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ABSTRACT

In this paper, we investigate the finite-time event-triggered sliding mode control(SMC) issue of a class of interval
type-II fuzzy semi-Markov jump systems affected by quantization and fading channels. Firstly, the data needs
to be quantized by logarithmic quantizers before being transmitted over the channel. To alleviate network
pressure, a periodic event-triggered scheme is introduced to govern whether the data are sent to the sensor-to-
controller(S/C) channel or not. As the transmitted data passes through the S/C channel, it could undergo fading.
Then, considering the asynchronous issue between the system mode and the controller mode, an
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asynchronous control scheme is applied; Thereafter, a feasible fuzzy observer-based SMC law is developed,
which enables the state trajectories of the system to reach the specified sliding surface within finite-time; And
with the aid of the time partition strategy, sufficient conditions for the system to be bounded in finite-time during
the arrival and sliding stages are derived. Besides, by means of the linear matrix inequality(LMI) toolbox, the
controller and the observer gains are computed. Finally, the advantages of the SMC strategy are validated by
emulation products.

Keywords: Finite-time sliding mode control; periodic event-triggered scheme(PETS); quantization; fading channel
(FC); interval type-II fuzzy semi-Markov jump systems.

1 INTRODUCTION

In actuality, a lot of control systems have nonlinear
characteristics, which makes modeling them
challenging. The Takagi-Sugeno (T-S) fuzzy model,
fortunately, is an fabulous platform for approximating
nonlinear systems since it combines local linear
subsystems and membership functions [1]-[2]. It is
undeniable that the traditional T-S fuzzy model, also
known to type-I [3]-[4], is incapable of eliminating
uncertainty using a simple modeling technique.
Fortunately, such prospective strategy(by other words,
type-II/IT2 fuzzy system mentioned throughout [5]-
[6] compensates for the shortcoming. In particular,
thanks to type-II fuzzy model, it’s upper with lower
membership functions(MFs) bounds may efficiently
extract the parameter uncertainty.

Markov jump systems(MJSs) are widely used
throughout the engineering field, from electrical
applications to ecosystems to wireless networks [7]-
[9], due to their potent willingness to represent systems
with sudden changes in structure or parameters. The
switching of the interconnected subsystems that make
up MJSs is controlled by the Markov process [10]-
[11]. In Markovian jump systems, the transition rate
of Markovian process is constant, which has a definite
limitation as a result of each subsystem’s sojourn time
following an exponential distribution. To remedy the
deficiency, a semi-Markov process with time-varying
transition rates is proposed to simulate stochastic
switching. In light of this, in comparison to MJSs [12]-
[13], semi-Markov jump systems (S-MJSs) have a wider
range of potential applications. As a result, the control
issues with S-MJSs have sparked continued research
interest, and significant accomplishments have been
published in a variety of fields [14]-[16].

The system mode should have been synchronized
with the controller mode at all times [17] because

it is typically anticipated that the information about
the system mode may be retrieved instantly by the
controller in the aforemen-tioned S-MJSs. However,
it is challenging to put this premise into practice in
the majority of real-world scenarios. Out-of-sync
behavior between the system mode and the controller
mode [18] may be brought on by certain abnormal
circumstances like data missing, delayed transfer
and random jamming. Generic control approach is
therefore no longer appropriate in this situation. Preset
conditional probability for controlling changes between
the system mode and the controller mode is imported
in response to this phenomenon, and the asynchronous
control method has since drawn more attention [19].
Additionally, a non-synchronous approach has been
broadly applied in filtering field [20]. However, with
regard to the asynchronous SMC issue of S-MJSs, it
remains open, prompting us to bridge the gap. This is
the main motivation for writing this paper.

As technology evolves, additional data is transferred
between the various parts of the system through
bandwidth-limited common communication networks.
A key issue is finding ways to decrease resource
depletion and reduce the load on transportation. One
plausible approach is to use an event-triggered scheme
to ascertain if the signal is to be transmitted[21]-[23].
In addition, some significant foundations for event-
triggered SMC were achieved in [24]-[25] and expanded
upon multiagent systems in [26]-[28]. The avoidance of
Zeno phenomenon in sequential time systems remains
an invaluable problem in a community of event-triggered
controls. In addition, an obvious obstacle to combining
interval type-II fuzzy systems with a periodic event-
triggered scheme is that the membership functions
present in the primitive fuzzy model as well as the
premise variables cannot be directly obtained directly
to design the controller. In particular, the problem of
dealing with event-triggered SMC for continuous-time
interval type-II fuzzy S-MJSs in an immeasurable state
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is quite competitive, which is a significant impetus for
conducting such task.

Besides, by making data quantifiable, bandwidth can
be better allocated and the stress resulting from data
overload can be alleviated, as stated in [29]. Therefore,
we also consider quantification data simultaneously.
Nevertheless, quantification errors have a significant
impact on the capacity of the system and at times
destabilization [30], which merits further discussion.
As a result, it is of great significance to find the correct
method to solve the quantification errors.

The signal fading phenomenon [31]-[32] in the
communication network is another problem. It is
caused by a number of unavoidable physical variables,
such as shadowing and multipath. There have been
several studies about FC for discrete-time systems
[33] and continuous-time systems [34]. Nevertheless,
the application of event-triggered protocols to interval
type-II fuzzy semi-Markovian jump systems affected by
FC, quantization and immeasurable states, there are
not many relevant research results. This is another
research motivation of this paper.

What’s more, sliding mode control (SMC), alternatively
known as variational configuration control, is in essence
a subset of nonlinear control. Throughout the kinetic
procedure, the relationship with the current state of
the system could be purposefully changed so that the
system is deleted according to the predefined state
trajectory of the sliding mode. Given that sliding mode
can be structured, is unaffected by target parametric
and interference, and provides merits such as quick
feedback and impervious to parametric changes
and interference, it has been widely used in power
systems, automated fabrication technology, automotive
generators, with additional domains [35]-[37]. In [38]-
[40] , it is highlighted that Lyapunov stability takes into
account the fact that the system’s trajectory achieves a
balance point within an infinitesimal time lapse. These
articles only focus on the infinite-time reachability, but
in engineering applications, there is an urgent need to
actuate the trajectory of the system onto a specified
sliding surface within a limited timespan. Consequently,
a growing interest in the field of finite-time stability (FTS)
and finite-time boundedness (FTB) conceptions has
been observed in the recent couple of years, following

the increase in efficiency of practical systems. In
[41], FTB and reachability of MJSs with timelags are
discussed. Besides, scholars have also extended the
finite-time theory to fuzzy systems [42], multi-agent
system systems [43], randomly switched systems[44]
and so on.

In consideration of the above discussion, the
issue of observer-based finite-time event-triggered
asynchronous sliding mode control for interval type-II
fuzzy S-MJSs with quantization and fading channels,
which has greatly aroused our attention. The key
contributions to this article are outlined below:

1. The PETS discussed in this article is designed
on the basis of quantization of the data, which
makes it more practically meaningful compared
to those results that do not quantify the primitive
data.

2. Through the fading signals available under
the PETS, a state observer-based PET SMC
scheme is designed in this paper, in which the
membership functions(MFs) are only dependent
on the estimation of the state rather than the
primitive system state.

3. Given the influence of quantization, PETS and
FC, the concept of FTB is introduced to deal
with the mismatched MFs, the asynchronous
phenomenon, the exterior interferences, actuator
failures, and channel fading phenomenon. By
exploiting the developed control strategy, the
trajectories of the interval type-II fuzzy S-MJSs
are not only guaranteed to reach the specified
sliding surface in finite-time, but also sufficient
conditions for the system to be bounded in finite-
time are derived. At the same time, the Zeno
phenomenon is eliminated because the PETS
guarantees the minimum trigger interval.

Notations: The symbols applicable in the present
paper are generic. λmax(B) means the maximum
eigenvalue of matrix B, with ‖B‖ represents the
Euclidean norm of B. E {·} indicates the mathematical
expectation. B > 0 represents that B is symmetric
positive-definite. “∗” represents the symmetric block for
a symmetric matrix. sgn(b) represents the sign function
that equals 1 when b > 0, equals 0 when b = 0.
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2 PROBLEM FORMULATION AND PRELIMINARIES

2.1 System Description
With respect to the probabilistic space (Ç, Ł,Pr) , the nonlinear S-MJSs with external disturbance are considered
via the T-S fuzzy model presented below:
Set rules i: IF k1(x(t)) is ℵi1,. . . , and k%(x(t)) is ℵi%, THEN{

ẋ(t) = Ai(r(t))x(t) +Bi(r(t)) (f(x(t), r(t), t) + u(t)) +Di(r(t))w(t)

y(t) = C(r(t))x(t)
(1)

where k(x(t)) is the premise variable, ℵi represents the fuzzy aggregations, i ∈ z = {1, 2, . . . , v} ,  ∈ e =
{1, 2, . . . , %} and % and v are the number of premise variables and fuzzy rules, separately. u(t) and x(t) signify the
control input and the system state, separately; y(t) is the output vector; w(t) is the exterior interference pertaing to
L2 [0,∞) ; f(x(t), r(t), t) is the faults signals for non-linear actuators. The firing intensity is for the rule i specified
as the below given set of intervals: ηi(x(t)) =

[
η
i
(x(t)), ηi(x(t))

]
with

η
i
(x(t)) =

%∏
=1

µ
ℵi

(k(x(t))) > 0, ηi(x(t)) =

%∏
=1

µℵi (k(x(t))) > 0,

where µ
ℵi

(k(x(t))) and µℵi (k(x(t))) ∈ [0, 1) are the lower and upper grade of the MFs, satisfying µ
ℵi

(k(x(t))) ≤

µℵi (k(x(t))). {r(t), ~}t≥0 , {rs, ~s}s∈N1
is a semi-Markovian process with its values within a finite set N1 ,

{1, 2, . . . ,M1}. Then, the transition rate matrix ||1 (~) , [πmn (~)]M1×M1
is determined by

Pr {rs+1 = n, ~s+1 ≤ ~ + ∆| rs = m, ~s+1 > ~}
= πmn(~)∆ + o(∆),m 6= n
Pr {rs+1 = n, ~s+1 > h+ ∆| rs = m, ~s+1 > ~}
= 1 + πmn(~)∆ + o(∆),m = n

where lim
∆→0

(o(∆)/∆) = 0; πmn (~) ≥ 0, with regard to m 6= n, represents the transition rate from mode m at time

t to mode n at time t+ ∆ and πmn(~) = −
∑

n∈N1,m 6=n
πmn(~).

To the whole r(t) , m, we define Aim , Ai(r(t)), Bim , Bi(r(t)), Cm , C(r(t)), Dim , Di(r(t)), fm(x(t), t) ,
f(x(t), r(t), t) to simplier the notations. Thus, the overall considered fuzzy S-MJSs can be formulated via the
below T-S fuzzy model: ẋ(t) =

v∑
i=1

ηi(x(t)) [Aimx(t) +Bim (fm(x(t), t) + u(t)) +Dimw(t)]

y(t) = Cmx(t)
(2)

with
ηi(x(t)) = η

i
(x(t))ϑi(x(t)) + ηi(x(t))ϑi(x(t))

ϑi(x(t)), ϑi(x(t)) ∈ [0, 1], ϑi(x(t)) + ϑi(x(t)) = 1,
v∑
i=1

ηi(x(t)) = 1

Where the the nonlinearity functions ϑi(x(t)) and ϑi(x(t)) enable uncertainty in parameters to be trapped,Aim, Bim,
Cm, Dim are known matrices with proper dimensionalities.

2.2 Communication Network Based on Quantization, PETS and an Asynchronous
Control Plan

To sieve through the required data, the logarithmic quantizers, PETS are introduced to save network bandwidth
on the article. One key issue for channels is that the transmitted signal should be quantized firstly. Inspired by the
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literature[29]-[30], to better describe the quantization error, we give the logarithmic quantizer model and utilize the
sector bound method to deal with this problem. The quantization level βc is given as:

0 = {±βc : βc = ψcβ0, c = ±1,±2, . . . }
⋃
{±β0}

⋃
{0} , β0 > 0, 0 < ψ < 1

where ψ represents the quantization density that greatly affects the quantization precision. Then, the following
quantization function shows the quantized signal of yn(kh):

q (yn(kh)) =


βc,

βc
1+ϕ

< yn(kh) < βc
1−ϕ

0, yn(kh) = 0,
−q (−yn(kh)) , yn(kh) < 0

(3)

With h reprensents sampling period and ϕ = 1− ψ/1 + ψ. By utilizing the sector bound method, the quantization
error is given as follows:

∆qn(kh)yn(kh) = q (yn(kh))− yn(kh) (4)

Then, the quantized output signal of y(k) can be further rewritten as:

Q(y(kh)) = (I + ∆Q(kh))y(kh) (5)

with ∆Q(kh) = diag {∆q1(kh),∆q2(kh), . . . ,∆qN (kh)}. Besides, from the structure of logarithmic quantizer, it
can be easily verified that |∆qn(kh)yn(kh)| ≤ ϕ |yn(kh)|
Meanwhile, we can further achieve the norm-bounded condition ‖∆Q(kh)‖ ≤ ϕ.

Remark 2.1. Noticeably, we use static logarithmic quantizers here, which promote better bandwidth usage
and lessen the burden on data. Nevertheless, with the quantification process comes quantification error, which
is strongly correlated with quantification density. With other words, higher quantification density means lower
quantification error. Further, this also implies an ability to withstand increased amounts of data and provide greater
system capability.

Then, we use a periodic event-triggered (PET) scheme to further relieve network pressure. Therefore, the event
generator between a sampler and Zero-order-hold(ZOH) is employed to decide whether to transmit the sampled
data Q(y((k + l)h)) to the controller through the judgment rule as follows:[

Q(y((k + l)h))−Q(y(kh))]TΦm[Q(y((k + l)h))−Q(y(kh))]
≤ α(m)QT (y((k + l)h))ΦmQ(y((k + l)h))

(6)

Where l = 1, 2, . . . , α(m) ∈ [0, 1) are known triggering parameters, Φm > 0 is the event-triggered matrix that
requires determination.

Remark 2.2. According to the judgment rule (6), assume that tkh(k = 0, 1, 2, . . . ) represents the release times,
where t0 = 0 is the initial time. Therefore, skh = tk+1h − tkh can represent the release period corresponding to
the sampling period given by the event generator in (6). Assume that the time-varying network-induced delay is
ρk ∈ [0, ρ̄], where ρ̄ is a positive real parameter. Hence, the triggered data Q(y(t0h)), Q(y(t1h)), Q(y(t2h)), . . .
can reach the SMC at t0h+ ρ0, t1h+ ρ1, t2h+ ρ2, . . . instants respectively.

Remark 2.3. In order to further save network bandwidth and make full use of network resources, we use the
event generator to transmit system communication data under a PETS. The set of the release instants is a subset
for sampled time series, that is, {t0h, t1h, t2h, . . . } ⊆ {0, h, 2h, . . . }, which means that the minimum inter-event
time min

k
{tk+1h− tkh} is lower bounded at the sampling period h. Therefore, Zeno behavior will not occur.

Based on the analysis above and considering the effect of the network-induced transmission delay, here provides
the following two conditions:

Case I: If tkh+ h+ ρ̄ ≥ tk+1h+ ρk+1, denote network-induced time-delay ρ(t) as: ρ(t) = t− tkh,
t ∈ [tkh+ ρk, tk+1h+ ρk+1). As a result, ρk ≤ ρ(t) ≤ (tk+1 − tk)h+ ρk+1 ≤ h+ ρ̄.
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Case II: If tkh+ h+ ρ̄ < tk+1h+ ρk+1, take two intervals:

[tkh+ ρk, tkh+ h+ ρ̄) , [tkh+ ξh+ ρ̄, tkh+ ξh+ h+ ρ̄).

Due to ρk ≤ ρ̄, ξ can be selected satisfying: tkh+ ξh+ ρ̄ < tk+1h+ ρk+1 ≤ tkh+ ξh+ h+ ρ̄.

Q (y (tkh)) and Q (y (tkh+ ζh)) with ζ = 1, 2, . . . , ξ meet that:

[Q (y (tkh+ ζh))−Q (y (tkh))]T Φm [Q (y (tkh+ ζh))−Q (y (tkh))]
≤ α(m)QT (y (tkh+ ζh)) ΦmQ (y (tkh+ ζh))

(7)

Let 
L0,k = [tkh+ ρk, tkh+ h+ ρ̄)
Lζ,k = [tkh+ ζh+ ρ, tkh+ ζh+ h+ ρ̄))
Lξ,k = [tkh+ ξh+ ρ̄, tk+1h+ ρk+1)

where ζ = 1, 2, . . . , ξ − 1. Thus

[tkh+ ρk, tk+1h+ ρk+1) =

ζ=ξ⋃
ζ=1

Lζ,k

Define

ρ(t) =


t− tkh t ∈ L0,k

t− tkh− ζh t ∈ Lζ,k
t− tkh− ξh t ∈ Lξ,k

(8)

As a result: 
ρk ≤ ρ(t) ≤ h+ ρ̄, t ∈ L0,k

ρk ≤ ρ̄ ≤ ρ(t) ≤ h+ ρ̄, t ∈ Lζ,k
ρk ≤ ρ̄ ≤ ρ(t) ≤ h+ ρ̄, t ∈ Lξ,k

Therefore, we have
0 ≤ ρk ≤ ρ(t) ≤ h+ ρ̄ , ρM , t ∈ [tkh+ ρk, tk+1h+ ρk+1)

For case I, denote ek(t) = 0

And for case II, denote

ek(t) =


0 t ∈ L0

Q (y (tkh+ ζh))−Q (y (tkh)) t ∈ Lζ
Q (y (tkh+ ξh))−Q (y (tkh)) t ∈ Lξ

(9)

where ρ̇(t) ≤ g.

Remark 2.4. Through the above analysis, system (2) is transformed into a time-delay system due to the latency
caused by network. In line with triggered schemes (7)-(9), for t ∈ [tkh+ ρk, tk+1h+ ρk+1), one can deduce that

eTk (t)Φmek(t) ≤ αmQT (y(t− ρ(t))) ΦmQ(y(t− ρ(t))) (10)

Since signals are sent only at certain trigger instants, PETS can indeed mitigate restricted communicating resources
by decreasing the transfer frequency. Considering real scenario on networking transport, the signal Q(y(tkh))
released through one common communication channel, it is likely to be affected by below FC:

ȳ (tkh) = λ (tkh)Q (y (tkh)) (11)

where λ (tkh) ∈ [0, 1) is a stochastic variable with mathematical expectation λ̄ , which have the ability to represent
the stochastic fading behavior. For this article, only statistical information regarding the controller design is
required, namely the mathematical expectation.
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According to the characteristic of the ZOH, the input data ȳ(t) for the observer can be expressed as

ȳ(t) = ȳ (tkh) , t ∈ [tkh, tk+1h) (12)

Remark 2.5. While some effective transfer precautions are available to lessen the load of transmission as well
as finite communication resources in the network setting, a few network-induced phenomenon, just like channel
fading, can be brought about. For this reason, the quantization, the PETS as well as the attenuation parameter
are all considered with respect to the task. It makes the research practically more relevant and technically more
challenging, where a critical point is that only the transmitted fading data ȳ(t) can be used by the controller.

When it comes to designing fuzzy controller for interval type-II fuzzy S-MJSs, because we use a PETS with delay,
the controller may not get complete mode information about the system in a timely manner. Nevertheless, in
the design of the controller, if the mode information of the system is completely discarded, it may increase the
probability of system instability. Considering this situation, we introduce a non-synchronous control plan. With the
introduction of a conditionally probability that depends on the mode information of the system, the controller can
estimate the determined system mode information generated in the semi-Markovian evolutionary of the system.
Therefore, the designed controller mode is in indirect correlation and asynchronous to the system mode. Denoting
the controller mode as τ(t), the link in τ(t) and r(t) is dominated by the conditional probability matrix ||2 ,
[π̂ml]m∈N1,l∈N2 ,

π̂ml = Pr{τ(t) = l | r(t) = m}
where l ∈ N2 , {1, 2, . . . ,M2}, for ∀m ∈ N1, 0 ≤ π̂ml ≤ 1 and

∑
l∈N2

π̂ml = 1.

Remark 2.6. Generally speaking, it is considered that the mode of the system and the mode of the controller
are switched synchronously, but this is difficult to achieve in practice. Since we consider a PETS with delay,
there is a transmission delay between the system and the controller, which can be regarded as the asynchronous
phenomenon.

Remark 2.7. The overall control structure framework of event-triggered asynchronous SMC for IT2 fuzzy S-MJSs
is shown in Fig.1. At the same time, considering the pressure of data transmission borne by the communication
network. Correspondingly, the asynchronous control scheme and the PETS are used for mitigating the impact of
time lag in data transmission and finite bandwidth, separately. Next, a fuzzy SMC law with quantization, PETS
and the asynchronous control plan is to be designed for the current system to realize the mean-square finite-time
bounded of the closed-loop system(CLS) affected by the influence of undetectable state and FC.

Plant

Sensor1

Sensor2

SensorN

Quantizer1

Quantizer2

QuantizeN

Actuator

Observer

Controller ZOH Network Under 
Fading Channel

Event 
Generator

Judgement 
Rule

EXIT

N

Y

Q(y(tkh))

Q(y(kh))

u(t)

fm(x(t),t)

     y1(kh)

y2(kh)

yN(kh)

q(y1(kh))

q(y2(kh))

q(yN(kh))
w(t)

x(t)

( )y t ( )ky t h

Fig.1. The overall control structure framework of event-triggered asynchronous SMC for IT2 fuzzy  S-MJSs
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2.3 Observer Design under Networked Communication

For the construction of an implementable state observer, there are two points that require consideration: (I)
Because system state is not available, the fuzzy observer cannot be constructed directly utilizing the premise
variables of IT2 fuzzy model. (II) Under quantization (5), the PETS (6) with the FC (11)-(12), it is merely possible
for the observer to use the fading signal ȳ(t). Hereafter, an ambiguous observer is in the design by using the
existing fading signal ȳ(t) and the estimation of the state-based premise variables:
If k1(x̂(t)) is ℵi1 ,. . . and k%(x̂(t)) is ℵi% ,THEN{

ˆ̂x(t) = Aimx̂(t) +Bimfm(x̂(t), t) +Bimu(t) + Ljm(ȳ(t)− ŷ(t− ρ(t)))
ŷ(t− ρ(t)) = Cmx̂(t− ρ(t))

(13)

Where x̂(t) represents an estimate of the x(t), the gain matrix Ljm is to be determined afterwards. The globally
ambiguous observer is deduced: ˙̂x(t) =

v∑
i=1

v∑
j=1

ηiθj [Aimx̂(t) +Bimfm(x̂(t), t) +Bimu(t) + Ljm(ȳ(t)− ŷ(t− ρ(t)))]

ŷ(t− ρ(t)) = Cmx̂(t− ρ(t))
(14)

For the sake of simplifying the notation, we define
v∑
i=1

v∑
j=1

ηiθj ,
v∑
i=1

v∑
j=1

ηi(x(t))θj(x̂(tkh)), where θi(x̂(t)) =

η
i
(x̂(t))di(x̂(t)) + ηi(x̂(t))di(x̂(t)), di(x̂(t)) and di(x̂(t)) whose selection depend on the requirements for the

actual application. It is worth highlighting that via using the predicted value as well as the known MFs boundaries
in ambiguous system, we design the MFs of the observer as a replacement for the non-available MFs η(x(t)).

Remark 2.8. According to the PETS (6)-(10), it is merely the signal released at the moment of triggering that
is usable. In addition, the signals released are affected by attenuation phenomenon. Thus, state observer (14)
is constructed by maintaining a constant fading release signal of ȳ(t) between two triggering instant. Unlike
the existing ambiguous observer which has its basis in output y(t), the fading signal ȳ(t) in state observer (14)
reflects the effects of quantization, PET conditions, and fading environments, which makes control design difficult.
Consequently, the sufficient conditions of stability in Theorem 3.2 and Theorem 3.3 are related to quantized
parameters, PETS as well as FC .

Define the estimation error x̃(t) = x(t) − x̂(t), by means of (2) with (14), the error system can be derived as
follows:

˙̃x(t) =
v∑
i=1

v∑
j=1

ηiθj [Aimx̃(t)− LjmCmx̃(t− ρ(t)) + λ (tkh)Ljmek(t)

−λ (tkh)LjmQ (y (tkh+ εh)) + Ljmy(t− ρ(t))] + w̄(t)
(15)

with
w̄(t) =

v∑
i=1

v∑
j=1

[(ηi − ηiθj) (Aimx(t) +Bim (fm(x̂(t), t) + u(t))) + ηiDimw(t)]

ε = 0, 1, . . . , ξ.

which could be regarded to be a resultant error term. Within the article, the resultant error term w̄(t) is hypothesized
to fulfill ‖w̄(t)‖ < +∞. Besides, the control input u(t) depends on the state of the system and has its own
boundaries. Therefore, we can derive that
‖w̄(t)‖ ≤ 2 max

i
((‖Aim‖+ σm ‖Bim‖) ‖x(t)‖+ ‖Bim‖ ‖u(t)‖) + max

i
‖Dim‖w < +∞

Assumption 2.1. [14] It is assumed that the fault signal of the nonlinear actuator is norm-bounded and subject to
the below constraint:

‖fm(x(t), t)‖ ≤ σm‖x(t)‖ (16)

where σm(m ∈ N1) is a known positive scalar.
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Assumption 2.2. w̄(t) is described throughout the article as

Ω[0,T ],` =

{
w̄(t) ∈ L2,[0,T ] :

∫ T

0

w̄T (s)w̄(s)ds ≤ `
}

(17)

with known positive scalar `.

Lemma 2.1. [41] Considering real matrices a and h which have suitable dimensionality, with respect to any scalar
� > 0, the following inequality forms

aTh + hTa ≤ aT�−1a + hT�h (18)

Definition 2.1. [41] The system is finite-time boundedness about
(
c1, c2, [0, T ],W,Ω[0,T ],`

)
, if exist the invariants

c1 > 0, c2 > 0 with c1 < c2, the matrix W > 0 with the finite-time interval [0, T ] enables

sup
−ρ̄≤s<0

E
{
xT (s)Wx(s), ẋT (s)Wẋ(s)

}
≤ c1 ⇒ E

{
xT (t)Wx(t)

}
< c2,∀t ∈ [0, T ] (19)

3 MAIN RESULTS

3.1 Sliding Surface Design
The sliding surface is given based on the estimation of the states:

s(t) = Gmx̂(t)−Gm
∫ t

0

v∑
i=1

θi(x̂(ξ)) (Aim +BimKml) x̂(ξ)dξ (20)

where the matrix Kml ∈ Rm×n is designed later, Gm ∈ Rm×n is elected to guarantee GmBim is nonsingular,
i ∈ z, m ∈ N1.

Combining (14) and (20),one has:

ṡ(t) =

v∑
i=1

v∑
j=1

ηiθj [GmBim (fm(x̂(t), t) + u(t))−GmBimKmlx̂(t) +GmLjm(ȳ(t)− ŷ(t− ρ(t)))] (21)

Consequently, combined with (21), we deduce the following equivalent control law:

ueq(t) =
v∑
i=1

v∑
j=1

ηiθj [−fm(x̂(t), t) +Kmlx̂(t)− (GmBim)−1 GmLjm(ȳ(t)− ŷ(t− ρ(t)))] (22)

By substitution of the equation (22) to (14), the sliding mode dynamics is obtained

˙̂x(t) =

v∑
i=1

v∑
j=1

ηiθj [(Aim +BimKml) x̂(t) + B̃imLjm (ȳ(t)− Cmx̂(t− ρ(t)))] (23)

with B̃im = I −Bim (GmBim)−1 Gm.

3.2 Finite-time Reachability Analysis
In the part, within a given limited time [0, T ], the SMC law u(t) is designed to compel trajectories of the system
into the sliding surface s(t) = 0 in a finite interval [0, T ∗], and ensures that they stay on the sliding surface for the
rest of time [T ∗, T ]. For the purpose, the following SMC law is developed

u(t) =

v∑
i=1

v∑
j=1

ηiθj [Kmlx̂(t)− fm(x̂(t), t)− (GmBim)−1 GmLjm(ȳ(t)− ŷ(t− ρ(t)))− ∂(t) sgn(s(t))] (24)
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with π̆mn , E[πmn(~)] ,
∫∞

0
πmn(~)§m(~)dh, §m(~) represents the probability density function(PDF) of sojourn

time ~ that stays at mode m.

Theorem 3.1. For S-MJSs (2), the SMC law (24) enables the trajectories of the system to be compelled into the
sliding surface s(t) = 0 in the limited timespan [0, T ∗] (T ∗ < T ) and stay on there in [T ∗, T ] in mean square sense,
wherein ∂(t) in the sliding mode control law (24) satisfies

∂(t) ≥
∥∥BimT x̂(0)

∥∥
Tλmin (BTimBim)

(25)

Proof: Consider the Lyapunov function with respect to any t ∈ [0, T ]

V1(s(t),m, l, t) =
1

2
sT (t)s(t) (26)

To facilitate the expression, let V1(s(t),m, l, t) , V1(t) whose infinitesimal operator is obtained:

ΓV1(t) =sT (t)ṡ(t)

=sT [
v∑
i=1

v∑
j=1

ηiθj [GmBim(Kmlx̂(t)− (GmBim)−1GmLjm(ȳ(t)− ŷ(t− ρ(t)))

− fm(x̂(t), t)− ∂(t)sgn(s(t)))−GmBimKmlx̂(t) +GmLjm(ȳ(t)− ŷ(t− ρ(t)))

+GmBimfm(x̂(t), t)]]

=− sT (t)BTimBim∂(t) sgn(s(t)) (27)

≤− ∂(t)λmin

(
BTimBim

)
‖s(t)‖1

≤− ∂(t)λmin

(
BTimBim

)
‖s(t)‖2

Besides,one has

ΓV1(t) ≤ −∂(t) sgn(s(t))

k
√
V1(t) (28)

With
k =

1√
2λmin (BTimBim)

(29)

From (28) and (29),we can get that T* satisfies

T ∗ ≤
∥∥BTimx̂(0)

∥∥
2

∂(t)λmin (BTimBim)
(30)

Therefore, in a limited timespan [0, T ], the trajectories of S-MJSs (2) is to be compelled into the sliding surface
(20) within limited time T ∗(T ∗ < T ), and maintained there during the rest of time [T ∗, T ], the proof is thus
accomplished.

Remark 3.1. As you can see from the certification process presented above, the parameter ∂(t) in the SMC law
(24) is significant and can decide the arrival time T ∗. Based on (30), when the value of ∂(t) is higher, the time to
the arrival stage is shorter.

Remark 3.2. For finite-time sliding mode control, what makes it unique is that it is analyzed in pieces containing
arrival stage [0, T ∗] , with sliding mode movement stage [T ∗, T ]. The trajectories of the system will be actuated to
the sliding surface s(t) = 0 within a limited time T ∗, which has been proved in Theorem 3.1. Afterwards, the goal
is to prove that the CLS is mean-square finite-time bounded along with the sliding surface in [0, T ].
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3.3 Finite-time Boundedness in [0, T ∗]

During the subsection, the trajectories of the system are at the external side of the sliding surface within the arrival
phase [0, T ∗], which means s(t) 6= 0. By incorporating (24) and (14), the CLS can be reprofiled as:

˙̂x(t) =
v∑
i=1

v∑
j=1

ηiθj [(Aim +BimKml) x̂(t) + B̃mLjm
(
ȳ(t)− Cmx̂(t− ρ(t))−Bim∂̄(t)

)
]

˙̃x(t) =
v∑
i=1

v∑
j=1

ηiθj [Aimx̃(t)− LjmCmx̃(t− ρ(t)) + λ(tkh)Ljmek(t)− λ(tkh)LjmQ(y(tkh+ εh))

+LjmCmx(t− ρ(t))] + w̄(t)

(31)

where ∂̄(t) = ∂(t) sgn(s(t))
Then, the FTB issue of the system (31) is to be researched within the timespan [0, T ∗].

Theorem 3.2. With respect to the positive scalars ξm, ξ1m, and kj satisfying θj−kjηj ≥ 0 (kj ∈ (0, 1)), ∀m ∈ N1,
the system (31) is finite-time boundedness about

(
c1, c

∗, [0, T ∗] ,W,Ω[0,T ],`

)
in reaching stage [0, T ∗], if there are

positive definite matrices Pum, Qum, Qu, u = 1, 2, and Λi = ΛTi with appropriate dimensions satisfying

Θ∗ij − Λi < 0 (32)

kiΘ
∗
ii − (1− ki)Λi < 0 (33)

kjΘ
∗
ij + (1− kj)Λi + kiΘ

∗
ji + (1− ki)Λj < 0 (34)

c1 < c∗ < c2 (35)

c1Ψ + `ξm + ξm
[
∂̄2(t) + ȳ2(t) + x2(t− ρ(t)) +Q2(y(t− ρ(t))) +Q2(y(tkh+ εh))

]
T ∗

∝P2m

< e−ξmT
∗
c∗ (36)

M1∑
n=1

π̆mnQ1n ≤ Q1,

M1∑
n−1

π̆mnQ2n ≤ Q2 (37)

where

Θ∗ij =



V
(1)
11m 0 0 0 V

(1)
15m 0 0 V

(1)
18m V

(1)
19m V

(1)
110m

∗ −(1− g)Q1m 0 0 0 0 0 0 0 V
(1)
210m

∗ ∗ V
(1)
33m V

(1)
34m 0 0 V

(1)
37m 0 0 V

(1)
310m

∗ ∗ ∗ −(1− g)Q2m 0 0 0 0 0 0
∗ ∗ ∗ ∗ −Φm 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ αmΦm − ξmI 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ξmI 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ξmI 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ξmI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ V
(1)
1010m


V

(1)
11m =

M1∑
n=1

π̆mnP1n +Q1m + ρ̄Q1 − ξmP1m, V
(1)
15m = λ̄P1mLjm,

V
(1)
18m = P1mLjmCm, V

(1)
19m = −λ̄P1mLjm,

V
(1)
110m =

[
P1m 0 P1m ATim

]
V

(1)
210m =

[
0 0 0 −CTmLTjm

]
V

(1)
33m =

M1∑
n=1

π̆mnP2n+Q2m+ ρ̄Q2−ξmP2m+P2mA
T
im+ATimP2m+P2m

M2∑
l=1

π̂mlBimKml+
M2∑
l=1

π̂mlK
T
mlB

T
imP2m

V
(1)
34m = −P2mB̃mLjmCm, V

(1)
37m = P2mB̃mLjm

V
(1)
310m =

[
0 −P2mBim 0 0

]
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V
(1)
1010m = −diag

[
ξmI ξmI ξ−1

1mI ξ1mI
]

∝̄P1m = max
m∈N1

(
λmax

(
W−

1
2P1mW

1
2

))
, ∝̄P2m = max

m∈N1

(
λmax

(
W−

1
2P2mW

1
2

))
,

∝̄Q1 = max
m∈N1

(
λmax

(
W−

1
2Q1W

1
2

))
, ∝̄Q2 = max

m∈N1

(
λmax

(
W−

1
2Q2W

1
2

))
,

∝̄Q1m = max
m∈N1

(
λmax

(
W−

1
2Q1mW

1
2

))
, ∝̄Q2m = max

m∈N1

(
λmax

(
W−

1
2Q2mW

1
2

))
,

∝P2m
= min
m∈N1

(
λmax

(
W−

1
2P2mW

1
2

))
,Ψ = ∝̄P1m + ∝̄P2m + g∝̄Q1m + 1

2
g2∝̄Q1 + 1

2
g2∝̄Q2

Proof: Select the Lyapunov function:

V2(t) = x̃T (t)P1mx̃(t) +
∫ t
t−ρ(t) x̃

T (k)Q1mx̃(k)dk +
∫ 0

−ρ̄

∫ t
t+q

x̃T (k)Q1x̃(k)dkdq

+x̂(t)P2mx̂(t) +
∫ t
t−ρ(t) x̂

T (k)Q2x̂(k)dk +
∫ 0

−ρ̄

∫ t
t+q

x̂T (k)Q2x̂(k)dkdq
(38)

the weak infinitesimal generator of V2(t) is given:

ΓV2(t) = 2x̃T (t)P1m
˙̃x(t) + x̃T (t)(

M1∑
n=1

π̆mnP1n)x̃(t) + x̃T (t)Q1mx̃(t)− (1− ρ̇(t))x̃T (t− ρ(t))Q1mx̃(t− ρ(t))

+
∫ t
t−ρ(t) x̃

T (k)(
M1∑
n=1

π̆mnQ1n)x̃(k)dk + ρ̄x̃T (t)Q1x̃(t)−
∫ t
t−ρ̄ x̃

T (k)Q1x̃(k)dk + 2x̂T (t)P2m
˙̂x(t)

+x̂T (t)(
M1∑
n=1

π̆mnP2n)x̂(t) + x̂T (t)Q2mx̂(t)− (1− ρ̇(t))x̂T (t− ρ(t))Q2mx̂(t− ρ(t)) + ρ̄x̂T (t)Q2x̂(t)

+
∫ t
t−ρ(t) x̂

T (k)(
M1∑
n=1

π̆mnQ2n)x̂(k)dk −
∫ t
t−ρ̄ x̂

T (k)Q2x̂(k)dk

= 2x̃T (t)P1m{
v∑
i=1

v∑
j=1

ηiθj [Aimx̃(t)− LjmCmx̃(t− ρ(t)) + λ̄Ljmek(t)− λ̄LjmQ(y(tkh+ εh))

+LjmCmx(t− ρ(t))]}+ 2x̃T (t)P1mw̄(t)− (1− ρ̇(t))x̃T (t− ρ(t))Q1mx̃(t− ρ(t))

+x̃T (t)(
M1∑
n=1

π̆mnP1n)x̃(t) + x̃T (t)Q1mx̃(t) +
∫ t
t−ρ(t) x̃

T (k)(
M1∑
n=1

π̆mnQ1n)x̃(k)dk

+ρ̄x̃T (t)Q1x̃(t)−
∫ t
t−ρ x̃

T (k)Q1x̃(k)dk −
∫ t
t−ρ̄ x̂

T (k)Q2x̂(k)dk + ρ̄x̂T (t)Q2x̂(t)

+2x̂T (t)P2m{
v∑
i=1

v∑
j=1

ηiθj [Aimx̂(t) +
M2∑
l=1

π̂mlBimKmlx̂(t) + B̃mLjm(ȳ(t)− Cmx̂(t− ρ(t)))

−Bim∂̄(t)]} − (1− ρ̇(t))x̂T (t− ρ(t))Q2mx̂(t− ρ(t)) + x̂T (t)(
M1∑
n=1

π̆mnP2n)x̂(t)

+x̂T (t)Q2mx̂(t) +
∫ t
t−ρ(t) x̂

T (k)(
M1∑
n=1

π̆mnQ2n)x̂(k)dk

In line with Lemma 2.1, for positive scalars ξ1m, one can get that.

2x̃T (t)P1m[Aimx̃(t)− LjmCmx̃(t− ρ(t))] ≤ ξ1mx̃T (t)P1mP1mx̃(t)

+ξ−1
1m[x̃T (t)ATim − x̃T (t− ρ(t))CTmL

T
jm][Aimx̃(t)− LjmCmx̃(t− ρ(t))]

(39)

Define an additional function:

H1(t) = ΓV2(t)− ξmV2(t)− ξmw̄T (t)w̄(t)− ξm∂̄T (t)∂̄(t)− ξmȳT (t)ȳ(t)
−ξmxT (t− ρ(t))x(t− ρ(t))− ξmQT (y(t− ρ(t)))Q(y(t− ρ(t)))− ξmQT (y(tkh+ εh))Q(y(tkh+ εh))

(40)

In accordance with Appendix A, we can readily obtain that H1(t) < 0 which means that

ΓV2(t) ≤ ξmV2(t) + ξmw̄
T (t)w̄(t) + ξm∂̄

T (t)∂̄(t) + ξmȳ
T (t)ȳ(t)

+ξmx
T (t− ρ(t))x(t− ρ(t)) + ξmQ

T (y(t− ρ(t)))Q(y(t− ρ(t))) + ξmQ
T (y(tkh+ εh))Q(y(tkh+ εh))

(41)
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Then, the both sides of the inequation (41) are multiplied by e−ξmt and integrated range from 0 to t with t ∈ [0, T ∗]
lead to

e−ξmE {V2(t)} < E {V2(0)}+ ξm
∫ t

0
e−ξmkw̄T (k)w̄(k)dk + ξm

∫ t
0
e−ξmk∂̄T (k)∂̄(k)dk

+ξm
∫ t

0
e−ξmkȳT (k)ȳ(k)dk + ξm

∫ t
0
e−ξmkxT (k − ρ(k))x(k − ρ(k))dk

+ξm
∫ t

0
e−ξmkQT (y(k − ρ(k)))Q(y(k − ρ(k)))dk + ξm

∫ t
0
e−ξmkQT (y(tkh+ εh))Q(y(tkh+ εh))dk

(42)

As can be derived from the inequality (42) that

E {V2(0)} ≤ Ψ× sup
−ρ̄≤s≤0

{
x̃T (s)Wx̃(s), x̂T (s)Wx̂(s)

}
(43)

According to Definition 2.1, we can get:

ΓV2(0) ≤ c1Ψ, where Ψ = ∝̄P1m + ∝̄P2m + ρ̄∝̄Q1m + ρ̄∝̄Q2m +
1

2
ρ̄2∝̄Q1 +

1

2
ρ̄2∝̄Q2

Further, combined with Assumption 2.1, there is

E {V2(t)} <[c1Ψ + ξm`+ ξm∂̄
2(t)T ∗ + ξmȳ

2(t)T ∗ + ξmx
2 (t− ρ(t))T ? + ξmQ

2(y(t− ρ(t)))T ∗

+ ξmQ
2(y(tkh+ εh))T ∗]eξmt (44)

Additionally, in combination with (38), we get that

E {V2(t)} ≥ E
{
x̂T (t)P2mx̂(t)

}
≥ ∝P2m

E
{
x̂T (t)Wx̂(t)

}
(45)

In light of (44) with (45), one can obtain that

E
{
x̂T (t)Wx̂(t)

}
≤
c1Ψ + `ξm + ξm

[
∂̄2(t) + ȳ2(t) + x2(t− ρ(t)) +Q2y(t− ρ(t)) +Q2(y(tkh+ εh))

]
T ∗

e−ξmT∗∝P2m

(46)

Moreover, there exists a scalar c∗ meeting (35) so that

c1Ψ + `ξm + ξm
[
∂̄2(t) + ȳ2(t) + x2(t− ρ(t)) +Q2y(t− ρ(t)) +Q2(y(tkh+ εh))

]
T ∗

∝P2m

≤ e−ξmT
∗
c∗ (47)

Based on (46), we can get that E
{
x̂T (t)Wx̂(t)

}
≤ c∗ with t ∈ [0, T ∗]. Accordingly, the system (31) is finite-time

boundedness.

Next, the finite-time boundedness problem of the system (15) under the equivalence of SMC law (22) will be
studied in the timespan [T ∗, T ].

Theorem 3.3. For the positive scalars ξm, ξ1m,and kj satisfying θj − kjηj ≥ 0 (kj ∈ (0, 1)), ∀m ∈ N1,the
system (23) is finite-time boundedness about

(
c∗, c2, [T

∗, T ] ,W,Ω[0,T ],`

)
,if there are positive definite matrices

Pum, Qum, Qu, u = 1, 2, and Λ̃i = Λ̃Ti with appropriate dimensions satisfying

Θ̃∗ij − Λ̃i < 0 (48)

kiΘ̃
∗
ii − (1− ki)Λ̃i < 0 (49)

kjΘ̃
∗
ij + (1− kj)Λ̃i + kiΘ̃

∗
ji + (1− ki)Λ̃j < 0 (50)

c1 < c∗ < c2 (51)

c1Ψ + `ξm + ξm
[
ȳ2(t) + x2(t− ρ(t)) +Q2(y(t− ρ(t))) +Q2(y(tkh+ εh))

]
T

∝P2m

< e−ξmT c2 (52)

M1∑
n=1

π̆mnQ1n ≤ Q1,

M1∑
n−1

π̆mnQ2n ≤ Q2 (53)
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where

Θ̃∗ij =



V
(2)
11m 0 0 0 V

(2)
15m 0 0 V

(2)
18m V

(2)
19m V

(2)
110m

∗ −(1− g)Q1m 0 0 0 0 0 0 0 0

∗ ∗ V
(1)
33m V

(1)
34m 0 0 V

(1)
37m 0 0 0

∗ ∗ ∗ −(1− g)Q2m 0 0 0 0 0 0
∗ ∗ ∗ ∗ −Φm 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ αmΦm − ξmI 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ξmI 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ξmI 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ξmI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ V
(2)
1010m


V

(2)
11m = V

(1)
11m, V

(2)
15m = V

(1)
15m, V

(2)
18m = V

(1)
18m, V

(2)
19m = V

(1)
19m, V

(2)
110m =

[
P1m P1m ATim

]
,

V
(2)
33m = V

(1)
33m, V

(2)
34m = V

(1)
34m, V

(2)
37m = V

(1)
37m, V

(2)
210m =

[
0 0 −CTmLTjm,

]
,

V
(2)
1010m = −diag

[
ξmI ξ−1

1mI ξ1mI
]
.

Proof: Pick the Lyapunov function V3(t) = V2(t).

In combination with (23), define the additional function:

H2(t) = ΓV3(t)− ξmV3(t)− ξmw̄T (t)w̄(t)− ξmȳT (t)ȳ(t)− ξmxT (t− ρ(t))x(t− ρ(t))
−ξmQT (y(t− ρ(t)))Q(y(t− ρ(t)))− ξmQT (y(tkh+ εh)Q(y(tkh+ εh))

(54)

In accordance with Appendix B, we can readily obtain that H2(t) < 0 which means that

ΓV3(t) ≤ ξmV3(t) + ξmw̄
T (t)w̄(t) + ξmȳ

T (t)ȳ(t) + ξmx
T (t− ρ(t))x(t− ρ(t))

+ξmQ
T (y(t− ρ(t)))Q(y(t− ρ(t))) + ξmQ

T (y(tkh+ εh))Q(y(tkh+ εh))
(55)

Next, the latter part of the certification equates to Theorem 3.2, with regard to t ∈ [T ∗, T ], we have

e−ξmtE {V3(t)} < E {V3 (T ∗)}+ ξm
∫ t

0
e−ξmkw̄T (k)w̄(k)dk + ξm

∫ t
0
e−ξmkȳT (k)ȳ(k)dk

+ξm
∫ t

0
e−ξmkxT (k − ρ(k))x(k − ρ(k))dk + ξm

∫ t
0
e−ξmkQT (y(k − ρ(k)))Q(y(k − ρ(k)))dk

+ξm
∫ t

0
e−ξmkQT (y(tkh+ εh)Q(y(tkh+ εh))

< c∗Ψ + `ξm + ξm
[
ȳ2(t) + x2(t− ρ(t)) +Q2(y(t− ρ(t))) +Q2(y(tkh+ εh))

]
T

(56)

Consequently, it can be deduced that

E {V3(t)} ≥ E
{
x̂T (t)P2mx̂(t)

}
≥ ∝P2m

E
{
x̂T (t)Wx̂(t)

}
(57)

In light of (56) with (57), one gets that

c∗Ψ + `ξm + ξm
[
ȳ2(t) + x2(t− ρ(t)) +Q2y(t− ρ(t)) +Q2(y(tkh+ εh))

]
T ∗

∝P2m

≤ e−ξmT c2 (58)

One gets from the above that E
{
x̂T (t)Wx̂(t)

}
≤ c2 with respect to t ∈ [T ∗, T ]. Therefore, the system (23) is

finite-time boundedness.

Theorem 3.4. For given positive scalars ξ1m, ξm, γP̄1m
, γP̄2m

, γQ1m , γQ2mγQ̄1
, γQ̄2

, and kj satisfying θj−kjηj ≥ 0
(kj ∈ (0, 1)), ∀m ∈ N1, the system is finite-time boundedness within [0, T ], if there are symmetric matrices P̄1m >
0, P̄2m > 0, Q1m > 0, Q2m > 0, Q̄1 > 0, Q̄2 > 0,W > 0 and Λ̄i = Λ̄Ti , K̃ml with appropriate dimension, such that

Θ̄∗ij − Λ̄i < 0 (59)
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kiΘ̄
∗
ii − (1− ki)Λ̄i < 0 (60)

kjΘ̄
∗
ij + (1− kj)Λ̄i + kiΘ̄

∗
ji + (1− ki)Λ̄j < 0 (61)

c1 < c∗ < c2 (62)

γP̄1m
W−1 < P̄1m < 2W−1

γP̄2m
W−1 < P̄2m < 2W−1

γQ1mW−1 < Q1m < 2W−1

γQ2mW−1 < Q2m < 2W−1

γQ̄1
W−1 < Q̄1 < 2W−1

γQ̄2
W−1 < Q̄2 < 2W−1

(63)

[
Σ11 Σ12

∗ Σ22

]
< 0 (64)[

Σ̄11 Σ̄12

∗ Σ̄22

]
< 0 (65)

where
Θ̄∗ij =

[
H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

]
H1 =

[
V

(3)
11m

T
0 0 0 V

(3)
15m 0 0 V

(3)
18m V

(3)
19m V

(3)
110m V

(3)
111m 0

]T
H2 =

[
0 −(1− g)Q1m 0 0 0 0 0 0 0 V

(3)
210m 0 0

]T
H3 =

[
0 0 V

(3)
33m

T
V

(3)
34m 0 0 V

(3)
37m 0 0 V

(3)
310m 0 V

(3)
312m

]T
H4 =

[
0 0 V

(3)
34m

T
−(1− g)Q2m 0 0 0 0 0 0 0 0

]T
H5 =

[
V

(3)
15m

T
0 0 0 −Φm 0 0 0 0 0 0 0

]T
H6 =

[
0 0 0 0 0 αmΦm − ξmI 0 0 0 0 0 0

]T
H7 =

[
0 0 V

(3)
37m

T
0 0 0 −ξmI 0 0 0 0 0

]T
H8 =

[
V

(3)
18m

T
0 0 0 0 0 0 −ξmI 0 0 0 0

]T
H9 =

[
V

(3)
19m

T
0 0 0 0 0 0 0 −ξmI 0 0 0 0

]T
H10 =

[
V

(3)
110m

T
V

(3)
210m

T
V

(3)
310m

T
0 0 0 0 0 0 V

(3)
1010m

T
0 0

]T
H11 =

[
V

(3)
111m

T
0 0 0 0 0 0 0 0 0 V

(3)
1111m

T
0

]T
H12 =

[
0 0 V

(3)
312m

T
0 0 0 0 0 0 0 0 V

(3)
1212m

T
]T

V
(3)
11m = π̆mnP̄1m + Q̄1m + gQ̄1 + ξ1mI − ξmP1m, V

(3)
15m = λ̄Ljm,

V
(3)
18m = LjmCm, V

(3)
19m = −λ̄Ljm,

V
(3)
110m =

[
I 0 P̄1mA

T
im

]
,

V
(3)
111m =

[√
π̆m1P̄1m · · ·

√
π̆m(m−1)P̄1m

√
π̆m(m+1)P̄1m · · ·

√
π̆mN1 P̄1m

]
V

(3)
210m =

[
0 0 −CTmLTjm

]
,

V
(3)
33m = π̆mnP̄2m + Q̄2m + gQ̄2 +AimP̄2m + P̄2mA

T
im +

M2∑
l=1

π̂mlBimK̃ml +
M2∑
l=1

π̂mlK̃TmlBTim − ξmP̄2m,

V
(3)
34m = −B̃imLjmCm, V (3)

37m = B̃imLjm, V
(3)
310m =

[
0 −Bim 0

]
,

V
(3)
312m =

[√
π̆m1P̄2m · · ·

√
π̆m(m−1)P̄2m

√
π̆m(m+1)P̄2m · · ·

√
π̆mN1 P̄2m

]
,

V
(3)
1010m = −diag

[
ξmI ξmI ξ1mI

]
,

V
(3)
1111m = −diag

[
P̄11 · · · P̄1(m−1) P̄1(m+1) · · · P̄1N1

]
,
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V
(3)
1212m = −diag

[
P̄21 · · · P̄2(m−1) P̄2(m+1) · · · P̄2N1

]
,

Σ11 = − 1
2
e−ξmT c∗ + `m + ξm

(
∂2(t) + ȳ2(t) + x2(t− ρ(t)) +Q2(y(t− ρ(t))) +Q2(y(tkh+ εh))

)
T

Σ12 =
[√
c1
√
c1
√
c1
√
c1
√
c1
√
c1
]
,

Σ22 = −diag
[
γP̄1m

γP̄2m
g−1γQ1m g−1γQ2m g−2γQ̄1

g−2γQ̄2

]
,

Σ̄11 = − 1
2
e−ξmT c2 + `ξm + ξm

(
ȳ2(t) + x2(t− ρ(t)) +Q2(y(t− ρ(t))) +Q2(y(tkh+ εh))

)
T

Σ̄12 =
[√
c∗
√
c∗
√
c∗
√
c∗
√
c∗
√
c∗
]
, Σ̄22 = Σ22.

And then, gains of controller are Kml = K̃mlP̄−1
2m and gains of observer Ljm can be calculated by Matlab.

Proof. Define
P̄1m , P−1

1m , P̄2m , P−1
2m , Q̄1m , P−1

1mQ1mP
−1
1m , Q̄2m , P−1

2mQ2mP
−1
2m , Q̄1 , P−1

1mQ1P
−1
1m ,

Q̄2 , P−1
2mQ2P

−1
2m , K̃ml = KmlP̄2m, z = −diag

[
P1m I P2m I . . . I

]
.

In accordance with (59) and Schur complement, we can get that

Θ̄ij − Λ̄i < 0 (66)

Next, pre and post-multiplying (66) z and it’s transpose. Afterwards, combined with Schur comlement again, the
inequality (32),(48) are confirmed.

Similar to the above certification process, we can obtain that (33),(34),(49),(50) can be ensured by (60),(61).

Then,according to (63),we have 

∝P1m < 1
γP1m

, ∝P1m
> 1

2

∝P2m < 1
γP2m

, ∝P2m
> 1

2

∝Q1m < 1
γQ1m

, ∝Q1m
> 1

2

∝Q2m < 1
γQ2m

, ∝Q2m
> 1

2

∝Q1 <
1

γQ1
, ∝Q1

> 1
2

∝Q2 <
1

γQ2
, ∝Q2

> 1
2

According to Theorem 3.4, the solvable gains of controller are Kml = K̃mlP̄−1
2m and gains of observer Ljm can be

solved by Matlab.

4 NUMERICAL EXAMPLES

In the chapter, our goal is to verify the validity of the presented control plan via a numerical instance.

Consider a two-rule interval type-II fuzzy S-MJSs and controllers both with two modes, which meansM1 = 2,M2 =
2. The transition between the two models is controlled by a semi-Markov process, and the transition rate matrix
below:

||1 (~) =

[
π11(~) π12(~)
π21(~) π22(~)

]
=

[
−0.51h 0.51h
3.07h2 −3.07h2

]
Based on the transition rate function described by the Weibull distribution, the probability density function of sojourn
time is defined as §m(~) = c

bc
~c−1 exp[−( ~

b
)c]. When m = 1, b = 2 and c = 2, we get §1(~) = 0.5~e−0.25~2

. When
m = 2, b = 1, c = 3, we have §2(~) = 3~2e−~3

. Consequently, computing mathematical expectations of transition
rate function as E {π12(~)} =

∫∞
0

0.51~§1(~)d~ ≈ 0.9040 with E {π21(~)} =
∫∞

0
3~2§2(~)d~ ≈ 2.7714, one gets

[π̆mn]m,n∈M1
=

[
−0.9040 0.9040
2.7714 −2.7714

]
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Furthermore, select the conditional probability matrix

||2 =

[
0.27 0.73
0.38 0.62

]
The correlative system parameters are listed as follows

A11 =

[
−0.11 0.09
0.09 −0.11

]
, A12 =

[
−0.2 2
1.2 −0.7

]
, A21 =

[
−0.11 0.019
0.041 −0.31

]
, A22 =

[
−0.2 0.7
1.1 −0.6

]
B11 =

[
−0.011

0.12

]
, B12 =

[
0.3
0.24

]
, B21 =

[
−0.051

0.19

]
, B22 =

[
0.11
0.05

]
C1 =

[
−0.2 0.17

]
, C2 =

[
−0.4 0.9

]
, G1 =

[
0.15 −0.32

]
, G2 =

[
0.23 −0.12

]
D11 =

[
0.21
0.2

]
, D12 =

[
0.33
0.27

]
, D21 =

[
0.15
0.30

]
, D22 =

[
0.27
0.09

]
with w(t) = 0.23sin(0.7t),the upper with lower membership functions:

η
1
(x) = 0.85(1− 1

1+e
−(x1+ 11

2
)/8

),η1(x) = 0.85(1− 1

1+e
−(x1+ 5

2
)/8

)

η
2
(x) = 1− η

1
(x), η2(x) = 1− η1(x)

Table 1. The presented control schemes under distinct fading channels
Fading channel Kml Ljm Φm Triggering number

K11 = [−15.9077, 11.4196] L11 = [1.5734, 2.5973]T Φ1 = 1.1705

λ̄ = 0.8 K12 = [−10.2118, 9.2646] L12 = [1.3352, 2.6308]T Φ2 = 1.3090 17
K21 = [−20.5846, 25.8407] L21 = [1.7604, 3.2144]T

K22 = [−15.3144, 27.3089] L22 = [1.6734, 3.0831]T

K11 = [−13.6621, 16.1741] L11 = [1.4401, 3.5205]T Φ1 = 1.2413

λ̄ = 0.5 K12 = [−10.2803, 5.2637] L12 = [1.4712, 3.5641]T Φ2 = 1.2709 20
K21 = [−13.4732, 22.3271] L21 = [1.7134, 4.0129]T

K22 = [−16.1034, 19.4407] L22 = [1.6930, 4.0945]T

K11 = [−8.3201, 27.1291] L11 = [0.2153, 0.3021]T Φ1 = 1.3217

λ̄ = 0.2 K12 = [−11.4385, 18.3509] L12 = [0.1841, 0.2703]T Φ1 = 1.3469 23
K21 = [−5.4328, 15.3321] L21 = [0.1942, 0.2835]T

K22 = [−7.2180, 13.7341] L22 = [0.1731, 0.2317]T

and the weighting coefficients v1 = sin2(x1), v1 =
1 − sin2(x1). The actual membership functions are
expressed as η1(x) = η

1
(x)v1 + η1(x)v1 and η2(x) =

1− η1(x).

The nonlinear actuator fault signals are set as
f1(x(t), t) = f2(x(t), t) = 0.4sin

√
x2

1(t) + x2
2(t). The

state observer (14) is desighed with the membership
functions θj(x̂) = 0.3η

j
(x̂) + 0.5ηj(x̂)(j = 1),

and θ2(x̂) = 1 − θ1(x̂(t)). To perform the
emulation, the starting location is selected as x(0) =
[−1.7, 1.7]T , x̂(0) = [0.6,−1.2]T .

Therefore, the parameters can be chosen as
ξ1 = 0.3, ξ2 = 0.5, ξ11 = 0.4, ξ12 = 0.25, ki =
0.15; 0.24(i = 1, 2), kj = 0.04; 0.37(j = 1, 2), α1 =
0.3, α2 = 0.35, ρ̄ = 0.04, g = 0.35, ψ = 0.81, β0 =
10, c1 = 1, c2 = 12, ` = 0.6, T = 10s. For the
purpose of examining the effect of the
attenuation phenomenon, we also consider PET
SMC influenced by distinct fading channels with

λ̄ = 0.8, 0.5, 0.2 and the results are shown in Table
1, respectively.

The emulation results for the aforementioned examples
with varied fading channels are shown in Fig.2-Fig.5
and Table 1. For simplicity, define tk , tkh, µ(tk) ,
λ(tkh), µ̄ , λ̄. The trajectories of the CLS state
in Fig.2-Fig.5 finally reach a stable state, remaining
within a given region (c2 = 12) for 0 to 10 seconds.
Consequently, in line with Definition 2.1, the CLS is
FTB with regard to (1, 12, [0, 10], I, 0.6). From Fig.2 to
Fig.5, the trajectories of the estimated system state are
shown.

It can be seen that the observer can simulate the
primitive system nicely and attain great stability. From
Fig.3, we can see that the trajectories of the sliding
variable can be compelled into the sliding surface
s(t) = 0 at t = T ∗, T ∗ < T and it also depicts the
SMC law. Fig 6 shows that the system modes are not
in synch with the controller modes.
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Fig. 5. States x(t) and estimates x̂(t) with µ̄ = 0.2.

  Fig. 6. The evolution of system mode and controller mode

time(s) time(s)

Table 1 displays the triggering numbers, and it can
be shown that the smaller λ̄, in other words, the
inferior channel will result in the more event triggering
and the slower convergence . In reality, a smaller λ̄
indicates that the network transmission performance is
more prone to channel fading and that the controller is
unable to acquire exact signals. Therefore, with the
deterioration of the network from λ̄ =0.8 to λ̄ =0.2,
additional more event triggering will be required for
compensating for the performance lost. This has also
verified on the basis of simulations and the number of
event triggering in Table 1.

5 CONCLUSIONS

In the article, we have researched observer-based
finite-time PET SMC for interval type-II S-MJSs affected
by quantization and fading channels. In order to save
network bandwidth, we introduce quantization and an
event-triggered protocol. The mismatched membership
functions and the asynchronous problem between the

system and the controller are solved, and we obtain less
conservative stability conditions. Thereafter, a feasible
fuzzy observer-based SMC law is developed, which
enables the state trajectories of the system to reach the
specified sliding surface within finite-time. And with the
aid of the time partition strategy, sufficient conditions for
the system to be bounded in finite-time during the arrival
and sliding stages are derived. In addition, the suitable
fuzzy controller and observer have been obtained. At
last, an example is given to verify the validity of the
presented approach. In the future, we will apply the
theory to multiagent systems and combine different
communication protocols, such as the weighted try-
once-discard protocol.
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APPENDIX

Appendix A:

Combined with (10), we can get the derivative of V2(t) in Theorem 3.2:

ΓV2(t) ≤ x̃T (t){ξ1mP 2
1m +

M1∑
n=1

π̆mnP1n +Q1m + ρ̄Q1 + ξ−1
1mA

T
imAim}x̃(t) + x̃T (t){−ξ−1

1mA
T
imLjmCm}

x̃(t− ρ(t)) + x̃T (t− ρ(t)){−ξ−1
1mC

T
mL

T
jmAim}x̃(t) + x̃T (t− ρ(t)){ξ−1

1mC
T
mL

T
jmLjmCm − (1− g)

Q1m}x̃(t− ρ(t)) + x̃T (t){−λ̄P1mLjm}ek(t) + eTk (t){−λ̄LTjmP1m}x̃(t) + x̃T (t){−λ̄P1mLjm}
Q(y(tkh+ εh)) +QT (y(tkh+ εh)){−λ̄LTjmP1m}x̃(t) + x̃T (t){P1mLjmCm}x(t− ρ(t))

+xT (t− ρ(t)){CTmLTjmP1m}x̃(t) + x̂T (t){P2mAim +ATimP2m + P2m

M2∑
l=1

π̂mlBimKml

+
M2∑
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mlB
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im +
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π̆mnP2n +Q2m + ρ̄Q2}x̂(t) + x̃T (t)P1mw̄(t) + w̄T (t)P1mx̃(t)

+x̂T (t){−P2mB̃imLjmCm}x̂(t− ρ(t)) + x̂T (t− ρ(t)){−CTmLTjmB̃TimP2m}x̂(t)

−(1− g)x̂T (t− ρ(t))Q2mx̂(t− ρ(t)) + x̂T (t){P2mB̃imLjm}ȳ(t) + ȳT (t){LTjmB̃TimP2m}x̂(t)
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T (y(t− ρ(t)))ΦmQ(y(t− ρ(t)))

Then by Schur complement [5] and (32) ∼ (34), we can get

v∑
i=1

v∑
j=1

ηiθjΘij =
[
♦1 ♦2 ♦3 ♦4 ♦5 ♦6 ♦7 ♦8 ♦9 ♦10 ♦11

]
(67)

where
♦1 =

[
Z

(1)
11m

T
(−ξ−1

1mA
T
imLjmCm)T 0 0 V

(1)
15m

T
0 0 V

(1)
18m

T
V

(1)
19m

T
P1m 0

]T
♦2 =

[
(−ξ−1

1mA
T
imLjmCm)T −(1− g)Q1m + (ξ−1

1mC
T
mL

T
jmLjmCm)T 0 0 0 0 0 0 0 0 0

]T
♦3 =

[
0 0 V

(1)
33m

T
V

(1)
34m

T
0 0 V

(1)
37m

T
0 0 0 −(P2mBim)T

]T
♦4 =

[
0 0 V

(1)
34m

T
−(1− g)Q2m 0 0 0 0 0 0 0

]T
♦5 =

[
V

(1)
15m

T
0 0 0 −Φm 0 0 0 0 0 0

]T
♦6 =

[
0 0 0 0 0 αmΦm − ξmI 0 0 0 0 0

]T
♦7 =

[
0 0 V

(1)
37m

T
0 0 0 −ξmI 0 0 0 0

]T
♦8 =

[
V

(1)
18m

T
0 0 0 0 0 0 −ξmI 0 0 0

]T
♦9 =

[
V

(1)
19m

T
0 0 0 0 0 0 0 −ξmI 0 0

]T
♦10 =

[
P1m 0 0 0 0 0 0 0 0 −ξmI 0

]T
♦11 =

[
0 0 (−P2mBim)T 0 0 0 0 0 0 0 −ξmI

]T
Z

(1)
11m = V

(1)
11m + ξ−1

1mAim
TAim + ξ1mP

2
m

Let
♠(t) =

[
x̃(t) x̃(t− ρ(t)) x̂(t) x̂(t− ρ(t)) ek(t) Q(y(t− ρ(t)))
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]T

Therefore, the following inequality holds:

H1(t) = ΓV2(t)− ξmV2(t)− ξmw̄T (t)w̄(t)− ξm∂̄T (t)∂̄(t)− ξmȳT (t)ȳ(t)− ξmxT (t− ρ(t))x(t− ρ(t))
−ξmQT (y(t− ρ(t)))Q(y(t− ρ(t)))− ξmQT (y(tkh+ εh))Q(y(tkh+ εh)) ≤ ♠T (t)Θij♠(t) < 0

(68)
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Then, we have

ΓV2(t) ≤ ξmV2(t) + ξmw̄
T (t)w̄(t) + ξm∂̄

T (t)∂̄(t) + ξmȳ
T (t)ȳ(t) + ξmx

T (t− ρ(t))x(t− ρ(t))
+ξmQ

T (y(t− ρ(t)))Q(y(t− ρ(t))) + ξmQ
T (y(tkh+ εh))Q(y(tkh+ εh))

(69)

So as to make full use of MFs information and reduce the conservativeness, slack matrices Λi are introduced. By

using the property of MFs, i.e.,
v∑
i=1

ηi(x(t)) = 1,we obtain:
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In accordance with (67) and (70) and Schur complement,we get that:
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η2
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∗
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+
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v∑
j>i

ηiηj [kjΘ
∗
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∗
ji + (1− ki)Λj ] (71)

By virtue of (32) ∼ (34),we can get that (71) < 0.

Appendix B:

Combined with (10), we can get the derivative of V2(t) in Theorem 3.3:
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By Schur comlement [5] and (48) ∼ (50), the subsequent steps are analogous to those in Appendix A.
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Next,
H2(t) = ΓV3(t)− ξmV3(t)− ξmw̄T (t)w̄(t)− ξmȳT (t)ȳ(t)− ξmxT (t− ρ(t))x(t− ρ(t))
−ξmQT (y(t− ρ(t)))Q(y(t− ρ(t)))− ξmQT (y(tkh+ εh)Q(y(tkh+ εh))

(72)

Thus,
ΓV3(t) ≤ ξmV3(t) + ξmw̄

T (t)w̄(t) + ξmȳ
T (t)ȳ(t) + ξmx

T (t− ρ(t))x(t− ρ(t))
+ξmQ

T (y(t− ρ(t)))Q(y(t− ρ(t))) + ξmQ
T (y(tkh+ εh))Q(y(tkh+ εh))

(73)
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