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Abstract
In paper [1] Ahmad et al. investigated the use of sharp function, known from functional analysis, in
image processing. The sharp function gives a measure of variations of a function and can be used
as an edge detector [2]. We extend the classical notion of sharp function to prove the classical
Lebesgue differentiation theorem and Marcinkiewicz theorem for the sublinear operator T (x, y).

Keywords: Maximal function, bounded mean oscillations (BMO), sharp function, distribution, sublinear
operator.
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1 Introduction
The sharp function is a well known functional analytic concept to measure the oscillatory behavior
of functions. It goes back to the maximal function which was introduced in Hardy and Littlewood
[3] to solve a problem in the theory of complex variable. Based on this idea John and Nirenberg
[4] introduced the concept of bounded mean oscillation (BMO) functions. Fefferman and Stein [5]
introduced the sharp function (denoted by f#) and found that a function f ∈ BMO is equivalent with
f# ∈ L∞. For more details we refer to Fefferman [6], Kurtz [7] and Wojtaszczyk [8]. The idea of
applying the sharp operator to measure the oscillation and classification of images was first proposed
by Ahmad and Siddiqi [1] where it was used to find a suitable compression technique.
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In this paper, we use sharp function to prove the Marcinkiewicz Interpolation theorem for the
weak sublinear operator T (x, y) and for generalization of the concept of distribution. This paper also
includes a proof of Lebesgue differentiation theorem.

2 Maximal Function
In this section we give a short introduction to the maximal function and its background. There is a rich
theory behind it, and we are going to point out some of the main results connected to it. The Hardy-
Littlewood maximal function was developed to solve a problem in the theory of functions of complex
variable. Further it can also be used in the proof of Lebesgue differentiation theorem, Fatou’s theorem
and in the theory of singular integral operators.

Definition 2.1. Let Rn be the n-dimensional Euclidean space and f(x) be a real valued measurable
function on Rn. For such a function f on Rn its Hardy-Littlewood maximal function is defined by the
formula

Mf(x) = sup
Q:x∈Q

{
1

λ(Q)

∫
Q

|f(y)|dy : Q ⊂ Rn, x ∈ Q
}
, (2.1)

where the supremum ranges over all finite cubes Q in Rn and λ(Q) is the Lebesgue measure of Q.

Definition 2.2. Let Rn be the n-dimensional Euclidean space and f(x) be a real valued measurable
function on Rn. For such a function f on Rn its distribution is defined by the formula

df (t) = λ({x ∈ Rn : |f(x)| > t}), for t ≥ 0. (2.2)

It is easy to find a function whose maximal function is unbounded.

Example 2.1. For f(x) = |x|t with t > 0, we get Mf(x) =∞, for each x ∈ R.

Theorem 2.2. [Hardy-Littlewood maximal theorem] For each function f ∈ L1(Rn) we have

λ({x :Mf(x) > t}) ≤ 6nt−1‖f‖1, t > 0. (2.3)

Proof. If ‖f‖1 = ∞, then it is trivial. Without the loss of generality, we can assume that ‖f‖1 = 1.
For a fixed t ≥ 0, let Et = {x : Mf(x) > t}. Then for each x ∈ Et there is a cube Qx such that
x ∈ Qx ⊂ Et, and

1

λ(Qx)

{∫
Qx

|f(y)|dy
}
> t. (2.4)

Thus,
‖f‖1
t
≥ λ(Qx) or

1

t
≥ λ(Qx). (2.5)

Let α1 = max{λ(Qx) : x ∈ Et}, so α1 ≤ t−1. Let us fix a cube Qx, call it Q1 such that
λ(Q1) >

1
2
α1. Consider all cubes Qx such that Qx ∩ Q1 = φ. If there are no such cubes, we stop.

Otherwise we put α2 = max{λ(Qx) : x ∈ Et and Qx ∩ Q1 = φ} and fix such a cube Qx, call it Q2

satisfying λ(Q2) >
1
2
α2. Continuing in this way we get a sequence of cubes Q1, Q2, ..., possibly finite

such that

(i) the cubes Qj are disjoint,

(ii) λ(Qj) >
1
2
max{λ(Qx) : Qx ∩Qs = φ ; for s = 1, 2, 3, ..., j − 1},

(iii) if Qx ∩Qs = φ for s = 1, 2, 3, ..., j − 1, then λ(Qx) ≤ 2λ(Qj).
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From(2.4) and (i), we get

λ
(
n
∪
i=1
Qi
)
=

n∑
i=1

λ(Qi) ≤
1

t

n∑
i=1

∫
Qi

|f(y)|dy ≤ 1

t

∫
∪Qi

|f(y)|dy ≤ ‖f‖1
t

=
1

t
. (2.6)

It is important to mention here that each Qx intersects some Qi. If there exists a Qx disjoint
from all Qi’s then our process was infinite. So from (2.6), we see that λ(Qj) → ∞ which contradicts
(iii). Now for a given Qx, let Qs be the first Qi that intersects with Qx. So by (iii), λ(Qx) ≤ 2λ(Qs) and
hence Qx ⊂ 6 � Qs (by c � Q we mean a cube with the same center as Q whose sides are c times
longer than sides of Q, c > 0). Thus from equation (2.6), we have

λ({x : Mf(x) > t}) = λ(∪
x
Qx)

≤ λ(∪
i
6 �Qi)

≤
∑
i

λ(6 �Qi)

≤ 6n
∑
i

λ(Qi) ≤ 6n
1

t
= 6n

‖f‖1
t

.

(2.7)

An interesting application of the Maximal Theorem is a version of the Lebesgue differentiation
theorem.

Theorem 2.3. Let f ∈ L1(Rn). For almost all x ∈ Rn and for every decreasing sequence of cubes

{Qj}∞j=1 such that
∞⋂
j=1

Qj = {x}, we have

lim
j→∞

1

λ(Qj)

∫
Qj

f(y)dy = f(x). (2.8)

Proof. If f ∈ L1(Rn) ∩ C(Rn), then (2.8) holds for all x ∈ Rn. Given f ∈ L1(Rn) we take ε such that
0 < ε < 1 and write f = g+h with g ∈ L1(Rn)∩C(Rn) and ‖h‖1 < ε. Then by the above observation
and by the definition of Hardy-Littlewood maximal function, we have,

lim supj→∞

∣∣∣ 1
λ(Qj)

∫
Qj
f(y)dy − f(x)

∣∣∣
= lim sup

j→∞

∣∣∣∣∣ 1

λ(Qj)

∫
Qj

(g + h)(y)dy − (g + h)(x)

∣∣∣∣∣
= lim sup

j→∞

∣∣∣∣∣ 1

λ(Qj)

∫
Qj

g(y)dy − g(x) + 1

λ(Qj)

∫
Qj

h(y)dy − h(x)

∣∣∣∣∣
= lim sup

j→∞

∣∣∣∣∣ 1

λ(Qj)

∫
Qj

h(y)dy − h(x)

∣∣∣∣∣
≤ lim sup

j→∞

{
1

λ(Qj)

∫
Qj

|h(y)|dy

}
+ |h(x)|

≤ |h(x)|+Mh(x).

Now by equations (2.2) and (2.3), we get

λ({x ∈ Rn : |h(x)| >
√
ε}) ≤ ‖h‖1√

ε
≤
√
ε
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and

λ
(
{x :Mh(x) >

√
ε}
)
≤ 6n

‖h‖1√
ε
≤ 6n

√
ε

respectively. This shows that outside the set {x ∈ Rn :Mh(x) >
√
ε}∪{x ∈ Rn : |h(x)| >

√
ε} which

has measure at most C
√
ε, we have

lim sup
j→∞

∣∣∣∣∣ 1

λ(Qj)

∫
Qj

f(y)dy − f(x)

∣∣∣∣∣ ≤ 2
√
ε.

Since ε was arbitrary small, we obtain

lim
j→∞

1

λ(Qj)

∫
Qj

f(y)dy = f(x).

The Hardy-Littlewood maximal operator M is a significant nonlinear operator used in real and
harmonic analysis. It takes a locally integrable function f : Rn → C and returns another function Mf
that at each x ∈ Rn gives the maximal average value that f can have on cubes containing the point
x ∈ Qx. Hardy-Littlewood maximal inequality states that M is bounded as a sublinear operator from
Lp(Rn) to itself for p > 1.

Definition 2.3. A measurable function f on Rn has bounded p-mean oscillation, 1 6 p <∞, if

‖f‖BMOp = sup
Q

{
1

λ(Q)

∫
Q

|f(x)− fQ|pdx
}1/p

<∞

where the sup ranges over all finite cubes Q in Rn and fQ = 1
λ(Q)

∫
Q
f(x)dx is the mean value of the

function f on the cube Q.

The set of all functions of bounded p-mean oscillation is denoted by BMOp(Rn). ‖f‖BMOp is
“almost” a norm since it has the following properties

(i) ‖f + g‖BMOp 6 ‖f‖BMOp + ‖g‖BMOp

(ii) ‖αf‖BMOp 6 |α|‖f‖BMOp

(iii) ‖f‖BMOp = 0 iff f = constant a.e.,

where f and g are the measurable functions on Rn and α is some scalar quantity.

Example 2.4. The function

f(x) =

{
1 if x ∈ [0, 1]

0 if x /∈ [0, 1]

is in BMO1(R).

Let Q = [0, 1], then

1

1− 0

∫ 1

0

|f(x)− fQ|dx =

∫ 1

0

|f(x)− 1|dx = 0 <∞.

Every bounded function has a bounded p-mean oscillations.
That is, L∞(Rn) ⊂ BMO1(Rn), 1 6 p <∞.
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Example 2.5. For f(x) = |x|α with α ∈ (−1, 0), we find maximal function Mf(x) of f(x) as

Mf(x) = sup
x∈I

{
1

|I|

∫
I

|f(t)|dt
}
.

We know that Mf(x) = max{Mf+(x),Mf−(x)}. Assume that x > 0, then clearly,

Mf(x) =Mf−(x) = sup
y<x

1

x− y

∫ x

y

|f(t)|dt = sup
y<x

1

x− y

∫ x

y

|t|αdt.

Further, to obtain sup we consider y < 0, then we have

Mf(x) = sup
y<0

1

x− y

{
|t|α+1

α+ 1

}x
y

.

Since y < 0, so that choose y = −s,where s > 0 then

Mf(x) = sup
s>0

1

x+ s

{
xα+1 + sα+1

α+ 1

}
= sup

s>0

1

x(1 + (s/x))

{
xα+1(1 + (s/x)α+1)

α+ 1

}
= sup

s>0
xα
{

(1 + (s/x)α+1)

(1 + (s/x))(1 + α)

}
.

Putting s
x
= t > 0, we get

Mf(x) = xα sup
t>0

{
1 + tα+1

(1 + t)(1 + α)

}
= xαCα.

Cα tends to 0 as t goes to infinity and the supremum is obtained.

3 Sharp Function
Sharp function is a very powerful tool that mediates between Lp spaces and the space of bounded
mean oscillations, i.e., BMOp.

Definition 3.1. For locally integrable function f on Rn the sharp function is given by

f#(x) = sup
Q:x∈Q

{
1

λ(Q)

∫
Q

|f(y)− fQ|pdy
}1/p

<∞.

Thus, f ∈ BMO is identical with the statement f# ∈ L∞. The interest in f# lies in the fact that
f# ∈ Lp, p <∞ implies that f ∈ Lp.

Proposition 3.1. If f# is a function in Lp(Rn), and 1 6 p <∞, then

df#(t) 6 t−p‖f#(x)‖pp (3.1)

and
‖f#(x)‖pp = p

∫ ∞
0

tp−1df#(t)dt. (3.2)
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Proof. By the definition of the distribution

df#(t) = λ({x ∈ Rn : |f#(x)| > t})

=

∫
{x∈Rn:|f#(x)|>t}

dx
(3.3)

or,

tpdf#(t) =

∫
{x∈Rn:|f#(x)|>t}

tpdx

6
∫
Rn

|f#(x)|pdx.
(3.4)

Since f# is integrable on Rn, then we have

tpdf#(t) 6 ‖f#(x)‖pp

df#(t) 6 t−p‖f#(x)‖pp.

For the remaining part we define the set A ⊂ Rn × [0,∞) as A = {(x, s) : s < |f#(x)|p}. Using
Fubini’s theorem, we get

∫
Rn

|f#(x)|pdx =

∫
Rn

∫ |f#(x)|p

0

1dsdx

=

∫
Rn×[0,∞)

1A(x, s)dsdx

=

∫ ∞
0

λ({x : |f#(x)|p > s})ds.

Putting s = tp ⇒ ds = ptp−1dt in the above integral, we obtain∫
Rn

|f#(x)|pdx =

∫ ∞
0

ptp−1λ({x : |f#(x)|p > tp})dt

= p

∫ ∞
0

tp−1λ({x : |f#(x)| > t})dt.
(3.5)

Therefore,

‖f#(x)‖pp = p

∫ ∞
0

tp−1df#(t)dt.

Definition 3.2. An operator T defined on some class of measurable functions and mapping it into
measurable functions is called sublinear if

|T (f + g)(x)| 6 |T (f)(x)|+ |T (g)(x)| a.e.

and
|T (λf)(x)| 6 |λ||T (f)(x)|, a.e.,

for all admissible functions f, g and all scalars λ.

Definition 3.3. A sublinear operator T from Lp(Rn) into Lq(Rn) is said to be of weak type (p, q), 1 ≤
p <∞, q <∞ if there exists a constant C such that for each f ∈ Lp(Rn) and each t > 0 we have

λ({x : |T (f)(x)| > t}) 6
(
C‖f‖p
t

)q
.
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It is clear that each linear operator is sublinear. It immediately follows from (3.1) that if a sublinear
operator T satisfies

‖T (f)‖1 6 C‖f‖1,
then T is of weak type (1,1).

Theorem 3.1. [Marcinkiewicz] Suppose T is a sublinear operator defined on L1(Rn) + L∞(Rn)
which is of weak type (1,1) and for some C satisfies

‖Tf#‖∞ 6 C‖f#‖∞, (3.6)

then for each p, 1 < p <∞, there exists a constant C(p) such that

‖Tf#‖p 6 C(p)‖f#‖p, where C(p) =
2pp

(p− 1)
.

Proof. We are given that T is a sublinear operator defined on L1(Rn) +L∞(Rn) and is of weak type
(1,1) then by the definition of T we can say without the loss of generality that for C = 1 and t > 0,

λ({x : |Tf#(x)| > t}) 6 ‖f
#‖1
t

.

And also T satisfies (3.6), i.e.,
‖Tf#‖∞ 6 C‖f#‖∞

or,
‖Tf#‖∞ 6 ‖f#‖∞.

Now for f# ∈ Lp(Rn) and given t > 0, we write f#(x) = ft(x) + f t(x), where ft(x) ∈ L1(Rn),
f t(x) ∈ L∞(Rn) and

f t(x) =

{
f#(x) x ≥ t
0 x < t,

ft(x) =

{
f#(x) x ≤ t
0 x > t.

Thus ft(x) = 1{s : |f#(s)|6t}f
#(x). Since f# is a measurable function and T is a sublinear

operator, therefore Tf# is also a measurable function. Then by countable subadditivity, we have{
x : |Tf#(x)| > t

}
⊂
{
x : |Tft/2(x)| >

t

2

}
∪
{
x : |Tf t/2(x)| > t

2

}
.

So from (3.2), we obtain

‖Tf#‖pp =

∫
Rn

|Tf#(x)|pdx

= p

∫ ∞
0

tp−1λ({x : |Tf#(x)| > t})dt
(3.7)

or,

‖Tf#‖pp 6 p

∫ ∞
0

tp−1λ

({
x : |Tf t

2
(x)| > t

2

})
dt+ p

∫ ∞
0

tp−1λ

({
x : |Tf t/2(x)| > t

2

})
dt.

But we suppose that T satisfies (3.6) with C = 1, and this implies that ‖Tft/2‖∞ 6 t
2

and thus, the
second integral is zero. Then by the definition of sublinear operator and (3.2) we get,
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‖Tf#‖pp ≤ p
∫ ∞
0

tp−1 2

t
‖ft/2‖1dt

= 2p

∫ ∞
0

tp−2

∫
{x:|f#(x)|> t

2
}
|f#(x)|dxdt

= 2p

∫
Rn

|f#(x)|
∫ 2|f#(x)|

0

tp−2dtdx

= 2p

∫
Rn

|f#(x)| 1

p− 1
(2|f#(x)|)p−1dx

≤ 2pp

(p− 1)

∫
Rn

|f#(x)|pdx

≤ C(p)‖f#‖p 1 ≤ p <∞.

The relationship between weak (p, q) inequalities and the almost everywhere convergence is
given by the following result.

Theorem 3.2. Let {Tt} be a family of linear operators on Lp(Rn); 1 ≤ p <∞ and define

T ∗f#(x) = sup
t
|Ttf#(x)|.

If T ∗ is weak (p, q) then the set

{f# ∈ Lp(Rn) : lim
t→t0

Ttf
#(x) = f#(x) a.e.}

is closed in Lp(Rn).

Proof. Let {fn} be a sequence of functions which converges to f# in Lp(Rn) such that Tf#(x)
converges to f#(x) a.e.
Now, µ({f# ∈ Lp(Rn) : lim sup

t→t0
|Ttf#(x)− f#(x)| > λ})

= µ({f# ∈ Lp(Rn) : lim sup
t→t0

|Ttf#(x)− fn(x) + fn(x)− f#(x)| > λ})

≤ µ({f# ∈ Lp(Rn) : lim sup
t→t0

|Tt(f# − fn)(x)| >
λ

2
})

+µ({f# ∈ Lp(Rn) : lim sup
t→t0

|(f# − fn)(x)| >
λ

2
})

≤ µ({f# ∈ Lp(Rn) : |T ∗(f# − fn)(x)| >
λ

2
})

+µ({f# ∈ Lp(Rn) : |f#(x)− fn(x)| >
λ

2
})

≤
(
2C(p)

λ
‖f#(x)− fn(x)‖p

)q
+

(
2

λ
‖f#(x)− fn(x)‖p

)p
.

Since T ∗ is weak (p, q) and fn → f# as n→∞, therefore

µ({f# ∈ Lp(Rn) : lim sup
t→t0

|Ttf#(x)− f#(x)| > 0})

≤
∞∑
k=1

µ({f# ∈ Lp(Rn) : lim sup
t→t0

|Ttf#(x)− f#(x)| > 1

k
})

= 0.
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4 Conclusions
The present study aimed at the generalization of the distribution function and the relation of distribution
function with the norm of sharp function. Also, we have proved an interpolation theorem for sharp
function and discussed the almost everywhere convergence of sharp function by means of the weak
(p, q) operator.
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