
 

________________________________________ 
 
*Corresponding author: Email: ifeoluwa.oladapo@gmail.com; 
 

J. Adv. Math. Com. Sci., vol. 38, no. 7, pp. 1-11, 2023 

 
 

 

Journal of Advances in Mathematics and Computer Science 

 
Volume 38, Issue 7, Page 1-11, 2023; Article no.JAMCS.96774 
ISSN: 2456-9968 

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851) 

 

_______________________________________________________________________________________________________________________________________ 

 

An Alternative Estimator for the 

Estimation of Polynomial Regression  

Model (PRM) 
 

David I. Oladapo 
a*

, Eli Yaovi Ametepey 
b
,  

Victor O. Akinsola 
a
, Folake A. Amao 

a
 and Samuel B. Atoyebi 

c
 
 

a 
Department of Mathematical Science, Adeleke University, Ede, Osun State, Nigeria. 

b 
Operations and Maintenance Manager, CSquared Ghana Limited, Nigeria. 

c 
Department of Statistical Data and Research Analysis, DSK Statistical Consult Ltd., Nigeria. 

 

Authors’ contributions 

 

This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 

 

Article Information 

 
DOI: 10.9734/JAMCS/2023/v38i71768 

 

Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  peer review 

comments, different versions of the manuscript, comments of the editors, etc are available here: 
https://www.sdiarticle5.com/review-history/96774 

 

 

Received: 21/12/2022 

Accepted: 25/02/2023 

Published: 30/03/2023 

__________________________________________________________________________________ 
 

Abstract 
 

The maximum likelihood (ML) approach is used to fit the polynomial regression model (PRM) in the 

presence of small sample sizes. The ML technique is applied to the data of PPP, GDP, and output/total 

production cost in Nigeria between 1989 and 1999. The results of the analyses (by ML approach and that of 

the OLS) are presented for comparison. The analysis shows that the ML gives parameter estimates of 

128.889, -5.24, -29.208, 10.523 and the OLS resulted in 128.009, 5.196, -30.376, 11.009. The analysis of the 

first data set (of iron content and weight loss of some specimen tested in a corrosion wheel set-up) shows that 

both estimators accounted for good fit because they both have high R2 values and significant t-ratios. The 

result of the model fit of the four data sets using ML results in reasonable parameter estimates (with lesser 

S.E relative to the parameter estimates), lower MSE, and very high R
2
-values. Although both methods were 

generally well adapted, ML was more effective than OLS because it led to a smaller sample size's MSE. 
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1 Introduction 

 
Polynomial regression is a type of regression where the relationship between dependent γ and the independent χ 

variables is expressed as a K
th

 degree polynomial. Polynomial regression can be used to model situations in 

which the relationship between the independent and dependent variables is not linear. The idea behind 

polynomial regression is to fit a polynomial curve to the observed data and use this curve to make predictions. 

The distribution of carbon isotopes in lake sediments, the growth rate of tissues, and the transmission of disease 

epidemics have all been described using polynomial regression. Between the value of χ and the associated 

conditional mean of γ, abbreviated as E(γ | χ), it fits a nonlinear connection. Even though a nonlinear model is 

used in polynomial regression to analyze data, the regression function E(γ | χ) is linear with respect to the 

unknown parameters that are estimated from the data. As a result, polynomial regression can be considered a 

linear statistical estimation problem. This perspective makes multiple linear regression a specialized form of 

polynomial regression [1]. In a 1974 study by Gergonne, the design of an experiment for polynomial regression 

was presented. Regression analysis evolved significantly in the 20th century with the substantial impact of 

polynomial regression, which placed more attention on design and inference-related concerns. 

 

In polynomial regression, a dependent variable is regressed on the powers of the independent variables. It can 

also be used when the study and the explanatory factors have a curved relationship. In some cases, a nonlinear 

relationship in a limited range of explanatory variables can be modelled using polynomials. The relationship 

between variables in a data collection is frequently better represented by an equation. The most popular 

representation is a polynomial of degree K
th

 that has the formula 

 


01

... axaxaY
k

k           (1) 

 

The error serves as a reminder that, for any given value of χ, the polynomial will typically produce an estimate 

rather than an implied value of the dataset. The general polynomial regression model is a common name for the 

equation above. The predictors that result from the polynomial expansion of the “baseline” predictors are 

interaction features. These predictors or qualities are also applied in categorization settings. The quantity of data 

points used to generate the polynomial determines its maximum order. The polynomial has a maximum order of 

k=N-1 for a set of N data points. Though higher order polynomials travel through each data point directly, they 

can behave erratically between them due to a phenomenon known as polynomial wiggle, hence it is typically 

best practice to use the order as low as feasible to effectively represent the dataset. 

 

Statistical inference, systematic risk estimation, and production are just a few of the numerous tasks for which 

polynomial regression analysis has been utilized in the business world. The exploration of data sets for users 

using approaches that allow for description and inference is current practice in its teaching. However, there are 

numerous options available for the real learner when computing regression coefficients and summary statistics. 

One of them was described in Kmenta [2] as a computational design that enables users to do calculations with 

only a pencil and paper. It was also recommended that students may easily build a scatter plot and a ruler to 

visually approximate the regression line. It was also advised to employ statistical software, which is currently 

available to users of mainframe and microcomputers [3]. The ordinary least squares (OLS) or nave estimator of 

the relevant slope parameter will be biased if a regressor of linear regression is measured with errors, and the 

bias will typically attenuate the true value of the slope parameter [4]. 

 

Under the constraints of the Gauss-Markov theorem, the least squares approach in the Polynomial Regression 

Model (PR)M, like other regression models, minimizes the variance of the unbiased estimators of the 

coefficients. More recently, the estimation of polynomial models has been complemented by different methods 

such as adjusted least squares, structural least squares and many more with certain inadequacies which are dealt 

with differently. It has been established that most of these methods present estimators with notable inadequacies. 

The most notable of these inadequacies are poor handling of outliers and small sample sizes. The latter leads to 

the violation of the OLS assumption on large samples and makes the validity of the procedure questionable. 
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This motivates the application of the maximum likelihood (ML) estimator for modelling polynomial regression 

models in the presence of small samples.  

 

2 Materials and Methods 

 
The application of ML technique for first order polynomial regression model of degree 2 and 3 polynomial 

regression models. The development of the ML technique entails the construction of the likelihood function on 

the response variable Y in (1) by assuming that it is Gaussian in nature. The log-likelihood will be maximized 

with respect to each partial slope coefficient and the resulting system of equations will be solved simultaneously 

to obtain the ML estimate of each of the partial slope coefficients. The ML estimators will be fitted to some data 

sets which are characterized by small sample sizes. These data were would be subjected to exploratory analysis 

to affirm that they follow the appropriate polynomial (regression) order. The data sets are namely data of 

corrosion wheel set up, data of Nigerian PPP and GDP and data of output, the total production cost of a 

commodity and electricity consumption data. The ML approach is used to fit the appropriate polynomial order 

to each of the data sets. The validity of the model fit (by ML approach) shall be tested by comparing its results 

with that of the OLS using their parameter estimates (partial slope coefficients), standard error estimates (of 

each partial slope), coefficients of determination and mean square error (MSE) values. In particular, the 

efficiency of the methods shall be tested using the coefficient of determination, the test of significance (of 

parameters or variables) and MSE. The illustration and implementation shall be done by considering the 

problem of ten home sizes (sq ft) and their power consumption (KWh/month) reported in McClave & Deitrich 

[5] as well as the data of total production cost and output of a commodity reported in Gujarati [6] to mention a 

few. The analysis will be carried out using SAS (version 9.4). 

 

3 Application of the Maximum Likelihood Approach to Polynomial 

Regression Model 

 
Polynomial regression is a specific form of multiple regression that involves only a single independent 

(predictor) variable X. The one-variable polynomial regression model can be represented as: 

 

Yi = βo + β1Xi + β2Xi
2
 + β3Xi

3
 + … + βkXi

k
 + ε   for i = 1, 2, … , n      (2) 

 

where Yi is the response variable, Xi’s are the control variables, βi’s are the partial slope parameters, εi is the 

stochastic disturbance (error) term which is Gaussian with expected value zero and common variance σi
2 
and k is 

the degree of the polynomial. (2) is called the first order k
th

 degree polynomial which in fact is synonymous with 

(1). 

 

Effectively, (2) is the same as having a multiple model with X1 = X,  X2 = X
2
, X3 = X

3
e.t.c 

 

From (2), a first-order polynomial regression model of degree (3) is  

 

iiiii
XXXY  

3

3

2

210           (3) 

  
 

Where the random error term is tagged as the random noise εi which is assumed to have a Gaussian distribution 

with mean zero and variance 
2

i
  i.e. N (0,

2

i
 ), so that four unknown parameters, β0, β1, β2and β3 are to be 

estimated using any given sample (data). Since Xi’s are thought of as fixed points and non-random, their 

randomness is dealt with using the noise variables εi, then for fixed Xi’s, the distribution of Yi is also equal to N 

(E(Yi), σ
2
) with p.d.f. 

 

     
2

2

1



 
 

22
2/)( 

ii
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          (4) 

 

Since )(
ii

YE =
3

3

2

210

ˆ
iiii

XXXY  
  

 (unbiasedness)  



 

 
 

 

Oladapo et al.; J. Adv. Math. Com. Sci., vol. 38, no. 7, pp. 1-11, 2023; Article no.JAMCS.96774 
 

 

 
4 

 

Then (4) can be written as 

 

f(Y) = 
2

2

1



           
   

2
            (5) 

 

so that the likelihood function of the random sample Y1, . . ., Yn  can be written as 

 

L = f(Y1 , . . ., Yn) = (
2

2

1



)
n  

 
2

2

1







n

i

ii
XYY

1

2
)](ˆ[

          
(6) 

 

So that (4) becomes 
 

L = (
2

2

1



)
n 

 
2

2

1







n

i

iiii
XXXy

1

23

3

2

210
)( 

       (7) 

 

Taking the natural logarithm of (5) yields the log-likelihood 
 

ln L = 
 

 
     

 

 
     

 

   




n

i

iiii
XXXY

1

23

3

2

210
)( 

      (8) 

 

The estimates of the parameters β0, β1, β2 and β3 are obtained by maximizing (8) w.r.t the parameters. The 

maximization of the log-likelihood function w.r.t parameters β0, β1, β2 and β3 yields  
 

   
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(8a) to (8d) are solved simultaneously by transforming into the following matrix form  
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Similarly, the parameters      the intercept,    the linear effect parameter,    the quadratic effect parameter and 

   the cubic effect parameter can then be obtained from (9) using Crammer’s rule by seeking the determinants 

of a, a0, a1, a2 and a3 as follows 

 

a =   































































n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

XXXX

XXXX

XXXX

XXXN

1

6

1

5

1

4

1

3

1

5

1

4

1

3

1

2

1

4

1

3

1

2

1

1

3

1

2

1

 

a0 = 































































n

i

i

n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

i

XXXYX

XXXYX

XXXYX

XXXY

1

6

1

5

1

4

1

3

1

5

1

4

1

3

1

2

1

4

1

3

1

2

1

1

3

1

2

11

 

a1 =  































































n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

i

XXYXX

XXYXX

XXYXX

XXYN

1

6

1

5

1

3

1

3

1

5

1

4

1

2

1

2

1

4

1

3

11

1

3

1

2

1

 

  a2 =  































































n

i

i

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

XYXXX

XYXXX

XYXXX

XYXN

1

6

1

3

1

4

1

3

1

5

1

2

1

3

1

2

1

4

11

2

1

1

3

11

 

a3 =  































































6

1

6

1

5

1

4

1

3

1

5

1

4

1

3

1

2

1

4

1

3

1

2

1

1

3

1

2

1

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

n

i

i

XXXX

XXXX

XXXX

XXXN

 

 

 

 



 

 
 

 

Oladapo et al.; J. Adv. Math. Com. Sci., vol. 38, no. 7, pp. 1-11, 2023; Article no.JAMCS.96774 
 

 

 
6 

 

yielding   0,  1,   2 and   3 as 

 

  0  =
       

      
,     1 = 

       

      
,     2 = 

       

      
  and     3 =  

       

      
 

 

which are estimates of β0, β1, β2 and β3. Similarly, for quadratic form,            0,  1, and    2 can be obtained. 

 

4 Analysis  

 
Exploratory analysis involving the construction of a scatter plot will be done. This allows visual approximation 

of each regression line and informs the development of the computational design that allows us to carry out its 

appropriate estimation [2]. Each of the plots is presented as follows: 

 

 
 

Fig. 1. Graph of iron corrosion data 

 

The exploratory analysis shows that each of these data sets either follows a quadratic or cubic order since their 

graphs show a sigmoid shape or parabola. This informs the use of the cubic regression model for the iron 

corrosion data, PPP and GDP data, and output/total production cost data while the quadratic form was used for 

the data of home sizes and electricity consumption. 

 

The ML technique was applied as an alternative to the traditional OLS since the OLS assumption of large 

samples is not met. The results of the analyses (by ML technique and that of the OLS) are presented for 

comparison. The parameter estimates, standard error (S.E.), t-ratios (for the test of significance of each 

parameter), coefficient of determination R
2
 value and the mean square error values for ML and OLS are 

presented in the table. These estimates give insights into the efficiency of the ML approach and the overall 

goodness of fit. The table of comparison is presented Table 1. 

 

5 Results and Discussion 

 
Table 1 presents the comparison between the MLE and OLS techniques the first order cubic regression and the 

first order quadratic regression model using four data sets with small sample sizes. The comparison was carried 

out between the two methods using the parameter estimates, standard error estimates of each parameter, the p-

value of the student’s t-ratios, coefficients of determination and the Mean Square error (MSE) values. The 

parameter estimates will give insight into the bias of the estimates while the coefficient of determination and t-

ratios will provide insight into the overall goodness of fit and detection of multicollinearity while the MSE 

values provide insight into the efficiency of the estimation technique.  
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Fig. 2. Graph of Nigerian Gross Domestic Product (GDP) and Power Purchasing Parity (PPP) between 

1989 and 1999 

 

 
 

Fig. 3. Graph of total production cost and output 

 

The result of the analysis of the first data set (of iron content and weight loss of some specimen tested in a 

corrosion wheel set-up) show that the ML gave parameter estimates of 128.889, -5.524, -29.208, 10.523 and the 

OLS resulted in 128.949, -5.196, -30.376, 11.009. Also, the ML resulted in standard error (SE) estimates of 

1.325, 6.972, 9.288, 3.174 while the OLS resulted in S.E estimates of 1.381, 7.641, 10.473, 3.602. The ML has a 

slightly greater R
2
 value of 0.987 (when compared to that of the OLS with 0.986) while a slightly lower MSE of 

5.005 of the ML indicated that the ML is more efficient than the OLS with an MSE value of 5.429 with identical 

(exactly the same) decisions in their tests of significance of each of the parameters. 
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Table 1. Table of comparison 

 

S/N Datasets No of samples Estimates MLE OLS 

1. Data of  Corrosion wheel set 

up 

13 Parameters 

 

S.E 

 

P-value of /t/ 

R
2
 value 

MSE value 

                                                          

128.889    -5.5244         -29.2076        10.5226 

  

S.E(  )    S.E(  )        S.E(  )        S.E(  ) 

1.325        6.972           9.288           3.174 

 

0.0001         0.0485         0.0118       0.0090 

 

0.9867 

5.001      

                                                         

128.9489    -5.1956        -30.376       11.0086 

  

S.E(  )    S.E(  )        S.E(  )        S.E(  ) 

1.381        7.641          10.473          3.602 

 

0.0001      0.0436        0.0176      0.01337 

 

0.9858   

5.429 

2. Data of PPP and GDP in 

Nigeria between 1989 and 

1999 

11 Parameters 

 

 

S.E 

 

P-value of /t/ 

R
2
 value 

MSE value 

                                                             
  3538.061    -61.6291         0.3478  -0.000625 

  

   S.E(  )     S.E(  )         S.E(  )      S.E(  ) 

   1117.598    18.5044       0.0998       0.00018 

    0.0158     0.0126         0.0102       0.0092 

   0.8245 

   831.2 

                                                             
  3538.061    -61.6291    0.3478    -0.000625 

  

   S.E(  )     S.E(  )         S.E(  )   S.E(  ) 

   1117.59    18.504           0.0998     0.00018 

  0.0158     0.0126             0.0102    0.0092 

  0.8245 

  831.2 

3. Data of output and total 

production cost of a 

commodity 

10 Parameters 

 

S.E 

 

P-value of /t/ 

R
2
 value 

MSE value 

                                                             

  141.767      63.4777           -12.9615    0.9396 

   S.E(  )     S.E(  )       S.E(  )   S.E(  ) 

   6.3753       4.778            0.986     0.059 

   0.0001       0.0001          0.0001    0.0001 

   0.9983 

    1.789 

                                                        

  141.767      63.4777       -12.9615     0.9396 

  S.E(  )     S.E( 1)         S.E( 2)   S.E(  ) 

   6.3753       4.778            0.986       0.059 

   0.0001       0.0001          0.0001     0.0001 

   0.9983 

   1.8124 

4 Data of  home sizes and 

electricity consumption 

10 Parameters 

 

S.E 

 

P-value of /t/ 

R
2
 value 

MSE value 

                            1                 2   
-1216.14389    2.39893   -0.00045 

S.E(  )           S.E( 1)       S.E( 2)   

43.235             0.8973         0.00002 

0.0012             0.0001          0.0001 

0.9875 

1425.67 

                                                     
-1217.2341       2.41333      -0.0005 

S.E(  )             S.E(  )       S.E(  )   

44.576              0.9148        0.00005 

0.0016              0.0001          0.0001 

0.98125 

2190.365 
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Fig. 4. Graph of monthly electricity consumption and home sizes 

 

Furthermore, the analysis of the second data set (of Nigerian PPP and GDP between 1989 and 1999) showed 

that both methods gave identical parameter estimates 3538.06, -61.629, 0.3478, -0.000625, 3538.06, identical 

S.E estimates 1117.59, 18.504, 0.099, 0.00018, identical R
2
 value 0.8285 and identical MSE value of 831.2 with 

identically significant t-ratios. 

 

The analysis of the third data set(on total production cost and output of a commodity) showed identical 

parameter estimates, and different MSE values 141.767,63.4777, -12.9615, 0.9396, identical  S.E  6.3753, 

4.778,0.986, 0.059, the identical  R
2  

value of 0.9983 but lower MSE 1.789 ( than 1.8124 for the OLS [7-18]. 

 

The analysis of the last data set (on electricity consumption in kilowatt-hours per month and home size of ten 

houses in square feet) showed that the MLE resulted in parameter estimates of -1216.1439, 2.3989, -0.000045, 

while the OLS resulted in parameter estimates-1217.2341, 2.41333, -0.0005. The ML has S.E. estimates 43.235, 

0.8973,0.00002  while the OLS resulted in S.E. 44.576, 0.9148, 0.00005, while the ML has a slightly higher R
2
 

value of 0.9875 (than the OLS with 0.9813)  and a lower MSE 1425.67 (than 2190.365 for the OLS). Both 

resulted in identically significant t-ratios. 
 

6 Conclusion 

 
The result of the model fit of the four data sets using the ML resulted in reasonable parameter estimates (with 

lesser S.E relative to the parameter estimates), lower MSE, significant t-ratios and very high R
2
 values. The 

latter two results indicated the absence of multicollinearity problems and overall goodness of fit. The ML 

produced unbiased estimators for the OLS for three (out of the four) data sets considered since the ML estimates 

all coincided with that of the OLS in the three cases. The ML provided slightly different estimates from that of 

the OLS for the fourth data set which implies that there is a small bias in the fourth data set. However, the 

smaller the bias, the better the accuracy of the estimator and the estimator with the least bias is considered the 

best. The resulting parameter estimates by the ML showed little (in the fourth data) or no bias (in the other three 

data sets) which leads to the conclusion that the ML estimators are good estimators for the PRM. In terms of 

goodness of fit, both estimators accounted for good fit because they both have high R
2
 values and significant t-

ratios but the ML gave a better fit since it resulted in higher R
2
 values and lower MSE for all the data sets than 

the OLS technique. This latter quality ultimately leads to the conclusion that ML is a more efficient technique 

for small samples than OLS.  
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