
 

_____________________________________________________________________________________________________ 
 
*Corresponding author: Email: bachir.achour@larhyss.net; 

 
 

Journal of Scientific Research & Reports 
7(5): 338-347, 2015; Article no.JSRR.2015.215 

ISSN: 2320-0227 

 
SCIENCEDOMAIN international 

                                  www.sciencedomain.org 

 

 

Chezy’s Resistance Coefficient in a Rectangular 
Channel 

 
Bachir Achour1* 

 
1
Department of Civil and Hydraulic Engineering, Research Laboratory in Subterranean and Surface 

Hydraulics (LARHYSS), University of Biskra, P.O.Box 145 RP 07000 Biskra, Algeria. 
 

Author’s contribution  
 

 The sole author designed, analyzed and interpreted and prepared the manuscript. 
 

Article Information 
 

DOI: 10.9734/JSRR/2015/18385 
Editor(s): 

(1) Prinya Chindaprasirt, Khon Kaen University, Thailand.  
(2) Luigi dell'Olio, School of Civil Engineering, Channels and Ports, University of Cantabria, Cantabria, Spain. 

Reviewers: 
(1) Rajkumar V. Raikar, Department of Civil Engineering, M. S. Sheshgiri College of Engineering and Technology, India. 

(2) Anonymous, Hong Kong Polytechnic University, China. 
(3) Anonymous, Jaypee University of Engineering and Technology, India. 

Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=1129&id=22&aid=9389 

 
 
 

Received 20
th

 April 2015 
Accepted 12th May 2015 

Published 25
th

 May 2015 

 
 

ABSTRACT 
 

The Chezy’s resistance coefficient plays an important role in the calculation of the normal depth in 
the open channels. When using the Chezy’s relationship for the calculation of the normal depth, the 
main unknown parameter of the problem is the Chezy’s coefficient. There is no explicit and 
complete relationship for the evaluation of the Chezy’s resistance coefficient. Current relations are 
either implicit or do not take into account all the parameters that influence the flow, such as channel 
slope or kinematic viscosity. Most of them do not apply to the whole domain of turbulent flow 
because the kinematic viscosity is not taken into account. For these reasons, one affects arbitrarily 
a constant value for Chezy's resistance coefficient as a given data of the problem, in most practical 
applications. This arbitrary choice is not physically justified because the Chezy’s resistance 
coefficient must be calculated according to the parameters that influence the flow, especially the 
normal depth sought. The purpose of this paper is to show how to calculate the Chezy’s resistance 
coefficient in a rectangular channel, using the minimum of practical data. In this article, it is 
expressed the dimensionless Chezy's coefficient in order to give it a general validity character. The 
expression of this dimensionless coefficient is deduced from the comparison between the Chezy’s 
relationship and the general formula of the discharge valid for all geometric profiles. The detailed 
study of this relationship gives interesting results. It is clearly demonstrated that the dimensionless 
Chezy’s resistance coefficient depends on the relative roughness, the aspect ratio of the wetted 
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area and the modified Reynolds number. This allows concluding that the obtained relationship is 
applicable to the entire domain of turbulent flow. The graphical representation of this relationship 
shows that the dimensionless Chezy coefficient increases with the decrease of the aspect ratio of 
the wetted area, whatever the value of the modified Reynolds number. This is reflected in the 
increase of the Chezy’s coefficient when the normal depth increases. In addition, the obtained 
curves intersect the x-axis at points corresponding to the particular case of the narrow rectangular 
channel, for which the aspect ratio tends to zero. This corresponds to a rectangular channel of 
small width and large depth. For this particular case, the relationship expresses the dimensionless 
Chezy coefficient is established, showing the influence of both the relative roughness and the 
modified Reynolds number. The aspect ratio of the wetted area has no effect.  
Through a detailed practical example, it is shown how to calculate the Chezy resistance coefficient 
in a rectangular channel, from practical data. This calculation depends on the value of the relative 
normal depth in a rough rectangular channel that is easily determined using the rough model 
method. A cubic equation is obtained whose resolution is facilitated by the hyperbolic and 
trigonometric functions.  
 

 
Keywords: Chezy’s coefficient; rectangular channel; energy slope; rough model method; turbulent 

flow; discharge. 
 

1. INTRODUCTION 
 
The Chezy formula expresses the mean velocity 
v in a steady turbulent flow in open channels as: 
 

h
v C R S              (1) 

 
C is the Chezy’s resistance coefficient, Rh is the 
hydraulic radius and S is the slope of the 
channel. Eq. (1) was derived from 
hydrodynamics theory [1-3]. This formula was 
used in the construction of channels around the 
world, from the Panama Canal to the irrigation 
system of the Central Valley of California.  
 
In the literature, we find no recent relations that 
express the Chezy coefficient C. The most 
frequently cited are the old formulae of Manning 
[4], Guanguillet-Kutter [5], Bazin [6] and Powell 
[7]. 
 
Manning empirical relationship expresses the 
coefficient C as follows: 

 

1 61 /
hC R

n
                          (2) 

 

Where n is the Manning’s roughness coefficient.  

 
The Guanguillet-Kutter formula expresses C in 

terms of the hydraulic radius hR , the coefficient 

of roughness n known as Kutter’s n and the 
slope S. In M.K.S units, this formula is: 

0.00155 1
23

0.00155
1 23

h

S nC
n

S R

 



 
 
 
 

           (3) 

 

This relationship does not contain a term relating 
to the kinematic viscosity. Thus, it can not be 
applied to the entire domain of turbulent flow. Its 
application seems to be restricted to the rough 
domain for which the kinematic viscosity has no 
effect.  
 

Bazin formula expresses the coefficient C as a 

function of hydraulic radius hR , but not of the 

slope S. This formula is: 
 

87

1

h

C
m

R





             (4) 

 

Where m is a coefficient of roughness whose 
values are given by a table as a function of the 
type of the material forming the channel or the 
conduit. As for the Guanguillet-Kutter formula, 
Bazin formula contains no terms of kinematic 
viscosity. It does not therefore apply to the whole 
domain of turbulent flow. 
 
The Powell formula is more complete as it 

contains the hydraulic radius hR , the absolute 

roughness  and the Reynolds number Re. 
However, this formula is implicit, expressing C 
as: 
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42 log
4

he

C
C

R R


  

 
 
 

           (5) 

 

According to this relationship, C depends 
especially on the Reynolds number Re and 
therefore on the kinematic viscosity . In this 
relation, there is no term that expresses the 
influence of the slope S on the coefficient C. Its 
application seems to be suitable for the entire 
domain of turbulent flow. It is interesting to note 
that Powell formula contains the absolute 
roughness  which is a measurable parameter in 
practice. To determine the coefficient C by the 
Powell formula, it is necessary to use a trial-and-
error procedure. 
 
More recently, Swamee and Rathie [8] have 
attempted to propose a general relationship for 
Chezy’s coefficient C, applicable in the entire 
domain of turbulent flow and for all shapes of 
channels and conduits. However, this 
relationship is implicit, requiring also a trial-and-
error procedure especially when the linear 
dimension of the channel or conduit is not given, 
or when it comes to compute the normal depth of 
the flow. Swamee and Rathie suggested for C a 
logarithmic formula as: 
 

0.221
2.457 ln

12
h h h

C g
R R gSR

 
  

 
  
 

          (6) 

 
  is the kinematic viscosity. Apart from its 
implicit form, this relationship has the advantage 
of being very complete. All the flow parameters 
are included in this relationship. 
 
According to the literature, several tests were 
performed on corrugated pipes or large scale 
roughness in channels of non circular cross 
section that have not led to a convincing formula 
for Chezy’s coefficient.  
 
Among these studies, we can mention those of 
Streeter [9], Ead and al. [10], Pyle and Novak 
[11], Marone [12], Perry and al. [13], Naot and al. 
[14]. More recently, Giustolisi [15] used a genetic 
programming to determine Chezy’s resistance 
coefficient for full circular corrugated channels. 
For commercial pipes or artificial channels, the 
literature does not indicate specific studies. That 
is why this article is proposed which aims to 
enrich the bibliography. A simple relationship is 
proposed for the explicit calculation of the Chezy 
coefficient in rectangular channel, based on 
measurable data in practice. This relationship is 

derived from the general discharge formula 
proposed by Achour and Bedjaoui [16]. The 
obtained relationship contains all the parameters 
that affect the flow, especially the relative 
roughness, the aspect ratio of the wetted area 
and mainly the Reynolds number, in such a way 
that the relationship is applicable in the whole 
domain of turbulent flow. The Chezy’s coefficient 
relationship is presented in a dimensionless form 
in order to have a general validity character. It 
thereby enables to deduce the relationship 
governing the particular case of the narrow 
rectangular channel. The graphical 
representation of the relationship allows us to 
deduce interesting hydraulic conclusions. The 
article concludes with an example of practical 
application in which Chezy’s coefficient is 
calculated from practical data. In this example, 
the aspect ratio of the wetted area is calculated 
by the use of the rough model method that has 
been proven in the recent past by contributing 
successfully to the design of conduits and 
channels and to the calculation of normal depth 
[17-20]. 
 

2. HYDRAULICS PROPERTIES 
 
The characteristics of the flow in a rectangular 
channel (Fig. 1) are in particular: 
 

b

ny

 
 

Fig. 1. Flow in a rectangular channel 
 
1. The water area: 
 

nA by                    (7) 

 

Where b is the width of the channel and ny is the 

normal depth.  
 

2. The wetted perimeter: 
 

2 nP b y               (8) 

3. The hydraulic radius /
h
R A P : 

 

2
n

h

n

b y
R

b y



                        (9) 
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Equation (9) can be written as: 
 

 0 2
h

b
R





                      (10) 

 

In which 0 / nb y  is the aspect ratio of the 

water area.  
 

3. GENERAL RELATIONSHIP OF 
CHEZY’S COEFFICIENT 

 
Chezy’s relationship expresses the discharge Q 
as follows: 
 

h
Q CA R S                       (11) 

 
Where C is the Chezy’s coefficient and S is the 
slope of the channel. Moreover, in a previous 
study [16], Achour and Bedjaoui gave a general 
relationship of the discharge Q according to all 
parameters influencing the flow. This 
relationship, applicable to all geometric profiles, 
was established in the whole domain of turbulent 
flow encompassing smooth, transition and rough 
regimes. According to Achour and Bedjaoui [16], 
the discharge Q is given by the following formula: 
 

10 04
4 2

14 8
h

h e

.
Q g A R S

. R R


  

 
 
 

log   (12) 

 
Where Re is a Reynolds number, g is the 
acceleration due to gravity and  is the absolute 
roughness which characterizes the state of the 
inner wall of the channel. The Reynolds number 
Re is governed by the following equation: 
 

3

32 2
h

e

g S R
R


                       (13) 

 
In which  is the kinematic viscosity. Inserting 
Eq. (4) into Eq. (7) results in: 
 

 

3

3/ 2

0

32 2

2
e

gSb
R

 
          (14) 

 
Eq. (8) can be rewritten as follows: 

 
 *

0e eR R             (15) 

 
 

Where: 
 
*
eR is a modified Reynolds number expressed as: 

 

3
*
e

gSb
R


                        (16) 

 

 
 

0 3 / 2

0

32 2

2
 





          (17) 

 

Comparing Eq. (11) and Eq. (12), it is obvious 
that Chezy’s coefficient is such that: 
 

10 04
4 2

14 8
h e

.
C g

. R R


  

 
 
 

log         (18) 

 

or, in dimensionless form : 
 

10 04
4 2

14 8
h e

C .

. R Rg


  

 
 
 

log         (19) 

 

Taking into account Eq. (10), Eq. (15) and Eq. 
(17), Eq. (19) is reduced to: 
 

    2 /3

00

*

/ 10.04
/ 4 2 log

1.165 e

b
C g

R



  
  

 
 
 

(20) 

 
Eq. (20) reflects the fact that the dimensionless 

Chezy’s coefficient /C g depends on three 

parameters namely, the relative roughness /b , 

the aspect ratio 0 and the modified Reynolds 

number *
eR . Eq. (20) is the general relationship of 

Chezy’s resistance coefficient in rectangular 
channel. It can lead to the relation of Chezy’s 
coefficient in narrow rectangular channels by 

writing that 
0

0   or 
0

( ) 16   according to 

Eq. (20). Thus, Eq. (17) becomes: 
 

*

/ 0.6275
/ 4 2 log

7.4 e

b
C g

R


  

 
 
 

            (21) 

 
Thus, for narrow rectangular channels, the 
dimensionless Chezy’s coefficient 

/C g depends only on two parameters which 

are the relative roughness /b and the modified 

Reynolds number *
eR . The aspect ratio 0 has no 

effect. 
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4. VARIATION OF CHEZY’S COEFFICIENT 
  
The graphical representation of Eq. (20) is not 
easy, but it can be shown, as an indication, its 
variation for a fixed value of the relative 

roughness / b . This has been performed for 

different values of / b and for Reynolds number 
*
eR varying between 

510  and 
810 . Among all the 

obtained graphs, those of Fig. 2 and Fig. 3 are 
representative.  Fig. 2 translates the variation of 

/C g versus the aspect ratio 0 and the 

modified Reynolds number *
eR , for 

0/ b  corresponding to a smooth inner wall of 
the channel. Fig. 3 shows the variation of 

/C g  versus the aspect ratio 0 and the 

modified Reynolds number *
eR , for 

0 01/ b .  corresponding to a state of the rough 
inner wall of the channel.  
 

0

0,5

1

1,5

2

2,5

3

25 30 35 40 45 50

/C g

0 / nb y 

0.5

1.5

2.5

510 610 710 810

*
eR

 
 

Fig. 2. Variation of C / g versus 0 and *
eR , 

according to Eq. (20), for 0/ b  
 

0

0,5

1

1,5

2

2,5

3

13 14 15 16 17

/C g

510
810

0.5

1.5

2.5

*
eR

0 / nb y 

 
 

Fig. 3. Variation of C / g versus 0 and *
eR , 

according to Eq. (20), for 0 01/ b .  
 

Fig. 2 clearly shows that, for a given value of the 

modified Reynolds number *
eR , C / g increases 

as 0  decreases. This means that for a given 

rectangular channel whose width b is known, 

C / g increases with the increase of the normal 

depth ny . Fig. 2 also shows that 

C / g increases with the increase of the 

modified Reynolds number *
eR , for a given value 

of the aspect ratio 0 . The curves of Fig. 2 and 

Fig. 3 intersect the C / g axis at points 

corresponding to the particular case of the 

narrow rectangular channels for which
0

0  . 

This particular case is governed by Eq. (15). 
  

For the relative roughness 0 01/ b .  , Fig. 3 
shows the plot of two curves which are virtually 
overlapping, corresponding to the modified 

Reynolds numbers * 510eR  and * 810eR  . This 

reflects the fact that the rough turbulent regime is 
reached for which there is no influence of the 

modified Reynolds number *
eR , or the kinematic 

viscosity  of the flowing liquid, onC / g . The 

dimensionless Chezy's coefficient 

C / g depends solely on the aspect ratio 0 and 

the relative roughness / b . This case is 

governed by Eq. (14), writing that *
eR   . 

Hence: 
 

  2 / 30

/
/ 4 2 log

1.165

b
C g



 
 

 
 
 

        (22) 

 
5. COMPUTATION STEPS OF CHEZY’S 

COEFFICIENT 
 
To calculate Chezy’s coefficient, it is necessary 
that the following parameters are known: the 
discharge Q, the slope S, the absolute 
roughness , the width b of the channel and the 
kinematic viscosity  of the flowing liquid. 
Considering these parameters, the following 
steps are recommended to compute Chezy’s 
coefficient: 
 

1. Compute the relative normal depth 

/
n
y b 

 
and deduce the aspect ratio 

0 1 // nb y    . To calculate the relative 

normal depth, it is preferable to use the 
rough model method [16-20]. An example 
of practical application will be presented in 
which this method will be presented and 
detailed. 

2. Calculate the value of  
0

  in 

accordance with Eq. (17). 

3. Compute the relative roughness / b . 
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4. Compute the value of the modified 

Reynolds number *
eR using Eq. (16). 

5. Thus, Chezy’s coefficient C is worked out 
with the aid of Eq. (20). 

 
6. PRACTICAL EXAMPLE 
 
Compute Chezy’s coefficient C for the following 
data: 
 

3
3.861 /Q m s ; 2b m ; 0.001m  ; 

0.001S  ; 
6 2

10 /m s


  

 
1. The first step is to evaluate the relative normal 
depth. Use for this the rough model method. The 
rough model is a rectangular channel of 

widthb b , flowing a discharge Q Q under a 

slope S S . It is also characterized by a friction 

factor 1 / 16f  , arbitrarily chosen in the fully 

rough regime. Consequently, the relative normal 

depth in the rough model is such that  . 

Applying the Darcy-Weisbach relationship [21] to 
the flow in the rough model, we easily obtain the 

following equation of third degree in :  

 
* *2 23

0
64 128

Q Q
                           (23) 

 

Where 
*
Q is the relative conductivity, expressed 

as: 

*

5

Q
Q

gSb


                                   (24) 

 

The discriminant of Eq. (17) can be written as: 
 

* * *
4

1 1
16 6 3 6 3

Q Q Q     
      
     
     

 
         (25) 

 

 

Eq. (19) shows that two cases arise: 
 

a) 
*

6 3Q  , then 0  . The real root of Eq. 

(17) is: 
 

*
cos( / 3)

4 3

Q
            (26) 

 
where the angle  is as: 

 

*

6 3
cos( )

Q
             (27) 

 

b). 
*

6 3Q  , then 0  . The real root of Eq. 

(23) is: 
 

*

c ( / 3)
4 3

Q
h                         (28) 

 
where ch is the hyperbolic cosine. The angle 
 is as: 

 

*

6 3
( )ch

Q
                          (29) 

 
For the data given in the problem statement, the 
relative conductivity Q

*
 is given by Eq. (24) as: 

 

*

55

3.861
6.89112787

9.81 0.001 2

Q
Q

gSb


 
   

 
The relative conductivity so calculated is less 

than 6 3 , which permits the conclusion that the 

relative normal depth  in the rough model is 

governed par Eq. (28) along with Eq. (29). 
According to Eq. (29), the angle  is: 
 

 *6 3 / cosh(6 3 / 6.8911787) 0.96960721cosh Q aa   
 

 

Using Eq. (28), the relative normal depth  is then: 
 

* 6.89112787
(0.96960721 / 3) 1.04705283

4 3
c ( / 3)

4 3
ch

Q
h   


  
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The water area A of the rough model is: 
 

2 2 2
2 1.04705283 4.18821133A b m  

 
 

The wetted perimeter P in the rough model is as: 
 

(1 2 ) 2 (1 2 1.04705283) 6.18821133P b m      
 

 

The hydraulic diameter 4 /
h
D A P is then: 

 

4 4.18821133 / 6.18821133 2.70721933
h
D m    

 

Thus, the Reynolds number eR which characterizes the flow in the rough model is:  

 

6

4 4 3.861
2495713.09

6.18821133 10
e

Q
R

P






   

 
According to the rough model method, the non-dimensional correction factor of linear dimension  is 

related to the hydraulic characteristics of the rough model by the following relationship: 
 

2 5

8 5
1 35

4 75

/

h

e

/ D .
.

. R






  
  

  
  

log                                                                                          (30) 

 

Whence: 
2 5

0 001 270721933 85
135 076845584

475 249571309

/
. / . .

. .
. .





   
       
log  

 

Assign to the rough model the new linear dimension /b b  . This results in the equality of the 

relative normal depths in the rough model and in the current channel, i.e.   . For the new linear 

dimension /b b  , the relative conductivity is: 

 

*

55

3.861
3.56728326

9.81 0.001 (2 / 0.76845584)( / )

Q
Q

gS b 


 
   

 

The relative conductivity so calculated is less than 6 3 , implying that the relative normal depth 

  is governed par Eq. (28) along with Eq. (29). According to Eq. (29), the angle  is: 
 

 *6 3 / cosh(6 3 / 3.56728326) 1.73155729cosh Q aa   
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Using Eq. (28), the relative normal depth sought is then: 
 

* 3.56728326
(1.73155729 / 3) 0.60306724

4 3
c ( / 3)

4 3
ch

Q
h   


  

 

The aspect ratio 0 1 // nb y     is: 
 

0 1 / 1 / 0.60306724 1.6581899  
 

 

2. According to Eq. (17), one may write: 
 

 
   3/2 3/20

0

32 2 32 2
6.4679344

2 1.6581899 2
 






 
    

 

3. The relative roughness / b is: 
 

 0 00050 001 2 ./ b . /    
 

4. According to Eq. (10), the modified Reynolds number *
eR  is as: 

 

 

3 3

6

* 9.81 0.001 2
280142.821

10
e

gSb
R

 

 
   

 

5. Thus, with the aid of Eq. (14), the dimensionless Chezy’s coefficient C / g  is: 

 

 
    2/3

00

*

/ 10.04
/ 4 2 log

1.165 e

b
C g

R



  
  

 
 
 

 

 

2/3

0.0005 10.04
4 2 log 21.9985195

1.165 6.4679344 280142.821 6.4679344
   

 

   
 

 

 
The required Chezy’s coefficient C is then:  
 

0.5 0.5
21.9985195 21.9985195 9.81 68.9 69/ /C m mg s s     

 
6. This step aims to calculate Chezy's coefficient using the relationship given by the rough model 
method. According to this method, the Chezy’s coefficient C is related to the non-dimensional 
corrector factor of linear dimension  by the following simple equation: 

 

5 2

8 2
/

g
C


                                                                                              (31) 

Whence: 
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Thus, the relative deviation between the 
coefficients of Chezy calculated in steps 5 and 6 
is about 0.65% only. This means firstly that Eq. 
(31) is reliable, and secondly the computation 
step of the relative normal depth  can be 
avoided. Only the calculation of the relative 

normal depth  in the rough model is necessary, 

as explained in step 1.  
 

7. CONCLUSIONS 
 
Using the general discharge relationship, the 
expression of the non-dimensional Chezy’s 

coefficient C / g was established for a 

rectangular channel. The obtained expression 

clearly showed that C / g depends on the 

relative roughness /b, the aspect ratio 0 of the 
wetted area and the modified Reynolds number 
*
eR characterizing the state of the flow. This in 

turn depends on the slope S, the width b of the 
channel and the kinematic viscosity. All 
parameters influencing the flow are represented 

in the expression of C / g , unlike current 

relationships. The resulting relationship was 
presented in dimensionless terms, giving it a 
general validity character. Its graphical 
representation clearly showed that 

C / g increases with the decrease of the 

aspect ratio 0, whatever the value of the 

modified Reynolds number *
eR . The obtained 

curves intersect the x-axis at points 

corresponding to 
0

0  , reflecting the 

particular case of narrow rectangular channel. 

For this case, the expression of C / g was 

established, showing the influence of the relative 
roughness /b and the modified Reynolds 

number *
eR .     

 
Calculating C requires the determination of the 
relative normal depth . We have shown, through 
a practical example, that this relative depth is 
easily determined by the rough model method, 
provided the discharge Q, the slope S, the width 
b and the kinematic viscosity  are given.  
 
For future research it would be interesting to 
apply the rough model method for the calculation 
of the Chezy’s resistance coefficient C in other 
geometric profiles of open channels.  
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