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ABSTRACT
Steel pipes are widely used in high-risk and high-pressure sce-
narios such as oil, chemical, natural gas, shale gas, etc. If there is 
some defect in steel pipes, it will lead to serious adverse con-
sequences. Applying object detection in the field of deep learn-
ing to pipe weld defect detection and identification can 
effectively improve inspection efficiency and promote the 
development of industrial automation. Most predecessors 
used traditional computer vision methods applied to detect 
defects of steel pipe weld seams. However, traditional computer 
vision methods rely on prior knowledge and can only detect 
defects with a single feature, so it is difficult to complete the task 
of multi-defect classification, while deep learning is end-to-end. 
In this paper, the state-of-the-art single-stage object detection 
algorithm YOLOv5 is proposed to be applied to the field of steel 
pipe weld defect detection and compared with the two-stage 
representative object detection algorithm Faster R-CNN. The 
experimental results show that applying YOLOv5 to steel pipe 
weld defect detection can greatly improve the accuracy, com-
plete the multi-classification task, and meet the criteria of real- 
time detection.
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Introduction

Steel pipes are widely used in high-risk and high-pressure scenarios such as oil, 
chemical, natural gas, shale gas, etc. If there is some defect in steel pipes, it will 
lead to serious adverse consequences. With the growing demand for steel pipe 
in China, more and more enterprises and even countries begin to pay attention 
to the quality and performance of steel pipe, and the defect detection and 
evaluation technology of steel pipe has become a research topic that research-
ers are keen on. At present, there are manual testing and X-ray testing. X-ray 
testing is one of the main methods for industrial nondestructive testing 
(NDT), and the test results have been used as an important basis for defect 
analysis and quality assessment of weld. X-ray detection can effectively detect 
the internal defects of steel pipe, but manual participation is still needed to 
determine the type and location of weld defects of steel pipe (Yun et al. 2009). 
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Therefore, applying object detection in the field of deep learning to the defect 
detection and identification of steel pipe welds can effectively improve the 
detection efficiency and promote the development of industrial automation.

With the wide application of artificial intelligence in the field of computer 
vision, machine learning and deep learning are widely used in object detection 
and image classification. Most predecessors used traditional computer vision 
methods to detect steel pipe weld defects (Malarvel and Singh 2021; Wang 
et al. 2008; Yun et al. 2009). For example, Malarvel and Singh (2021) used 
OSTU + MSVM-rbf (Multi–class Support Vector Machine) method to achieve 
multi-class detection of weld defects in X-ray images and achieved an accuracy 
of 95.23%. Nowadays, object detection algorithms based on deep learning are 
constantly developing, and the recognition accuracy and detection time have 
been greatly improved compared with traditional computer vision methods. 
For example, Xiaojun Wu et al. (2021) used GAN (Generative Adversarial 
Network) to expand the insufficient defect data sets and proposed CFM 
(Coarse-to-Fine Module) to improve the segmentation algorithm with 
a good result; Yanqi Bao et al. (2021) proposed TGRNet (Triplet-Graph 
Reasoning Network) for metal generic surface defect segmentation and 
achieved good results. Previous studies have achieved good results, but there 
are also some shortcomings, such as:

● Accuracy rate needs to be further improved;
● Different types of defects make it difficult to do multiple classifications 

with traditional computer vision methods;
● Detection time is too long to achieve real-time detection, so it is difficult 

to apply to the industrial field;

In view of the above problems, this paper applies the state-of-the-art YOLOv5 
to the defect detection task of steel pipe weld.

Materials and methods

Profile of YOLOv5

Joseph Redmon et al. (2016a) published YOLOv1 in 2015, which pioneered the 
single-stage object detection algorithm. This algorithm divides images into 7*7 
grids, and each grid is responsible for the classification of objects and coordi-
nate regression at the same time. Redmon and Farhadi (2016b) published 
YOLO9000 in 2016 to make up for the shortcoming of YOLOv1 with fewer 
detection categories and low accuracy, but the detection of small targets is still 
poor. Redmon and Farhadi (2018) published YOLOv3 in 2018, which draws 
on the idea of FPN (Tsung-Yi Lin et al. 2017), and solves the detection 
problem of small objects. Alexey Bochkovskiy, Wang, and Liao (2020) 
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improved their algorithm by absorbing the tricks of various fields on the basis 
of the network structure of YOLOv3 and released YOLOv4, which greatly 
improved the detection efficiency and AP. Two months later, Ultralytics (a 
company) released YOLOv5 (Jocher et al. 2021).

According to the size of the model, YOLOv5 is divided into four versions: 
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. The larger the model is, the 
higher the accuracy will be, and the detection time of a single image will 
increase. Figure 1 shows the network structure of YOLOv5s. The technologies 
used in the Input of YOLOv5 include Mosaic data enhancement (Yun et al. 
2019), adaptive anchor calculation, and adaptive image scaling. The technol-
ogy used in Backbone includes Focus structure and CSP structure. The 
techniques used in Neck include FPN+PAN structure. In Prediction, 
GIoU_Loss (Hamid Rezatofighi et al. 2019) is used to replace the ordinary 
IoU calculation method. YOLOv5 is slightly less capable than YOLOv4 in 
terms of performance, but much more flexible and faster than YOLOv4, so it 
has an advantage in model deployment.

Image acquisition device

The real-time X-ray imaging system used in this paper is shown in Figure 2. 
The system mainly consists of a welded pipe moving part, HS-XY-225 X-ray 
machine, PS1313DX high-speed digital panel detector, image capture card, 
and display part. In the welded pipe moving part, the spiral submerged arc 
welded pipe is moved using a transmission vehicle with four longitudinal 
rollers fixed on the vehicle for rotating the spiral submerged arc welded 
pipe. The X-ray machine is fixed to the wall on one side and deep into the 
pipe on the other side, emitting X-rays that penetrate the weld seam. A flat 
panel detector absorbs the X-ray photons that pass through the weld, creating 
electronic data that retains information on the attenuation of the photons. An 

Figure 1. Network structure of YOLOv5s.
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image capture card is used to convert the electronic data into a digital image 
sequence, which is then transferred to a computer for processing and display. 
Limited to hardware performance, only eight X-ray images per second can be 
captured and processed.

Acquisition of dataset

The raw video images of X-ray are provided by the cooperating factories in 
RAW format using the real-time X-ray imaging system in Figure 2. Through 
batch processing, the same width and height are cut out and exported as JPG 
images, and 3408 original images of weld defects of eight types of steel pipe are 
obtained. Finally, Labelme (a software to mark object) was used to mark the 
defect area and defect category of steel pipe weld, which was then exported as 
the standard dataset format of YOLO or PASCAL VOC2007 (Ren et al. 2017). 

Rollers Transmission Vehicle

X-ray Source
X-ray Flat Panel Detector

Image Capture Card

Computer

Welded Pipe

Figure 2. The real-time X-ray imaging system.

(a) Blowhole (b) Undercut (c) Broken arc (d) Crack 

(e) Overlap (f) Slag inclusion (g) Lack of fusion (h) Hollow bead 

Figure 3. The example of steel pipe defects.
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Figure 3 shows the types of steel pipe weld defects. The collected samples have 
a total of eight types of defects, which are Blowhole, Undercut, Broken arc, 
Crack, Overlap, Slag inclusion, Lack of fusion, and Hollow bead. Table 1 shows 
the statistical table of steel pipe weld defects samples.

Data preprocessing

Raw dataset analysis
First of all, the original data should be analyzed so as to serve as a reference 
when setting parameters for deep learning and to accelerate the training speed. 
It can be seen from observation that X-ray pictures are black and white 
pictures, which can be converted into single-channel grayscale images. In 
this way, 2/3 pixels data can be compressed, and the training speed will be 
accelerated. We then use Matplotlib (a python lib to draw diagram) to draw 
the scatter plot of the center point position of the bounding box and the length 
and width of the bounding box in turn to see if there are any extreme aspect 
ratios and abnormal data. As shown in Figure 4, it can be concluded that most 
bounding boxes are wider than their height and that the bounding boxes for 
cracked defects are close to a square. Secondly, the displacement of most 
defects is in the horizontal direction, and the displacement of Overlap defects 
is from the bottom right to the top left. The distribution of scatter is more 
even, and there are not many abnormal data.

Table 1. Profile of sample images for eight types of defects.
Defect name Number of original samples Number of augmented samples Label

Blowhole 1339 12051 Blow-hole
Undercut 35 315 Undercut
Broken arc 531 4779 Broken-arc
Crack 119 1071 Crack
Overlap 219 1971 Overlap
Slag inclusion 136 1224 Slag-inclusion
Lack of fusion 416 3744 Lack-of-fusion
Hollow bead 613 567 Hollow-bead
Totals 3408 30672 – –

Figure 4. The analysis of original samples.
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Motion deblurring
As shown in Figure 2, when the cylindrical steel pipe rotates in the assembly 
line, there will be relative movement between the X-ray camera used to film 
the weld defects of the steel pipe and the steel pipe in the direction of the weld. 
Moreover, the exposure time of the camera to shoot a single frame of weld 
defects is too long, so the motion blur will be generated. According to the 
research of Kupyn et al. (2018), motion blur will have an impact on the 
accuracy of object detection algorithm of YOLO series, so it is necessary to 
remove motion blur in some images. The process of motion deblurring is 
shown in Figure 5. First of all, we use the Hough Transform to detect the 
straight line at the weld edge. The direction of motion of the steel pipe can be 
estimated from the angle of the straight line (that is, the angle of image blur), 
and the distance of motion blur can be obtained from the frame rate of the 
camera and the speed of the steel pipe rotation. Then, we used the estimated 
blurry kernel for deconvolution of the original blurry image to get the result in 
Figure 5c.

Data enhancement
Convolutional neural network (CNN) usually requires a large number of 
training samples to effectively extract image features and classify them. In 
order to effectively improve data quality and increase data feature diversity, the 
original data was enhanced to nine times the original data by using light 
change, random rotation, random cut out, Gaussian noise addition, horizontal 
flipping, random adjustment of saturation, contrast and sharpness, random 
resize, and random clipping. Thus, the over-fitting in the training stage is 
effectively reduced, and the generalization ability of the network is improved. 
Figure 6 shows an example of what happens after data enhancement.

Experiments

Experimental environment

Tables 2 and 3 are the hardware environment and software environment of the 
experiment in this paper.

(a) Original blurry image (b) Image after Hough Transform (c) Deblurred image 

Figure 5. The process of blind motion deblurring.
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Experimental process

In this paper, the state-of-the-art deep learning algorithm YOLOv5 is used to 
train the detection model of steel pipe weld defects. After manually annotating 
the original image, the dataset is obtained through data enhancement, and 
then, the dataset is converted into a single-channel grayscale image. Because 
the dataset is relatively small, it is divided into training set and validation set in 
a ratio of 8:2. An experimental process designed in this paper is shown in 
Figure 7. After several epochs of YOLOv5 training, the training set and 

(a) Original image (b) Image after change light (c) Image after rotate 

(d) Image after cutout (e) Image after gaussian noise (f) Image after horizontal flip 

(g) Image after adjust color (h) Image after resize (i) Image after crop 

Figure 6. The example after data augmentation.

Table 2. The environment of hardware.
Phase CPU GPU RAM

Train Intel(R) Xeon(R) CPU E5-2623 v4 @ 2.60 GHz Quadro P5000 30 GB
Test Intel(R) Core(TM) i7-4710MQ CPU @ 2.50 GHz GTX950M 8 GB

Table 3. The environment of software.
Phase OS Python Model

Train Linux-5.4.0–65-generic-x86_64-with-glibc2.10 3.8.5 Official YOLOv5x
Test Windows 10 professional edition 3.8.0 Official YOLOv5x
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validation set obtained a model containing weight and bias parameters. In this 
paper, Recall, Precision, F1 score, mAP (mean of Average Precision), and 
detection time of single image were used as evaluation indexes.

The calculation method of Precision is shown in Formula (1). TP is the 
sample identified as true positive. In this paper, it is the identification of 
correct weld defects of steel pipe. FP is the sample identified as false positive. 
In this paper, it is the weld defect of steel pipe identified wrongly. The formula 
describes the proportion of true positive in the identified pictures of steel pipe 
weld defects. The calculation method of Recall is shown in Formula (2). FN is 
the sample identified as false negative and in this paper is the background of 
error identification. The formula describes the ratio of the number of correctly 
identified steel pipe weld defects to the number of all steel pipe weld defects in 
the dataset. The calculation method of F1 score is shown in Formula (3). 
When Precision and Recall are required to be high, F1 score can be used as an 
evaluation index. The calculation method of AP is shown in Formula (4). AP is 
introduced to solve the problem of limitation of Precision, Recall, and F1 score 
single point value. In order to obtain an indicator that can reflect the global 
performance, in this paper, we use the interpolated average precision. 

Precision ¼ TP
TPþFP (1) 

Recall ¼ TP
TPþFN (2) 

F1 ¼
2�Precision�Recall
PrecisionþRecall (3) 

PinterpðkÞ ¼ max
k̂�k

Pðk̂Þ

AP ¼
XN

k¼1
PinterpðkÞΔrðkÞ

(4) 

Figure 7. The flowchart of experiment.
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Analysis of experimental results

Identify results and data analysis
The detection result for eight types of defects is shown in Figure 8. On the 
whole, both the position of defects and the confidence of classification are 
relatively good. Undercut’s good performance in the case of a relatively small 
number of samples could not be attributed to the eight data enhancement 
methods used in the data preprocessing stage of this paper and Mosaic data 
enhancement by YOLOv5. The Broken can still be identified as the same defect 
and obtain good confidence even if they are very different in appearance. 
Among them, the Slag inclusion defects are not obvious to distinguish from 
the background in the naked eye, and they are similar to the Undercut defects 
in appearance. Benefiting from repeated training, good results can also be 
achieved.

As shown in Table 4, four evaluation indexes of each defect category in the 
last epoch are presented. On the whole, except for Blowhole defect, the 
accuracy of all other defects can be maintained between 0.962 and 1.00, the 
recall rate between 0.99 and 1.00, and the F1 score between 0.998 and 1.00. 
Blowhole defect due to its small defect target, a single steel pipe sometimes has 

(a) Blowhole (b) Undercut (c) Broken arc (d) Crack 

(e) Overlap (f) Slag inclusion (g) Lack of fusion (h) Hollow bead 

Figure 8. The result of detection.

Table 4. Some statistical parameters of confusion matrix.
Type Blowhole Undercut Broken-arc Crack Overlap Slag-inclusion Lack-of-fusion Hollow-bead

Precision 0.505 1.00 0.962
1.00

1.00 1.00 0.99 0.99

Recall 0.96 1.00 1.00
1.00

1.00 1.00 0.99 1.00

F1 score 0.661 1.00 0.98
1.00

1.00 1.00 0.99 0.994

AP 0.951 0.995 0.992 0.995 0.995 0.995
0.978 0.995

mAP@0.5 0.987
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dense pores, so the accuracy is lower than other types of defects. In the 218th 
epoch, the mAP of the model reached 99.02%, but after 633 epochs of training, 
the mAP decreased to 98.71%, showing some degree of over-fitting. The best 
training model saved in this paper can be used in the actual steel pipe weld 
defect detection and applied in the industrial production environment.

Performance comparison of weld defect detection algorithm for steel pipe
As shown in Figure 9, we used the same dataset to conduct experiments, 
respectively, in Faster R-CNN (Bubbliiiing 2020; Ren et al. 2017) and YOLOv5 
(Jocher et al. 2021) and then compared the precision data and total loss data 
generated during the experiment. As shown in Figure 9a, Faster R-CNN 
calculates the precision mean after each epoch of training and has 
a tendency of descending and then slowly climbing, with unstable values in 
the second half. YOLOv5, on the other hand, started off with a shaky precision 
and then slowly climbed up and settled down. As shown in Figure 9b, the total 
loss of Faster R-CNN tended to be stable between 50 and 100 epochs and then 
had two relatively large wave peaks. Since Faster R-CNN uses the Adam 
(Kingma and Jimmy 2014) optimizer, it can converge faster than SGD 
(Stochastic Gradient Descent). The initial total loss of YOLOv5 was relatively 
small and tended to be stable between 100 and 150 epochs, with a small peak 
around 160 epochs. YOLOv5 also uses the optimizer Adam, and the initial 
value of Momentum is 0.999. In general, compared with the Faster R-CNN, 
YOLOv5 has better convergence speed in precision and total loss and stability 
after convergence than the Faster R-CNN.

Figure 9. Comparison with faster R-CNN.

Table 5. Performance comparison of steel pipe detection algorithms.
Object detection model Accuracy or precision/% Detection time per picture/s

GAN+CFM (Wu et al. 2021) 85.9 acc (mIoU) 0.132
OSTU+MSVM-rbf (Malarvel and Singh 2021) 95.23 acc – –
Faster R-CNN+ResNet50 (Ren et al. 2017) 95.5 acc (mAP@0.5 = 78.1) 0.437
YOLOv5x 97.8 pre (mAP@0.5 = 98.7) 0.120
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As shown in Table 5, a comparison is made between GAN+CFM, OSTU 
+SVM, Faster R-CNN+ResNet50, and YOLOv5. On the whole, the defect 
detection algorithm based on deep learning is better than the defect detection 
algorithm based on traditional computer vision in both performance and 
detection time of a single image. Among them, GAN+CFM algorithm takes 
the longest time; OSTU+MSVM-rbf algorithm has the lowest accuracy. 
YOLOv5 is superior to Faster R-CNN in both accuracy and detection time 
of a single image. The detection time of a single image satisfies the engineering 
work of the model in the later stage of this paper. YOLOv5’s detection speed is 
to be expected because it is one stage. Another kind of object detection 
algorithms is two stages. For example, the Faster R-CNN algorithm forms 
region proposals (which may contain areas of the object) first and then 
classifies each region proposal (also corrects the position at mean time). This 
type of algorithm is relatively slow because it requires multiple runs of the 
detection and classification process.

Conclusion

In the field of steel pipe weld defect detection, deep learning method has more 
advantages than traditional computer vision method. Convolutional neural 
network does not need to extract image features manually and can realize end- 
to-end input detection and classified output. The research of this paper has the 
following three contributions:

● Applying the state-of-the-art object detection algorithm YOLOv5 to the 
field of steel pipe weld defects detection, the detection accuracy of steel 
pipe weld defects and the detection time of a single image are pushed to 
a new height level, with the accuracy reaching 97.8% (mAP@0.5 = 98.7%). 
Under the YOLOv5x model testing, the detection time of a single picture 
is 0.12 s (GPU = GTX950M), which meets the real-time detection on the 
steel pipe production line;

● Did a lot of work in the data preprocessing stage, combining the tradi-
tional data enhancement method with the Mosaic data enhancement 
method of YOLOv5, which not only greatly increased the size of the 
dataset but also effectively reduced the over-fitting of the training;

● The results of YOLOv5 were compared with previous defect detection 
algorithms, and the advantages of YOLOv5 in model deployment and 
model engineering were demonstrated on the premise of comprehensive 
indicators.

This study can provide methods and ideas for real-time automatic detection 
of weld defects of steel pipe in industrial production environment and lay 
a foundation for industrial automation. Although this paper uses state-of-the- 
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art deep learning algorithm and convolutional neural network model for real- 
time detection of steel pipe weld defects in industrial production scenarios, its 
performance is also relatively good. However, in the case of limited dataset, 
other defects which are not in the dataset cannot be correctly identified. In this 
case, we can use traditional computer vision or mathematical methods to build 
an expert system to identify other defects that do not appear in the dataset. It is 
also possible to design an automatic updating model system in combination 
with Few-shot learning in engineering, which is used to manually label the 
type and bounding box coordinate information by the quality inspector when 
the defect cannot be identified, so that the system can automatically learn and 
update the model. These deficiencies point out the direction and provide ideas 
for the follow-up research.
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