predict 
the treatment response using all attributes. Even so, with the current cost of 
genetic screening and neuroimaging with a reduced risk of L-Dopa treatment, 
the availability of such data might not add to the existing clinical purpose.

The unavailability of appropriate neurobiological markers for PD and other 
neurodegenerative disorders has led to a more potential opportunity for 
computer science technology. With the current development of different 
machine learning approaches like decision trees (CART) with adequate clas
sification accuracy and confidence levels, the extent of possibilities and abil
ities of computer science in aiding medical treatment is substantial. The 
underlying belief of the present research determines ways in which machine 
learning approaches using multi-dimensional and multi-collinear clinical data 
have an infinite scope of positively influencing the ambits of predictive treat
ment and analysis in medicine.

Nevertheless, the study, being a first of its kind is not completely 
infallible and has a few limitations to its investigation. First of all, the 
size of the sample was quite small (<250) leading to a high probability 
(80–90%) of change in AUC by at least 0.15. The results and outcomes 
of the present should be reproduced on a larger sample size (>250) with 
an amplified feature space including more biological/cognitive attributes 
(Douglas et al. 2003). Secondly, the extent of the experimentation carried 
out in the research was not in fact in relation to the analysis carried out. 
As a result, the duration of experimentation was quite short, which 
needs to be replicated for a prolonged duration to closely monitor the 
fluctuations and its effects over a longer period of time. Also, the scope 
of the experiment was limited to sensor data and the clinical scores, 
which can further be outstretched to other biological and neurochemical 
assessments. Thirdly, the place of conducting the experiments was 
restricted to two locations within the United States, thus, making the 
generalization of inferences an abstruse task across various ethnic groups 
and across different locations. Lastly, the evaluation of drug treatment 
response for PD subjects was with their respective prescribed medication 
which can again limit the generalization of results across various differ
ent pharmacological and non-pharmacological treatments of PD, requir
ing further investigation for determining their respective predictive 
potential.

The present research gives evidence to show that using the pre-clinical 
diagnostic information like patient demographics along with clinical scoring 
and symptomatic analysis, the L-Dopa treatment response in PD can be 
efficiently predicted on an individual level. Objectively, the study provides 
a primary basis to the interpretation of CART as an insightful technique and 
an efficacious implementation of machine learning approaches that have 
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a huge predictive potential and can be used in accurate prediction of treat
ment response in PD. The further application of such methods in medical 
science would require greater levels of accurate classification performance 
than reported in the current study. Moreover, the recent prevalence of 
predictive analysis of therapeutic response has aided the medical experts 
and clinicians in controlling and eschewing any possible ill effects of a drug 
that could potentially apprise the clinicians for developing efficient and 
enhanced clinical care measures. Hence, such studies are a significant 
attempt in making extensive efforts in amalgamating computer science 
technology with medical science.

Conclusion

Parkinson’s Disease is a neurodegenerative disorder, which affects people 
of age group 50 and above, across the globe. Levodopamine (L-dopa) is 
known as the first in-line therapeutic used for the disorder but has been 
known to cause various side-effects like psychosis, dyskinesia, etc., 
undermining the treatment effect of the drug itself. The study is an 
attempt at predicting drug response using machine learning approaches. 
It identified the problem as a classification task in order to classify the 
treatment response as “Good” or “Bad.” The study showed that the pre- 
clinical information and diagnostic data along with clinical scoring can 
give valuable insights into the disease prediction and evaluation tasks 
such as that in the present study. The results further presented CART as 
the most accurate of the four employed machine learning algorithms 
which identified the potential of the algorithm as a valuable approach for 
classification problems.
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