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Abstract 
Gastric cancer remains the third most common cause of cancer-related death. 
Histopathological examination of gastric cancer is the gold standard for the 
diagnosis of gastric cancer. However, manual pathology examination is time- 
consuming and laborious. Computer-aided diagnosis (CAD) systems can as-
sist pathologists in diagnosing pathological images, thus improving the effi-
ciency of disease diagnosis. In this paper, we propose a two-branch network 
named LGFFN-GHI, which can classify histopathological images of gastric 
cancer into two categories: normal and abnormal. LGFFN-GHI consists of 
two parallel networks, ResNet18 and Pvt-Tiny, which extract local and global 
features of microscopic gastric tissue images, respectively. We propose a fea-
ture blending module (FFB) that fuses local and global features at the same 
resolution in a cross-attention manner. This enables ResNet18 to acquire the 
global features extracted by Pvt-Tiny, while enabling Pvt-Tiny to acquire the 
local features extracted by ResNet18. We conducted experiments on a novel 
publicly available sub-size image database of gastric histopathology (Ga-
sHisSDB). The experimental results show that LGFFN-GHI achieves an ac-
curacy of 96.814%, which is 2.388% and 3.918% better than the baseline me-
thods ResNet18 and Pvt-Tiny, respectively. Our proposed network exhibits 
high classification performance, demonstrating its effectiveness and future 
potential for the gastric histopathology image classification (GHIC) task. 
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1. Introduction 

Gastric cancer is a global health problem, with more than 1 million people newly 
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diagnosed with the disease each year worldwide. Despite a global decline in in-
cidence and mortality over the past 50 years, gastric cancer remains the third 
leading cause of cancer-related death [1]. Gastric cancer remains a globally im-
portant cancer, According to estimates from the GLOBOCAN project of the In-
ternational Agency for Research on Cancer [2], more than 1 million new cases 
and an estimated 769,000 deaths occur in 2020 (equivalent to 1 in 13 deaths 
worldwide), ranking fifth in incidence and fourth in mortality worldwide. Most 
gastric cancers are diagnosed at an advanced stage because they have latent and 
non-specific symptoms that lead to a poor prognosis. It has been reported that 
early and accurate detection of gastric cancer can improve the 5-year survival 
rate of patients by about 90% [3] [4]. However, the diagnosis of early gastric 
cancer is largely limited by the number of experienced imaging specialists. In 
addition, diagnostic accuracy depends heavily on the clinical experience of the 
specialist and is susceptible to a variety of factors. Qualified specialists are also 
unlikely to avoid all misdiagnoses and missed diagnoses [5]. The traditional 
method of gastric cancer diagnosis is to identify the morphological features of 
malignant cells by histopathological biopsy specimens, while manual pathologi-
cal examination of gastric sections is time-consuming and laborious [5]. 

Recent advances in machine learning and image processing have enabled the 
development of CAD systems for faster detection and diagnosis of gastric cancer 
from histopathological images. CAD systems analyze histopathological images of 
sample tissues to identify histopathological patterns corresponding to cancerous 
and non-cancerous conditions and classify histopathological images as benign 
and malignant, respectively. The main challenge in classifying histopathological 
images of gastric cancer is the inherent complexity of histopathological images, 
such as cell overlap, subtle differences between images, and uneven color distri-
bution. Recently developed deep learning methods using hematoxylin and eosin 
(H&E) stained whole section images have shown the potential to rapidly detect 
adenocarcinomas in gastric biopsy and resection specimens with relatively high 
sensitivity and specificity, which can support future diagnostic pathology workflows 
as well as further analysis by accurately segmenting cancer regions [6]. 

The aim of this study is to develop an accurate and reliable classification mod-
el for histopathological images of gastric cancer. The deep learning classification 
model we developed consists of three main parts, two parallel branches and an 
information exchange module between them. First, using ResNet18 [7] branch 
to extract the local information of gastric tissue image. Then, the PVT-Tiny [8] 
branch is used to extract the global information describing the gastric tissue im-
age. Finally, we propose the bidirectional cross-attention module that fuses local 
and global information, which enables the ResNet18 branch to acquire the global 
information extracted by the PVT-Tiny branch, and enables the PVT-Tiny 
branch to acquire the local information extracted by the ResNet18 branch. 

This paper is organized as follows: Section 2 presents the literature review. 
Section 3 introduces the classification model based on LGFFN-GHI for gastric 
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tissue images. Section 4 presents the data and experimental setup. Section 5 
compares the performance of our model with several classical deep learning 
models. Section 6 gives the conclusion of this paper. 

2. Related Works 

In the study of [9], the authors compared three aspects of feature extraction, 
feature dimensionality reduction, and classifier for histopathological images of 
gastric cancer. In the classifier, this work compares random deep forest (RF) and 
artificial neural network (ANN). ANN classifier outperforms RF classifier. In the 
study of [10], the authors proposed a method to classify histopathological images 
of gastric cancer by nuclear attribute relationship map. The images are pre-analyzed 
and the cell nuclei are first segmented, followed by selective nuclear classifica-
tion. Based on the classification, different types of nuclei were constructed into 
cell relationship maps, and features were extracted for each cell relationship map. 
A total of 332 feature vectors, including mean, variance, skewness and kurtosis, 
were extracted based on the features of the maps. Finally, RF was used for classi-
fication. In the study of [11], the authors proposed three deep learning classifica-
tion algorithms for gastric cancer histopathology. The first set of experiments 
was classified by convolutional neural network (CNN) method. The accuracy of 
the classification results was 86.4%. In the second set of experiments, features 
were extracted by CNN and then classified by RBF kernel support vector ma-
chine. The accuracy of the classification result is 89.2%. The third set of experi-
ments uses K-SVD to learn the features extracted by CNN to get the complete 
dictionary, and then performs sparse decomposition. The classification was per-
formed using a linear kernel support vector machine, and the classification ac-
curacy was 95%. 

In the study of [12], a nine-layer deep convolutional neural network (DCNN) 
is proposed, which consists of three convolutional layers, three maximum pool-
ing layers, two fully connected layers, and one output layer. This work yielded an 
accuracy of 96.88%. In the study of [13], the authors designed a supervised feed- 
forward CNN model. The network classified tumor and necrotic regions with 
69.9% and 81.4% accuracy, respectively. In addition, several comparative expe-
riments were conducted in this work. AlexNet was used for deep learning, color 
and texture features were used for machine learning, and RF was used for classi-
fication. In the study of [14], the authors propose a new deep learning network- 
based model for classification of histopathological images of gastric cancer. To 
extract deep features, the proposed deep learning network has different struc-
tures, a shallow multiscale module and a deep network module. Several compar-
ison experiments were performed, such as AlexNet, VGG-16, ResNet-50, ResNet- 
101, Inception-V4, and DenseNet-121. After comparison, the proposed network 
achieved good results. For the patch level, the classification accuracy of the mod-
el is 97.93%. For the slice level, the classification accuracy of the model is 100%. 
In the study of [15], the authors constructed a 50-layer residual network model. 
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In this model, multi-size convolutional kernels are used to extract features, and 
after extensive training, the network achieves an output F-score of 95.5%. In the 
study of [16], a feature balancing module (FBM) is proposed that can distinguish 
subtle differences in images. The balancing module has two types of channels: 
the first is a channel attention (CA) module and the second is a spatial attention 
(SA) module. In the study of [17], the authors propose a ten-layer convolutional 
neural network, in which three convolutional layers extract features, four pool-
ing layers reduce the image size, and three fully connected layers output feature 
values. In the study of [18], the authors propose a recalibration-based multi- 
instance deep learning method for histopathological image classification of gas-
tric cancer. In this method, two convolutional layers and one pooling layer are 
added to transform the ResNet-v2 network into a full network model. The pool-
ing layer is averaged pooling with two convolutional layers: one for feature ex-
traction and the other for classification. In the study of [19], the authors fused 
the two networks, DeepLab-V3 and ResNet-50, and introduced the structure of 
the ResNet-50 network into DeepLab-V3 and built a new convolutional neural 
network on top of DeepLab-V3. In this work, 2,166 complete slices were selected 
as the training set and 300 slices as the test set. After extensive training, the final 
accuracy of the model is 87.3%, sensitivity is 99.6%, and specificity is 84.3%. In 
the study of [20], the authors propose a multi-scale deep learning network, in 
which images with different magnifications are selected from the whole WSI 
images, patches of the same size are extracted from the images with different 
magnifications, and then these patches are put into the deep HIPO. Then, this 
multi-scale deep learning network can learn images of multiple scales. In the 
study of [21], the authors used the standard Inception-V3 network framework. 
By changing the depth multiplier, the parameters can be reduced. To increase 
the robustness of the images, data enhancement methods such as mirroring and 
rotation are used. The Adam optimization algorithm is used to optimize the 
network. After extensive training, the network model with the lowest validation 
error was selected. In the study of [22], the authors propose three classical con-
volutional neural networks for image classification: AlexNet, ResNet-50 and In-
ception-V3. In the data selection, ten-fold cross validation is used to test the per-
formance of the classification. The data is divided into ten parts, train:validation:test 
= 8:1:1. For each combination, the classification results of the three classical 
networks are obtained. Finally, the ten results are a series of outputs that are 
used to calculate accuracy, sensitivity and specificity. In the study of [23], an in-
telligent attention mechanism (HCRF-AM) model based on hierarchical condi-
tional random fields is proposed in. The HCRF-AM model consists of an atten-
tion mechanism (AM) module and an image classification (IC) module. In the 
AM module, the HCRF model is built to extract attention regions. In the IC 
module, a convolutional neural network model is trained using the selected at-
tention regions, and then an integrated learning algorithm for classification 
probability is used to obtain image-level results from the patch-level output of 
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the CNN. In addition, the AM module and migration learning techniques enable 
the network to generalize well to other types of image data in addition to histo-
pathological images. In the study of [24], a novel multi-instance classification 
framework based on graph convolutional network (GCN) is proposed for gastric 
microscopy image classification. First, patch embeddings are generated by fea-
ture extraction. Then, graph structure is introduced to model the spatial topo-
logical structure relationship between instances. In addition, a graph classifica-
tion model with hierarchical pooling is constructed to implement this multi- 
instance classification task. 

Previous studies have used convolutional neural network to recognize patho-
logical images of gastric cancer. CNN model is the main type of deep learning, 
which can be applied to many machine vision tasks. CNN model also has some 
shortcomings, one of which is that CNN model can not handle global informa-
tion well. In contrast, the vision transformer (ViT) model used in the field of 
computer vision can extract more abundant global information. In medicine, the 
composition of histopathological images is complex. The proportion of abnor-
mal areas in some abnormal images is large, while the proportion of abnormal 
areas in some abnormal slices is small. Therefore, the model used for the classi-
fication task of tissue pathological images must have a strong ability to compre-
hensively extract global and local information. Considering the actual situation 
of CNN and ViT models, we heuristic proposed a hybrid model for GHIC tasks, 
namely LGFFN-GHI, which integrates local information and global information 
into an organic whole (Figure 1). 

3. Methodology 
3.1. CNN Branch: ResNet18 

The branch of the LGFFN-GHI model used to extract local features from gastric 
tissue images is ResNet18 [7]. ResNet18 consists of a pyramid model with a back-
bone block stacked with four stages of residual blocks, and the size of the feature 
map output at each stage is halved while the number of channels is doubled. 

3.2. Transformer Branch: PVT-Tiny 

Since Vision Transformer (ViT) [25] was introduced to image classification 
tasks in 2021 and has been successful. There has been a lot of work devoted to 
various variants of ViT [8] [26]-[33] for computer vision tasks such as image 
classification, target detection, image segmentation, etc. PVT (Pyramid Vision 
Transformer) [8] is one of the ViT variants for intensive prediction tasks such as 
image detection and image segmentation. PVT introduces a pyramid structure 
similar to CNN compared to ViT, making PVT apply as a backbone like CNN 
for intensive prediction tasks, such as segmentation and detection. Similar to the 
CNN backbone [7] similarly, PVT has four stages to generate feature maps at 
different scales. All stages share a similar architecture, which consists of a patch 
embedding layer and iL  Transformer encoder layers. 
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Figure 1. Local-global feature fuse network (LGFFN-GHI). The upper row shows the overall structure of LGFFN-GHI. The bot-
tom row shows the specific implementation of the third phase. 

 
In the first stage, given an input image of size 3H W× × , it is first divided into  

24
HW  patches, each of size is 4 4 3× × . Then, the flattened patches are input 

into the linear projection to obtain patches of size 124
HW C×  of the embedded  

patches. Then, the embedded patches are passed together with the positional 
embedding through a Transformer encoder with 1L  layers, and the output is  

reconstructed as a feature map of size 14 4
H W C× ×  feature map of size 1F . Simi-  

larly, using the feature map from the previous stage as input, the following fea-
ture map is obtained: 2F , 3F , 4F , which are in steps of 8, 16, 32 pixels with 
respect to the input image, respectively. 

The Transformer encoder for stage i has iL  encoder layers, each consisting 
of an attention layer and a feedforward layer [34]. Since PVT needs to handle 
high-resolution (e.g., 4-stride) feature mapping, a space-reduction attention 
(SRA) layer is proposed to replace the traditional multi-head attention (MHA) 
layer in the encoder [34]. The SRA is similar to the MHA. Similar to MHA, SRA 
receives a query Q, a key K and a value V as input and outputs a fine-grained 
feature. The difference is that SRA reduces the spatial scale of K and V before the 
attention operation, which greatly reduces the computational or memory over-
head. The details of the SRA in phase i can be expressed as follows: 
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( ) ( )0, , , ,
i

O
NSRA Q K V Concat head head W=             (1) 

( ) ( )( ), ,Q K V
j j j jhead Attention QW SR K W SR V W=          (2) 

which ( )Concat ⋅  is the connection operation in [34]. i headC dQ
jW ×∈ ,  

i headC dK
jW ×∈ , i headC dV

jW ×∈  and i iC COW ×∈  are the linear projection pa-
rameters. iN  is the number of heads of the attention layer in stage i. Therefore,  

the size of each head (i.e. headd ) is equal to i

i

C
N

. ( )SR ⋅  is the operation to reduce  

the spatial dimensionality of the input sequence (i.e., K or V), is denoted as fol-
lows: 

( ) ( )( ), S
iSR X Norm Reshape X R W=                 (3) 

where i i iH W CX ×∈  denotes an input sequence, and iR  is the reduction rate of 
the attention layer in stage i. ( ), iReshape X R  is the operation that reshapes the  

input sequence x into a sequence of size ( )2
2

i i
i i

i

H W
R C

R
× . 

2
i i iR C C

sW ×∈  is reduces  

the dimensionality of the input sequence to a linear projection of iC . ( )Norm ⋅  
representation layer normalization [35]. Same as the attention operation in the 
original Transformer [34], the formula for the calculation of ( )Attention ⋅  as 
follows: 

( ), ,
T

head

qkAttention q k v Softmax v
d

 
=   

 
                (4) 

3.3. LGFFN-GHI 

Figure 1 depicts the structure of LGFFN-GHI. The CNN branch uses the Res-
Net18 network structure. It consists of a backbone network, four stages of resi-
dual blocks and classifiers connected. Two residual blocks are included in each 
stage. The first residual block in each stage halves the size of the input feature 
map and doubles the number of channels. In contrast to the way the feature 
maps of the original network are reduced in resolution, we introduce the Transi-
tion module [36]. The Transition module is a Conv-Batch Normalization-Relu- 
Batch Normalization-Avg Pooling sequence. Transformer branch uses the PVT- 
Tiny network. It is similar to ResNet18 and contains four stages and a classifier. 
Each stage consists of a patch embedding layer and two Transformer encoders. 
To be consistent with ResNet18 feature dimension, we change the output feature 
dimension of the third stage from 320 to 256. The linear mapping of the tradi-
tional Transformer is changed to a convolutional operation in PVT, and the ze-
ro-fill operation of convolution can imply position information [37], so we re-
move the position encoding in PVT-Tiny. For classification, PVT uses the tradi-
tional ViT approach to add a category tag to the last layer of Transformer en-
coder. We use PVTv2 on the PVT-Tiny branch [38] approach, i.e., the output of 
the last layer of Transformer encoder is averaged as the category marker. 
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3.4. Feature Fuse Block (FFB) 

In order to blend the local features extracted by the ResNet18 branch and the 
global features extracted by the PVT-Tiny branch, we propose a local-global 
feature blending module. The module consists of two branches using bidirec-
tional concordance to mix local and global features respectively. In each stage, it 
is placed in front of the residual block and the Transformer encoder layer. The 
specific formula for the PVT-Tiny-> ResNet18 branch is follows: 

( ) ( )( ), ,K V
Z ZX Attention X SR ZW SR ZW X= +             (5) 

where i i iH W CX × ×∈  is the input feature map of ResNet18 in stage i, and  
i i iH W CZ ×∈  is the input sequenc of PVT-Tiny in stage i. i iC CK

ZW ×∈  and  
i iC CV

ZW ×∈  are the linear projection parameters. The formulas ( )SR ⋅  accord-
ing to (3), in order to reduce the computational, the settings of iR  from the first 
stage to the fourth stage are 8, 4, 2 and 1, respectively. The ( )Attention ⋅  calcu-
lation formula differs from equation (4) by changing headd  is changed to iC . 
Similarly, the specific formula for the ResNet18 -> PVT-Tiny branch is follows: 

( ) ( )( ), ,K V
X XZ Attention Z SR XW SR XW Z= +              (6) 

where i iC CK
XW ×∈  and i iC CV

XW ×∈  are linear projection parameters. 

4. Data and Experimental Parameter Settings 
4.1. GasHisSDB Dataset 

Four pathologists from Longhua Hospital of Shanghai University of Traditional 
Chinese Medicine provided 600 pathological images of gastric cancer in size of 
2048 × 2048. Three sizes of pathology images (160 × 160, 120 × 120, 80 × 80 pix-
els) were directly cropped to obtain the database GasHisSDB [39]. Among them, 
13, 124 abnormal images and 20, 160 normal images were sub-database of 160 × 
160 pixel size. Normal: no cancer cells were present in the images. Abnormal: 
cancer cells were present in the images. Each normal image did not contain can-
cerous areas. Each cell had no or very small anisotropy. In the abnormal images, 
the cancer cells are often in irregularly arranged multilayers with nuclei of varia-
ble size and division [40]. Figure 2 shows some samples of normal and abnor-
mal gastric cancer pathology images. The training set, validation set and test set 
were randomly divided in the ratio of 6:2:2 on a 160 × 160 sub-data set. 

4.2. Experimentation Settings 

We used Pytorch to write our code. The computing platform used was an Nvidia 
Tesla M40 24GB graphics processing unit. In the training phase, AdamW was 
used as an optimizer with a learning rate set to 1e−5 and trained for 100 epochs. 
During training, no data enhancement strategy was used. After training, the 
model with the lowest loss in the validation set was selected for testing. 

4.3. Evaluation Metrics 

In this study, Accuracy, Precision, Recall, Specificity, and F1 Score were used as  
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Figure 2. Some samples of 160 × 160 pixel size in GasHisSDB. A, B, and C are images of 
normal tissues, and D, E, and F are images of tissues containing cancer cells. 
 
metrics to evaluate the model for classifying gastric pathology images. For the 
problem of class imbalance in gastric pathology images, Matthew correlation 
coefficient (MCC) [41] [42] was also used for evaluation. It is one of the balance 
metrics for unbalanced datasets, considering true and false predictions for both 
negative and positive categories. The diagnostic significance of the classifier at 
different thresholds is evaluated by plotting the accuracy-recall (PR) and receiver 
operating characteristic (ROC) curves. They are mathematically formulated as 
follows: 

TP TNAccuracy
TP TN FP FN

+
=

+ + +
                 (7) 

TPPrecision
TP FP

=
+

                      (8) 

TPRecall
TP FN

=
+

                        (9) 

TNSpecificity
TN FP

=
+

                     (10) 

Precision RecallF1 2
Precision Recall

⋅
= ⋅

+
                  (11) 

( ) ( )
( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

⋅ − ⋅
=

+ + + +
      (12) 

where TP refers to correctly predicted abnormal images, TN refers to correctly 
predicted normal images, FP refers to incorrectly predicted abnormal images, 
and FN refers to incorrectly predicted normal images. 

5. Results and Discussion 

To validate the performance of the proposed model for classifying pathological 
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images of gastric cancer, we compared it with several classical deep learning 
models, including AlexNet [43], VGG16 [44], Inception-V3 [45] and ResNet50 
[7]. To further validate this benefit by combining the two networks, we also 
trained ReNet18 and PVT-Tiny independently for comparison with our pro-
posed approach. 

The training process of the proposed deep learning model is shown in Figure 
3 and Figure 4, where the model converges after 100 epochs of training. The loss  
 

 
Figure 3. Accuracy curves of LGFFN-GHI on the training and validation sets. 

 

 
Figure 4. Loss curves of LGFFN-GHI on the training and validation sets. 
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of the validation set reaches a minimum of 0.1417 at the 91st epoch (Figure 4), 
at which time the accuracy of the training and validation sets are 96.83 and 95.75, 
respectively (Figure 3). Figure 5 shows the LGFFN-GHI classification confusion 
matrix on the test set. Out of a total of 6656 test images, 4032 images were in the 
normal category and 2624 images were in the abnormal category. Among them, 
3960 images of the normal category were classified correctly and 72 images were 
classified incorrectly. The images in the abnormal category were classified cor-
rectly in 2484 images and incorrectly in 140 images. As can be seen from Figure 
5, our model is generally accurate for the secondary classification of gastric can-
cer, which fully demonstrates that our proposed method is effective and can be 
applied to the binary classification problem of gastric cancer. 

Table 1 shows the model evaluation results of LGFFN-GHI with other models 
on the test set. In terms of classification accuracy, the lowest is 84.960% for In-
ception_v3, while our proposed method achieves the highest 96.814%. Among 
them, ResNet18 and Pvt-Tiny reached 94.426% and 92.833%, respectively, and 
LGFFN-GHI improved by 2.388% and 3.918%, respectively. The proposed clas-
sification method achieves the highest precision, recall, specificity, F1 score and 
Matthew correlation coefficient all with 97.183%, 94.664%, 98.214%, 95.907% 
and 93.322%, respectively. Among them, the precision improved by 4.754% and 
7.262%, the recall improved by 1.143% and 2.515%, the specificity improved by 
3.2% and 4.936%, the F1 score improved by 2.935% and 4.885%, and the Mat-
thew correlation coefficient improved by 4.964% and 8.245%. It can be seen that 
the two branches in LGFFN-GHI, ResNet18 and Pvt-Tiny, can benefit from each 
other's extracted information through FFB as a bridge of information exchange. 
LGFFN-GHI outperforms the base model in accuracy, precision, recall, specific-
ity, F1 score and Matthew correlation coefficient. The CNN branch of LGFFN- 
GHI is ResNet18, which is good at capturing local information in images, such 
as the structural information of cell clusters composed of several cells in gastric 
pathology tissue images. The Transformer branch of LGFFN-GHI is Pvt-Tiny, 
which can directly extract the global information in the image, such as the rela-
tionship between cell clusters in the gastric pathology tissue image and the image 
texture information. FFB in LGFFN-GHI serves as a bridge for information ex-
change, enabling ResNet18 and Pvt-Tiny to benefit from each other's extracted 
information.  

Figure 6 shows the ROC curves of the three classifiers LGFFN-GHI, ResNet18 
and Pvt-Tiny on the test set, and their AUC values are 99.3%, 98.9% and 98.1%, 
respectively, and our proposed method improves 0.4% and 1.2% over ResNet18 
and Pvt-Tiny, respectively. This indicates that LGFFN-GHI can effectively ex-
tract feature information, and has high robustness, so as to effectively improve 
the accuracy of gastric cancer classification. Relatively speaking, the AUC value 
of Pvt-Tiny is significantly lower, indicating that the extracted features are not 
sufficient for gastric cancer classification, and there is a certain gap between 
PVT-TINY and LGFFN-GHI. 
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Table 1. Results of LGFFN-GHI compared with different models on the test set (%). 

Model Accuracy Precision Recall Specificity F1Score MCC 

ResNet18 94.426 92.429 93.521 95.014 92.972 88.358 

Pvt-Tiny 92.833 89.921 92.149 93.278 91.022 85.077 

AlexNet 90.985 88.953 88.071 92.881 88.510 81.096 

Vgg16 95.582 96.120 92.53 97.569 94.291 90.735 

Inception_v3 84.960 78.089 85.975 84.300 81.842 69.291 

ResNet50 91.195 87.463 90.663 91.542 89.034 81.720 

LGFFN-GHI 96.814 97.183 94.664 98.214 95.907 93.322 

 

 
Figure 5. Confusion matrix of LGFFN-GHI in the test set. 

 

 
Figure 6. ROC curves of LGFFN-GHI, ResNet18 and Pvt-Tiny on the test set. 
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6. Conclusions and Future Work 

In this paper, an LGFFN-GHI model is proposed to classify histopathological 
images of gastric cancer into normal and abnormal. In the experiment, LGFFN- 
GHI was tested on the publicly available gastric cancer histopathology dataset 
(GasHisSDB) to achieve 96.814% accuracy. Our model outperforms classical neur-
al network models, including AlexNet, VGG16, Inception-V3, ResNet50, ReNet18 
and PVT-Tiny, showing its potential for gastric cancer histopathology image 
classification tasks. The model not only considers the advantages of classical 
CNN models in describing local information, but also uses the latest Transfor-
mer model for global information description, considering both global and local 
associations of images in spatial context. 

Although LGFFN-GHI is very effective for gastric cancer diagnosis, this me-
thod needs to be validated on a larger dataset before it can be used in the clinic. 
We intend to include this work as part of our future work. In addition, we would 
like to explore LGFFN-GHI for breast, colon and prostate cancer diagnosis. The 
number of parameters of LGFFN-GHI is larger than the general model, and we 
will further optimize it to reduce the number of parameters in the future. 
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