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ABSTRACT 

 

Natural gas plays an important role in industry as a clean energy, with the intensification of the 
Russia-Ukraine war, there is a large-scale energy shortage in Europe, and the natural gas supply in 
Europe has a natural gas crisis due to the cut-off of the Nord Stream No.1 pipeline. Therefore, it is 
necessary to accurately predict the consumption of natural gas. In order to fulfill this requirement, 
this paper uses the Lagrangian Support Vector Regression model with          kernel based on 
the Nonlinear Auto-Regressive model and Grey Wolf Optimizer for 5-step forecasting of monthly 
natural gas consumption in all European countries. Under three time lags, comparing the 5-step 
predict results of    -     with    ,   ,         ,        , and    , those five models’ 
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hyperparameters also optimized by    , it found that    -     has smallest      in almost all 
cases, and the numerical results of      generated by    -     is from 5.844% to 11.622%, the 

smaller the forecasting step size, the better the effect. Moreover, compares the difference of     

and    , it is found that     can obtained better model hyperparameters and smaller      

results. To sum up, the proposed    -     model has strong generalization performance and 
robustness, and is a reliable natural gas consumption prediction model. 
 

 
Keywords: Lagrangian support vector regression; grey wolf optimizer; nonlinear auto-regressive; 

kernel learning; natural gas consumption in Europe. 
 

1. INTRODUCTION 
 
As a clean and efficient low-carbon energy, 
natural gas is a very important part of the global 
energy structure, accounting for about 25% of 
European energy consumption. Coupled with the 
intensification of the situation in Russia and 
Ukraine, there is a serious shortage of natural 
gas supply in Europe. Therefore, it is necessary 
to accurately predict the consumption of natural 
gas [1]. 
 
Natural gas consumption forecasting has always 
been a hot issue. Scholars at home and abroad 
mostly use the following five types of models for 
the prediction of    , time series models [2,3], 
grey system models [4,5,6], machine learning 
models [7,8,9], neural networks models [8,10] 
and other models.  
 
Due to its superior performance, support vector 
regression models are also used in the prediction 
of natural gas consumption. But the performance 
of    -based models are mostly based on the 
choice of kernel function. Mangasarian et al. [11]  
proposed the Lagrangian support vector 
machines based on the Support vector machine 
used for classification problem, Balasundaram  et 
al. [12] modified the classification model into a 
regression model in 2010 for regression 
prediction tasks, and give its iterative solution 
algorithm. The kernel learning method developed 
by     is also widely used in energy forecasting, 
and different kernels can be applied in different 
forecasting fields. This paper uses the      

model and selects a          kernel [13] that 
has never been used on the model.  
 
In order to transform univariate time series data 
sets into machine learning supervised learning 
data sets, the nonlinear auto-regressive (   ) 
[14] model are used to achieve this goal. The 
reconstructed data set is used to train the      
model and for multi-step forecasting. The initial 
parameters of the model often cannot achieve 
good results, so this paper uses Grey Wolf 

Optimizer (    ) to optimize the model 
hyperparameters. Deng et al. [15] applied 
   +      +     in the natural gas load 
forecast in Chengdu, China. Zhang et al. [16]  
applied    +       +    in the natural gas 
consumption in Netherlands and UK. Their 
research demonstrates that such hybrid models 
achieve good predictive performance. In this 
paper, a new combined model    +    +    
is proposed and applied to energy consumption 
forecast for the first time. 
 

2. DESIGN OF THE FORECASTING 
MODEL 

 

In this section, the detailed mathematical model 
of the      (Lagrangian Support Vector 

Regression) with          kernel and the GWO 
(Grey Wolf Optimizer) used in this paper will be 
presented in Section 2.1 and Section 2.2, 
respectively. And the complete multi-step 
forecasting model based on     (Nonlinear 
Auto-Regressive) model as out-of-sample 
holdout validation will be shown in Section 2.3. 
 

2.1 Lagrangian Support Vector 
Regression with          kernel  

 

The standard     formulation is a constrained, 
quadratic optimization problem, written in matrix 
form is as follows: 
 

   
 

 
                

     
            
             

                                     

 

where      
                 ,   and    are 

the slack variables,  represents the transpose of 

the matrix, matrix       ,      has made two 
changes on the basis of    : 
 

(1) Change   and    in 1-norm to be the 
square of 2-norm, which makes make it 
unnecessary for the slack variable to be 
greater than 0. 

(2) Add    to     in Eq(1).  
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Thus the      can be formulated as the 
following form: 
 

   
 

 
         

 

 
    

    
   

 

   

     
             

             
 
 

                         

 
where   and   are the input parameters.  
 
To solve the convex quadratic problem above, 
introducing two Lagrange multiplies    
                 and                    , 
the Lagrangian Function   can be obtained as 
follows: 
 

  
 

 
         

 

 
    

    
   

 

   

                    

 

   

                   
  

 

   

   

                       

 
The optimality condition is that the partial 
derivative of   with respect to the original 
variable is 0, we can obtained the solution of 
Eq(3): 
 
                                              
 
and the dual problem can be written as the 
minimization problem: 
 

   
 

 
        

                  

 
 

  
   

      
              

                                      
 

The linear      is the method to output a 
approximate function     , based on the Eq(4), 
the linear regression estimation function is given 
as: 
 

           
 

                                              

 

Define an augmented matrix       , the 
Eq(5) can be equally expressed as: 
 

   
 

 
   

   
    

  

  
     

  

  
                                   

 

Where 
 

   

 

 
        

    
 

 
    

                                          

 
and 
 

   
  

  
   

    
                                                         

 
The linear      in Eq(7) can be extend to 

nonlinear model with kernel matrix  . In this 
paper, we used the Sorensen kernel which 
expressed as the following form: 
 

       
    

    
      

                                               

 
where     is a inner product of the two vectors. 
 
Replacing     by           in Eq(7), for any 
    , the kernel regression estimation function 

     is obtained to be of the following form: 
 
                                                  
 

2.2 Grey Wolf Optimizer 
 

The     algorithm is inspired the unique 
hunting and hierarchy behavior of the grey 
wolves. Grey wolves have a very strict social 
dominant hierarchy, in order to mathematically 
model the hierarchy in    , the best solution is 

 , the second and the third best solutions are   

and  , and the rest of the candidate solutions 

called  . The hunting behavior is divided into two 
stages: Encircling and hunting for prey. The 
specific mathematical modeling steps for the two 
stages are described below. 
 
Encircling: The Grey wolves encircle the prey 
first when they hunt. The encircle behavior 
modeled as follows: 
 

                                                                     

 

                                                                   

 

where   represents the current iteration,     is the 

position of the prey,    is the position of a grey 

wolf, and    and    are coefficient vectors, which 
calculated as follows: 
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where         are random vectors in      , the 

components of    are linearly decreased from 2 to 
0 during the course of iterations. 
 
Hunting: The hunt of the prey always guided by 
the   wolf, sometimes, the   and   wolf 
participate in the hunt. Assume that the  ,   and 

  have better knowledge of the prey in the 
abstract space. Therefore, save the best three 
solutions obtained so far, and update other 
search agents’ position (including  ) according 
to the position of the best search agents. This 
progress is modeled as follows: 
 

                                                                   

 

        
           

 
                                            

 

where         represents    ,     and    ,         

represents    ,     and    . 

 

2.3 Complete Multi-step Forecasting 

Strategy Based on     Model 
 
In this section, the     model which can 
transform the original time series to supervised 
learning dataset will be given in Section 2.3.1, 
the out-of-sample holdout validation scheme 
presented in Section 2.3.2, and the complete 
algorithm flow will be shown in Section 2.3.3. 
 

2.3.1 Nonlinear Auto-Regressive model for 
multi-step forecasting 

 

A machine learning model is a class of models 
with high-dimensional inputs, Preferably without 
using raw time series data as input. The 
Nonlinear Auto-Regressive (    ) model is a 
type of model that reconstructs the original data 
set based on phase space reconstruction and lag 
methods. Given a Univariate times series data 
                 , phase space 

reconstruction of   yields a new dataset   in 
Eq(18) for supervised learning, the new dataset 

(matrix:  ) can be expressed as follows: 
 

   

           

             

     
                 

              

Where   is the time lag. 
 
2.3.2 out-of-sample holdout validation 
 
In this paper, we use the out-of-sample holdout 
validation to validate the best hyperparameters of 
the model. Different with conventional k-fold 
cross-validation in machine learning models, the 
out-of-sample holdout validation requires only 
one validation on the validation set, k-fold cross-
validation will disrupt the order of the data set 
when performing multiple cross-validation, but 
there is a certain irrationality in the validation of 
the time series model. Because it is 
unreasonable to validate past data with future 
data. 
 
Split the reconstructed data set according to the 
ratio of about 8:1:1 according to the sequence, 
the split datasets are training, validation, and test 
sets, respectively. First, the default 
hyperparameters of      are used to train the 

model on the training set, then     will optimize 
the model hyperparameters on the validation set, 
and the final multi-step forecasting process will 
be performed on the test set. 
 

        
 

 
   

      

  

                         

 
Throughout the process, we use                                  
     which presents in Eq(19) as an                    
indicator to evaluate model performance. The 
smaller the     , the better the model 
performance.  
 
2.3.3 Complete multi-step forecasting model 
 
The completed multi-step forecasting model will 
be shown in this part. The detailed model flow 
chart is shown in Fig. 1, and the specific model 
prediction process is divided into the following 
five steps: 
 

(1) Phase space reconstruction of the original 
time series U into a supervised learning 
dataset using     model. 

(2) Split the dataset in a ratio of about                         
8:1:1. 

(3) Train the      model on the training set 
with default hyperparameters. 

(4) With the minimum      as the goal,                    

use     for optimization on the validation 
set. 

(5) Multi-step prediction on test set. 
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Fig. 1. Complete algorithm flow 
 

 
 

Fig. 2. Original dataset 
 

3. DATASET DESCRIPTION 
 
In this paper, the dataset we used is from the 
publicly available European natural gas 
consumption (    ) dataset in the Eurostat 
(https://ec.europa.eu/eurostat), which collects 
monthly     data from Jan 2014 to May 2022 
for a total of 100 months. Total monthly natural 
gas consumption for a total of 27 countries within 
Europe. Use the first eighty points to train the 
LSVR model, use the next ten points to find the 
optimal hyperparameters of the model, and use 
the last ten points for multi-step forecasting. The 
original dataset is shown in Fig. 2. 
 

4. MULTI-STEP FORECASTING RESULTS 
AND DISCUSSION 

 
In this section, we compared    -     with five 
machine learning models with high generalization 
performance at three different time lags. These 
five models include     similar to     , tree 

models Random Forest (   ), Light Gradient 
Boosting Machine (         ), and Extreme 

Gradient Boosting (        ), neural network 

model Multilayer Perceptron (    ). The 
modeling and optimization process of these five 
models is the same as    -    . The detailed 
comparison results are shown in Section 4.1. 
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The impact of different optimization algorithms on 
the results is discussed in Section 4.2. 
 

4.1 Analysis of the Multi-step 
Forecasting Results 

 
In order to quantitatively analyze the 
performance of the model, the      of multi-
step forecasting is used as the evaluation 
standard. In all experiments, for a more 
comprehensive comparison of these models, 
three different lags (that is,  =3,  =4,  =5) were 
chosen. In the multi-step forecasting process, we 
predict 5 steps forward under the three time lags, 
and calculated the MAPE of each step.  
 
Applying the proposed model to the forecast of 
monthly     for all countries on a European 
scale. The detailed      results shown in Table 
1. It can be plainly seen that from the table, the 
proposed    -     model yields the minimal 
     almost all cases. The numerical result of 

its      is from 5.844% to 11.622%. Only when 

 =4,    -        has better      than    -

     at the fourth step. But in this case, the 
results of the proposed model are better than the 
other four models. Detailed      results also 
shown in Fig. 3.  
 

In order to judge the performance of the model 
more impartially, we also use      as the 

evaluation metric. Detailed numerical      
results shown in  

. When the forecasting step is 3, the proposed 
         slightly worse than other models, 
but the one-step model in the optimization 
progress is the best of all models. Out of a total 
of 15 cases, 11 results are the best, which shows 
that in general    -      can produce good 
results. Different choices of lag will also lead to 
different prediction performance of the model. 
From the results of RMSE,    -     may have 
the possibility of a large lag. 
 
Fig. 4 is when  =5, the output value of the 
machine learning model after data 
reconstruction, a total of 95 points, the 
comparison between the predicted value of the 6 
models and the original value. It can be seen that 
the effect of     is a bit worse, and there is a 
phenomenon of underfitting in the training set, 
lead to poor prediction results in the test set. 
    has a certain overfitting phenomenon, over-
learning the information of the data set, resulting 
in very complicated results in the training set. 
The best performance on the training set is 
   -        , but his prediction results are 

slightly worse than    -    .  
 
To sum up, the proposed    -      hybrid 
model can get very good forecasting results 
whether it is the training set or the test set, and 
the obtained      is also the best among all 
comparison models, with strong generalization 
performance and robust. 
 

 
Table 1.     (%) of the forecasting models 

 

 Steps                                  

 step1 5.844 6.966 7.728 7.444 8.913 15.372 
 step2 9.504 10.193 12.301 10.167 10.637 25.778 
    step3 9.138 14.148 11.190 13.419 12.804 45.638 
 step4 11.199 15.376 11.424 17.868 12.938 56.474 
 step5 11.418 14.914 15.193 17.450 14.291 64.856 
 step1 6.368 7.264 7.548 8.286 6.628 10.296 
 step2 8.069 9.955 9.414 12.249 8.892 14.273 
    step3 9.632 12.218 10.142 16.000 10.217 24.397 
 step4 11.622 15.345 11.927 19.467 10.870 31.967 
 step5 10.932 14.487 13.120 21.004 11.538 41.182 
 step1 6.114 28.309 6.823 6.799 7.746 7.746 
 step2 7.874 28.077 9.863 9.729 9.403 9.403 
    step3 10.058 26.557 10.972 11.534 12.287 12.287 
 step4 11.532 27.004 12.557 12.585 14.067 14.067 
 step5 11.118 30.294 13.497 11.588 15.163 15.163 
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Fig. 3.      results for a 5-step forecast with 3 time lags 
 

 
 

Fig. 4. Predict data when  =5 
 

 
 

Fig. 5.      results yield by    -     and    -     
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Table 2.      of the forecasting models 
 

                                   

 step1 2483.907 12654.75 3372.684 3183.683 3633.375 5543.267 
 step2 4108.882 13188.42 4469.207 5218.579 5520.993 11130.08 

    step3 5390.395 13733.93 5034.078 5533.764 7218.339 18335.6 

 step4 5592.956 14570.42 5167.301 6024.135 6505.426 24694.7 
 step5 5435.476 15697.61 6015.199 6492.311 3655.083 29648.08 
 step1 2943.45 3616.895 3217.157 4108.357 3049.498 4745.642 
 step2 3859.341 5203.121 4910.678 5119.283 4749.084 7616.78 

    step3 4688.764 6606.234 5829.993 6214.313 5324.508 14028.67 
 step4 5254.986 7330.213 5826.283 6643.063 5503.314 19858.24 
 step5 6064.432 7300.149 7853.442 7323.668 6185.733 25858.34 
 step1 2751.89 12357.61 2924.35 2863.813 3589.565 3581.575 
 

step2 3740.463 12841.06 4565.178 4580.491 4263.338 4820.321 
    step3 4801.581 13317.49 5488.381 5537.557 5890.575 10466.57 

 step4 5550.836 14092.92 5715.439 5911.509 6338.934 16892.69 
 step5 5988.395 15195.73 5967.692 5982.283 7027.027 23313.46 

 
Table 3.      results of    -     and    -     

 

optimizer Lag step1 step2 step3 step4 step5 

     5.844 9.504 9.138 11.199 11.418 

        6.368 8.069 9.631 11.622 10.932 
     6.114 7.874 10.058 11.532 11.118 

     6.661 9.157 10.433 13.576 13.261 

        6.181 8.366 11.279 13.776 13.383 
     6.317 9.350 11.970 13.816 12.614 

 

4.2 Discussion 
 
In this section, we discuss the impact of different 
swarm intelligence optimization algorithms on the 
performance of      models. Similar to    , 

    is also widely used to solve the problems of 
complex nonlinear systems. The following are 
the specific discussion results. 
 
Under three time lags, the 5-step forecasting is 
performed respectively, and the                    
detailed      results generated by    -     

and    -     are listed in Table 3. Under the 
combination of three time lags and five 
forecasting steps (15 cases in total),     
produces only two results that are slightly better 
than    .  
 
Both     and     can produce relatively small 
     results in the first and second steps, but 
from the third step onwards, the results produced 
by     are larger than those of    , and the 
gap gradually increases. The smallest difference 
is  =4 at the first step, which is only 0.187%, and 

the largest difference is  =4 at the fifth step, with 
a difference of 2.451%. The detailed results 
presented in Fig. 5. 

5. CONCLUSION 
 

Under the influence of the Russia-Ukraine                    
war, there are energy tensions in Europe, 
especially the shortage of natural gas. Accurate 
forecasting of natural gas consumption is 
necessary.  
 

This paper uses the Lagrangian Support Vector 
Regression model with the          kernel, 
combined with the Grey Wolf Optimizer and 
Nonlinear Auto-Regressive model, for multi-step 
forecasting of monthly natural gas consumption, 
based on the out-of-sample holdout validation. 
The proposed model was applied to forecast the 
total monthly natural gas consumption of 27 
countries within Europe. Comparing the model 
with    ,   ,         ,        , and    ’s 

five combined models based on    . It’s find 
that the    -     has the best generalization 
performance and most robust of all hybrid 
models. The      yield by    -     of each 
step at three time lags are from 5.844% to 
11.622%. It also discussed the difference of the 
    and    , and find that     can better 
optimize the model hyperparameters in most 
cases. It can be concluded that the proposed 
   -      model can be used to accurately 
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predict natural gas consumption, and has strong 
generalization performance and robustness. 
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