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Abstract

The history of coronavirus can be traced to the 1960s when B184 and 229E coronaviruses were discovered in
the nasal washing of individuals with the common cold. There was no worry about such viruses until 2003
when the first major outbreak of SARS was discovered in southern China. The recent outbreak was in 2019
when a major outbreak of COVID-19 strain started in China. The World Health Organisation proclaimed
COVID-19 as a pandemic in March 2020. Ever since this pandemic, several attempts to intervene in the
spread has been tried, yet the pandemic is not dying. This persistence in the pandemic might be due to
the presence of asymptomatic individuals. This unending pandemic has hit the Kenya economy badly. In
this study, we mathematically investigate the effect of governmental and non-governmental intervention on
the spread of COVID-19 in Kenya. To capture the effect of intervention effectively, the model considers the
presence of asymptomatically infected individuals in the Kenya. The basic reproduction number is obtained
using the next-generation matrix and the local stability of the equilibrium points are established.
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The effects of intervention on the spread of COVID-19 are simulated and illustrated as graphs. The results
indicate that intervention in form awareness and public sensitisation reduces the Exposed class, Infected
Classes and COVID-19-related death.

Keywords: Coronavirus; transmissions; outbreak; infected class; symptomatic dynamics; mathematical modelling.

Nomenclatures

S(t) : Susceptible class
E(t) : Exposed class
Ia(t) : Asymptomatic Infected class
R(t) : Recovered class
Is(t) : Symptomatic Infected class
D(t) : Death class
Λ(t) : influx to the population at any time
δ : Rate of recovery from the Exposed class
α : Rate of interaction between infected and non-infected individual
β : Rate of infection
p : The proportion of infected class showing symptoms
γ : Rate of symptomatic experience
λ1 : the recovery rate for the asymptomatic infected class
λ2 : the recovery rate for the symptomatic infected class
η : Rate of diseases-related death
µ : rate of natural death

1 Introduction

The spread of COVID-19 has reached all countries on the planet earth except a few islands and two controversial
countries. The only islands that have not recorded any case of COVID-19 are American Samoa, Cook Islands,
Federated States of Micronesia, Kiribati, Nauru, Niue, Pitcairn Islands, Saint Helena, Tokelau, Tonga and
Tuvalu. The two non-islands are North Korea and Turkmenistan. Most island countries have not recorded more
than 20 cases (as the case of Solomon Islands). Based on the available data, most scientists agree that the
separation of the islands from lands is one important factor that has prevented the massive spread of COVID-19
in the island countries. Another factor is that these islands maintained large restrictions on immigration. Apart
from the two non-island countries of North Korea and Turkmenistan, all non-island countries have had their
own share of the COVID-19 outbreak. Kenya as a non-island country is also going through a delicate time in its
economy due to the extreme measures that have been taken to curtail the spread of the coronavirus pandemic
[1, 2, 3, 4]. The Kenyan government, just like several other countries in the world, initiated the lockdown in the
country in the year 2020 to control the spread of the coronavirus disease. A huge amount of money was pumped
into creating awareness about the nature of the virus, the mode of transmission and the ways to prevent getting
infected. Besides the sensitisation from the government angle, several individuals and groups also invested so
much money to ensure that the sensitisation gets to every Kenyan. Despite the heavy awareness and sensitization
to educate people and get them tested to know their COVID-19 status, a large percentage of the population has
refused to get tested. Avoiding getting tested indicates that many might be infected without knowing, especially
when the symptoms are not yet showing. This class of infected individuals who are not showing any symptoms
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of the disease yet are very dangerous to society. It is important to carry out research that assesses the probable
danger inherent in having untested individuals in Kenya. The population of Kenya is estimated to be a little
above 50 million, while Nigeria (the most populous country in Africa) has over 200 million population. Also,
the African continent has recorded the least number of cases of COVID-19 among all the continents, and it
is therefore expected that a country like Kenya should have fewer cases than Nigeria but that is not the case.
Kenya has recorded over 16% more cases than Nigeria has recorded.

Coronavirus has its root in the independent experiments of [5] and [6]. [5] collected specimens of nasal washings
of 23 workers of a laboratory or their family (consisting of twenty-one adults and two children) infected with the
common cold and cultivated nine different rhinoviruses that could not be found using the standard techniques.
These viruses were called B814 viruses. [6] independently carried out similar experiments on some students
of medicine at the University of Chicago. The virus responsible for the common cold was extracted from the
students’ respiratory tract and a new ether-sensitive RNA virus called 229E was cultivated. The 229E was found
to be antigenically unrelated to all known human myxoviruses. In an experiment by [7], it was found out that
the morphology of the B814, 229E, bronchitis, mouse hepatitis, and swine gastroenteritis viruses are the same
under electron microscopy. This new virus genus was named coronavirus. Extensive research has been carried
out on the study of the 229E strain of the coronavirus has been studied extensively and an outbreak of 229E was
found to repeat every 2-3 years and re-infection was found to be common [1]. As emphases were placed more
on the 229E strain and OC43 strain, other strains of coronavirus were found to spread in humans, as well as
animals, causing different respiratory problems. Pigs, cats, rats, rabbits, mice are some of the animals in which
different strains of coronavirus were discovered [8]. The coronavirus is later grouped into three categories; 229E
virus category, OC43 virus category and avian infectious bronchitis virus category [2].

The coronavirus is a “nucleic acid of about 30kb long, positive in sense, single-stranded and polyadenylated” and
an RNA virus that appears as negatively stained preparations in electron micrographs. As of today, coronavirus
is the largest RNA virus known. If two coronaviruses infect the same cell at the same time, they are able to
form another virus by recombining their genes. All coronaviruses grow and develop in the cytoplasm of the host
cells and the host cell is destroyed afterwards. Fig. 1, shows a sample coronavirus in a medium.

Fig. 1. The-coronavirus

The first major outbreak of coronavirus was in 2002, in Southern China. There was an outbreak of a new
strain of coronavirus called severe acute respiratory syndrome (SARS) coronavirus. SARS rapidly spread to
29 countries infecting over 8000 individuals with about 800 deaths. Although the source of this virus was not
certain, there were speculations that it emerged from human interactions with wild animals. The most recent
outbreak of the coronavirus is the coronavirus disease 2019 (shortened to COVID-19 for brevity). The outbreak
started as an epidemic in Wuhan, China. Considering the rapid rate at which COVID-19 was transmitted, WHO
declared COVID-19 a pandemic on 11th of March, 2020 by the World Health Organisation [9]. It is referred
to as Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2) by the International Committee for
Taxonomy of Viruses and there is a high tendency it originates from the bat since 96% genome sequence
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identity was demonstrated between SARS-CoV-2 and Bat-CoV-RatG13 [10]. Animal-human and human-
human transmissions are both possible means of COVID-19 transmissions, where human-human transmission
dominates the transmission charts. The mode of transmission includes; respiratory droplets, direct and indirect
physical contact with an infected individual. Research has shown that COVID-19 is airborne and that airborne
transmission of COVID-19 contributed majorly to its transmission. Fig. 2, below illustrates how COVID-19 is
transmitted.

Fig. 2. Illustration-of-COVID-19

Within the last two years, a lot of researches have been carried out theoretically to combat the spread of
COVID-19. In their work, [11] carried a mathematical analysis on the study of the COVID-19 outbreak in
Bangladesh. The study considered the SEQIRD model which is a modification of Susceptible-Infected-Recovered
(SIR) model that includes three more compartments (Quarantine Q, Exposed E, and Death D classes). The
study predicts that infection in Bangladesh will increase for a period of time until the peak is reached and the
rate of infection will start to decrease rapidly. A study of the COVID-19 spread in Spain, Portugal and Wuhan
(in China) was carried out byNdairou2021 using fractional-time derivates. The model extends the SEQIRD
model to SEQIPARD (introducing the Asymptomatic A and Rapid-Spreader classes). The study showed a good
agreement with the classical integer-order time-derivative models. Meanwhile, [9] used a mathematical model to
study the effect of both detection rate and possible reinfection on the spread of COVID-19 in Africa. The study
shows that the fight against COVID-19 has just begun in Africa if there is a high possibility of reinfection. [12]
identified the impact of immigrants on COVID-19 dynamics. The study was conducted for the entire African
continent and does not specify how it affects Kenya as a country. Since it is only a speculation as to whether
there is reinfection or not, this study is modification of the work of [9] with the following assumptions;

1. There are only speculations as to whether reinfection is possible or not. Cases that have been recorded
are too few to consider reinfection as a major problem, hence we set the reinfection rate to zero in this
present study.

2. The study considered Africa as a single continent, but in this study, the focus shall be placed on Kenya
as an individual country.

3. The previous study did not consider individuals whose immunities are strong enough to combat the
disease. In this study, we have included the possibility of individuals to move from the Exposed Class to
the Recovered Class.

4. The spread parameters shall be chosen based on the impact of intervention to combat the spread of
COVID-19.

In this study, a mathematical analysis of the spread of COVID-19 is carried out to investigate the spread of
COVID-19 in a population where asymptomatically infected individuals are present and putting into consideration
the intervention of the Kenyan government.
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2 Methodology

2.1 Model formulation

The population is classed into six compartments, namely; Susceptible class S(t), Exposed class E(t),Asymptomatic
Infected class Ia(t), Symptomatic Infected class Is(t), Recovered class R(t), and the disease-induced Death class
D(t). The model assumes that the influx to the population at any time t is Λ(t), from which the Susceptible
class at any time t is S(t). We assume that the interaction between infected individuals and the Susceptible
class happens at a rate of α, hence the proportion of the Susceptible population migrate to the Exposed class
at the rate α. The Exposed class get infected at the rate β where a proportion p shows symptoms while the
remaining (1− p) proportion shows no symptoms. The Exposed class individuals who possess good immunity
can also recover naturally at the rate δ. The Asymptomatic class becomes symptomatic at the rate of γ. The
asymptomatic infected class recover at the rate λ1 while the symptomatic class recover at a rate λ2. It is assumed
that the disease-related death is at the rate η and the natural death rate is µ. Fig.3, shows the flow chart of
the transition of COVID-19 from one class to the next. The Death class is the only absorbing class, where an
individual that enters cannot exit. The values of the spread parameters α, β, µ, p, λ1, λ2 and γ are chosen based
on the current intervention from the Kenyan government.

Fig. 3. Flowchart-for-COVID-19

The model governing the dynamics of COVID-19 with the six given classes is given as

dS

dt
= Λ− α (Ia + Is)S − µS, (2.1)

dE

dt
= α (Ia + Is)S − (β + µ+ δ)E, (2.2)

dIa
dt

= pβE + γIs − (λ1 + µ+ η) Ia, (2.3)

dIs
dt

= (1− p)βE − (γ + λ2 + η + µ) Is, (2.4)

dR

dt
= δE + λ1Ia + λ2Is − µR, (2.5)

dD

dt
= η (Is + Ia) . (2.6)

Let N (t) be the total population at any time t so that

N (t) = S (t) + E (t) + Is (t) + Ia (t) +R (t) (2.7)
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2.2 Feasibility region and non-negativity of solution

This section establishes the region in which the solution to the model can be found and the non-negativity of
the solution within the feasibility region. By adopting the analysis of [13, 14], we sum the equations (2.1) - (2.6)
and get

d

dt
(S + E + Is + Ia +R) = Λ− µ (S + E + Is + Ia +R) = Λ− µN. (2.8)

On substituting equation (2.7), it becomes
dN

dt
= Λ− µN, (2.9)

and whose solution is

N (t) =
Λ

µ
+

(
N (t0)− Λ

µ

)
eµ(t0−t). (2.10)

As t→∞, the solution becomes N (t)→ Λ
µ
. Hence, the feasible region R for the system is

R =

{
(S,E, Ia, Is, R,D) ∈ R5

+ | N (t) ≤ Λ

µ

}
. (2.11)

Having established the feasibility region for the system, the non-negativity of the solution is sought. Any
solution of the system (2.1 - 2.6) remains in the positive region for all initial conditions S (0) > 0, E (0) > 0,
Ia (0) > 0, Is (0) > 0, R (0) > 0, and D (0) > 0.

Proof. From equation (2.1),
dS

dt
= Λ− α (Ia + Is)S − µS ≥ −µS.

Solving the equation using separation of variable gives

S ≥ S (0) exp (µ (t− t0)) > 0, if S (0) > 0. (2.12)

From equation (2.2),
dE

dt
= α (Ia + Is)S − (β + µ+ δ)E ≥ − (β + µ+ δ)E

Solving the equation using separation of variable gives

E ≥ E (0) exp ((β + µ+ δ) (t− t0)) > 0, if E (0) > 0. (2.13)

From equation (2.3),
dIa
dt

= pβE + γIs − (λ1 + µ+ η) Ia > − (λ1 + µ+ η) Ia

Solving the equation using separation of variable gives

Ia ≥ Ia (0) exp ((λ1 + µ+ η) (t− t0)) > 0, if Ia (0) > 0. (2.14)

From equation (2.4),

dIs
dt

= (1− p)βE − (γ + λ2 + η + µ) Is > − (γ + λ2 + η + µ) Is

Solving the equation using separation of variable gives

Is ≥ Is (0) exp ((γ + λ2 + η + µ) (t− t0)) > 0, if Is (0) > 0. (2.15)

From equation (2.5),
dR

dt
= δE + λ1Ia + λ2Is − µR > −µR

Solving the equation using separation of variable gives

R ≥ R (0) exp (µ (t− t0)) > 0, if R (0) > 0. (2.16)
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From equation (2.6),
dD

dt
= η (Is + Ia) .

Using the inequalities (2.14) and (2.15), then

dD

dt
≥ η (Is (0) exp ((γ + λ2 + η + µ) (t− t0)) + Ia (0) exp ((λ1 + µ+ η) (t− t0))) .

On integrating both sides,

D ≥ D (0) +
ηIs (0)

γ + λ2 + η + µ
(exp ((γ + λ2 + η + µ) (t− t0))− 1)

+
ηIs (0)

γ + λ2 + η + µ
(exp ((γ + λ2 + η + µ) (t− t0))− 1) > 0

Hence, the solution space is{
(S,E, Ia, Is, R,D) ∈ R6

+ 3 S + E + Ia + Is +R+D ≤ Λ

µ

}

2.3 Equilibrium points

The works of [15, 16] and [17] show a procedure for finding the equilibrium points. By setting each of equations
(2.1 - 2.7) to zero ( [18]),

• the disease-free equilibrium point (DFE or e0) is obtained by setting Ia = Is = E = 0 e0 as

e0 = (S,E, Ia, Is, R,D) =

(
Λ

µ
, , 0 , 0 , 0 , 0 , 0

)
.

• The endemic equilibrium point e1 = (S∗, E∗, I∗a , I
∗
s , R

∗, D∗) is obtained as

S∗ =
Λ

α (I∗a + I∗s ) + µ
, E∗ =

α (I∗a + I∗s ) Λ

(β + µ+ δ) (α (I∗a + I∗s ) + µ)

Is = I∗s , Ia = I∗a , R
∗ =

1

µ
(δE∗ + λ1I

∗
a + λ2I

∗
s ) , D = D∗.

2.4 Reproduction number

The reproduction number R0 is the number of secondary infections that a single infected individual can cause
when introduced to a susceptible population. Following the works of [15, 19, 20], the the next generation matrix
is used to find the reproduction number. We start by writing

f =

 α (Ia + Is)S
0
0

 , v =

 (β + µ+ δ)E
−pβE − γIs + (λ1 + µ+ η) Ia
− (1− p)βE + (γ + λ2 + η + µ) Is


and F = ∇f, V = ∇v becomes

F =

 0 αS αS
0 0 0
0 0 0

 , V =

 (β + µ+ δ) 0 0
−pβ (λ1 + µ+ η) −γ

− (1− p)β 0 (γ + λ2 + η + µ)

 .

From which the spectral radius of FV −1 is

R0 =
αSβ (pλ2 − pλ1 + η + γ + λ1 + µ)

(β + µ+ δ) (λ1 + µ+ η) (γ + λ2 + η + µ)
.
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2.5 Stability of equilibrium points

Ignoring equation (2.6) since it is decoupled from the system, then the Jacobian matrix for the system (2.1 -
2.5) is

J =


−α (Ia + Is)− µ 0 −αS −αS 0
α (Ia + Is) − (β + µ+ δ) αS αS 0

0 pβ − (λ1 + µ+ η) γ 0
0 (1− p)β 0 − (γ + λ2 + η + µ) 0
0 δ λ1 λ2 −µ

 . (2.17)

The DFE is locally asymptotically stable.

Proof. Evaluating the Jacobian at the DFE gives

J0 = J (e0) =


−µ 0 0 0 0
0 − (β + µ+ δ) 0 0 0
0 pβ − (λ1 + µ+ η) γ 0
0 (1− p)β 0 − (γ + λ2 + η + µ) 0
0 δ λ1 λ2 −µ

 . (2.18)

The characteristic equation |J0 −mI| = 0 gives∣∣∣∣∣∣∣∣∣∣
−µ−m 0 0 0 0

0 − (β + µ+ δ)−m 0 0 0
0 pβ − (λ1 + µ+ η)−m γ 0
0 (1− p)β 0 − (γ + λ2 + η + µ)−m 0
0 δ λ1 λ2 −µ−m

∣∣∣∣∣∣∣∣∣∣
= 0,

and the eigenvalues are obtained as

m1 = m5 = −µ, m2 = − (β + µ+ δ) , m3 = − (λ1 + µ+ η) , m4 = − (γ + λ2 + η + µ) .

Hence, the DFE is locally asymptotically stable since all eigenvalues are negative. The EEP is locally
asymptotically stable if R0 > 1.

Proof. Evaluating the Jacobian at the EEP gives

J1 = J (e1) =


−α (I∗a + I∗s )− µ 0 −αS∗ −αS∗ 0
α (I∗a + I∗s ) − (β + µ+ δ) αS∗ αS∗ 0

0 pβ − (λ1 + µ+ η) γ 0
0 (1− p)β 0 − (γ + λ2 + η + µ) 0
0 δ λ1 λ2 −µ

 . (2.19)

The characteristic equation |J1 −mI| = 0 gives∣∣∣∣∣∣∣∣∣∣
−φ11 −m 0 −αS∗ −αS∗ 0

φ21 −φ22 −m αS∗ αS∗ 0
0 pβ −φ33 −m γ 0
0 (1− p)β 0 −φ44 −m 0
0 δ λ1 λ2 −µ−m

∣∣∣∣∣∣∣∣∣∣
= 0,

where

φ11 = α (I∗a + I∗s ) + µ, φ21 = α (I∗a + I∗s ) = φ11 − µ, φ22 = (β + µ+ δ) ,

φ33 = (λ1 + µ+ η) , φ44 = (γ + λ2 + η + µ)
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and the eigenvalues are obtained as m1 = −µ and the remaining 4 eigenvalues are obtained from

(φ11 +m)

∣∣∣∣∣∣
−φ22 −m αS∗ αS∗

pβ −φ33 −m γ
(1− p)β 0 −φ44 −m

∣∣∣∣∣∣+ φ21

∣∣∣∣∣∣
0 −αS∗ −αS∗

pβ −φ33 −m γ
(1− p)β 0 −φ44 −m

∣∣∣∣∣∣ = 0,

⇒ m4 + ∆3m
3 + ∆2m

2 + ∆1m+ ∆0 = 0,

where

∆3 =φ11 + φ22 + φ33 + φ44,

∆2 =φ11φ44 + φ11φ22 + φ11φ33 + φ22φ44 + φ33φ44 + φ22φ33 − αβS∗,

∆1 =φ11φ22φ44 + φ11φ33φ44 + φ11φ22φ33 + φ22φ33φ44

− ((1− p) γ + φ11 + φ21 + φ44 − 2pφ21)αβS∗,

∆0 =φ11φ22φ33φ44 − (1− p)αβγS∗ − αβS∗φ11φ44

+ γ (1− p)βαS∗φ21 + pβαS∗φ21φ44 − αS∗ (1− p)βφ21φ33.

Using Routh-Hurwitz criteria, we require

∆3 > 0, ∆0 > 0,
∆3∆2 −∆1

∆3
> 0,

(
∆3∆2 −∆1

∆3

)
∆1 −∆3∆0 > 0,

for all the roots to be negative. By the virtue of positivity of all parameters,

∆3 = φ11 + φ22 + φ33 + φ44 > 0.

The fourth condition ∆0 > 0 implies that

φ11φ22φ33φ44 + γ (1− p)βαS∗φ21 + pβαS∗φ21φ44

> (1− p)αβγS∗ + αβS∗φ11φ44 + αS∗ (1− p)βφ21φ33 > 0.

which is true due to the positivity of all parameters. Using the condition that ∆3,∆0 > 0, then the fourth
condition becomes (

∆3∆2 −∆1

∆3

)
∆1 > ∆3∆0 > 0⇒ ∆3∆2 −∆1

∆3
> 0⇒ ∆3∆2 −∆1 > 0.

This coincides with the third condition and the four conditions are satisfied once ∆3∆2 > ∆1, which means;

∆3 (φ11φ44 + φ11φ22 + φ11φ33 + φ22φ44 + φ33φ44 + φ22φ33)

+ ((1− p) γ + φ11 + φ21 + φ44)αβS∗ > φ11φ22φ44 + φ11φ33φ44

+φ11φ22φ33 + φ22φ33φ44 + 2pφ21αβS
∗ + αβS∗∆3 > 0,

⇒ ∆2
3φ11 + ∆2

3φ22 + ∆3φ33φ44 + (γ + 2φ11 + φ44)αβS∗ >

∆3

(
φ2

11 + φ2
22 + φ22φ11

)
+ αβµS∗,

∆2
3φ11 + ∆2

3φ22 + ∆3φ33φ44 + (γ + 2φ11 + φ44)αβS∗

∆3 (φ2
11 + φ2

22 + φ22φ11) + αβµS∗ > 1

R0 > 1

and hence, the EEP is stable if R0 > 1.

3 Numerical Solution

By setting the variables
S = x1, E = x2, Ia = x3, Is = x4, R = x5, D = x6
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Then system of equations can be written as

dx1

dt
= Λ− α (x3 + x4)x1 − µx1, (3.1)

dx2

dt
= α (x3 + x4)x1 − (β + µ+ δ)x2, (3.2)

dx3

dt
= pβx2 + γx4 − (λ1 + µ+ η)x3, (3.3)

dx4

dt
= (1− p)βx2 − (γ + λ2 + η + µ)x4, (3.4)

dx5

dt
= δx2 + λ1x3 + λ2x4 − µx5, (3.5)

dx6

dt
= µ (x1 + x2 + x3 + x4 + x5) . (3.6)

In order to simulate, it is assumed that there is no initial disease-related death or recovery and the other initial
conditions are chosen based on the work of [21] as follows;

S (0) = 100;E (0) = 50; Is (0) = 20; Ia (0) = 10;R (0) = 0;D (0) = 0.

The Runge-Kutta method is used to solve the system of differential equations (see [22, 23, 24, 25])

The parameter values are chosen as shown in Tables 1 and 2;

Table 1. Parameter choices

parameter λ1 λ2 p γ

values 0.36 0.36 Estimated Estimated

Source [26] - -

Table 2. Parameter choices

parameter δ α β η µ

values 0.16 0.67 0.5 0.306 1/65

Source [21]

4 Analysis of Results and Discussion

The effects of intervention on the spread and containment of COVID-19 are analysed and discussed in this section.

Intervention in form awareness and public sensitisation is considered in this section. Increasing awareness and
public sensitisation gives reduces the vulnerability of the susceptible class and thereby reduces the rate of
interaction between infected and non-infected individual. Increasing intervention in terms awareness and public
sensitisation means a reduction in the value of α. Fig. 4, shows that the Exposed Class increases with increasing
α, and the Exposed class reduces as α decreases. A decrease in the Exposed class is experienced as α decreases
because a proportion of the Susceptible Class recognises that interaction with an infected individual is a major
means of transmission due to the awareness and public sensitisation. Also, as a consequence of the reduction
in migration from Susceptible to the Exposed Class, the infected classes also reduce. This claim is verified by
Figs. 5 and 6 where both the Symptomatic and Asymptomatic Infected classes reduce with time. In the long
run, underlying COVID-19 death reduce significantly as shown in Fig. 7.
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Fig. 4. Exposed class with α
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Fig. 5. Symptomatic Infected Class with α
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Fig. 6. Asymptomatic Infected Class with α
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Fig. 7. Disease-Related Death Class with α
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Fig. 8. Exposed with δ
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Fig. 9. Symptomatically Infected with δ
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Fig. 10. Asymptomatically Infected Class with δ
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Fig. 11. Recovered Class with δ
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Fig. 12. COVID-19-Induced Death with δ
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Fig. 13. Symptomatic Infected Class with λ
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Fig. 14. Asymptomatic Infected Class with λ

0 1 2 3 4 5 6 7 8 9 10

time(days)

0

500

1000

1500

R
e
c
o
v
e
re

d
 c

la
s
s
 R

(t
)

1
 = 

2
 = 0.2

1
 = 

2
 = 0.4

1
 = 

2
 = 0.6

1
 = 

2
 = 0.8

Fig. 15. Recovered Class with λ
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Fig. 16. COVID-19-Induced Death Class with λ

A susceptible individual who caught COVID-19 disease direct or indirectly will go through a window period
when the disease through incubation. During this period, the individual does not test positive and is unable
to transmit COVID-19 to any susceptible individual. Every individual in this category is classified into the
Exposed Class. Increasing intervention in the form contact tracing and mass vaccination increases the rate of
migration from the Exposed Class to the Recovered Class (i.e., increase in δ). Figs. 8-12, show the impact of
increasing δ on COVID-19 dynamics in Kenya. Interventions in form of contact tracing provides rapid response
to identify individuals who have exposed to COVID-19 but is not yet infected. Such individuals can be placed
under surveillance and given proper monitoring. This will help to reduce the Exposed Class (this is supported
by Fig 8. Figs 9 and 10, show that the infected classes reduce with increasing δ. This is due to the fact that
Exposed individuals are identified before the disease becomes full-blown. Inclusion of mass vaccination will help
move the some Exposed individuals directly to the Recovered class. This explains why Fig. 11 illustrates an
increase in the individuals who get into the Recovered class. Clearly, once the recovered class increases, the
COVID-19-induced death will also reduced Fig. 12.

Intervention in form of treatment to both Asymptomatic and Symptomatic Infected Classes has an increasing
effects on the parameters λ1 and λ2. With treatment made available to all infected individuals, more individuals
will migrate from the infected classes to the Recovered class. This will lead to a reduction in the infected classes
Fig. 13 and 14, increase in the recovered class Fig. 15 and a decrease in the COVID-19-induced deaths Fig. 16.

5 Conclusion

This study analyses the effects of intervention on COVID-19 dynamics. Equations governing the spread of
COVID-19 are formulated by using the SEIRD model, where the Infected class is further classified as Asymptomatic
and Symptomatic classes. The disease-free and endemic equilibrium points of the model are obtained and
their stability conditions are established. The reproduction number R0 for the model is also obtained and the
equilibrium points are found to be stable if R0 < 1. The model is analysed and the results are depicted as graphs.

17



Mwangi and Mutuku; J. Adv. Math. Com. Sci., vol. 38, no. 1, pp. 1-19, 2023; Article no.JAMCS.94692

The result from this study show that:

1. Intervention in form awareness and public sensitisation reduces the Exposed class, Infected Classes and
COVID-19-related death.

2. Intervention in the form contact tracing and mass vaccination reduces the Exposed class, Infected Classes
and COVID-19-related death but increases Recovery Class.

3. Intervention in form of treatment to Infected classes reduces the Infected Classes and COVID-19-induced
deaths while increasing the recovered class.

Interventions in form of contact tracing and mass vaccination for early detection of infections and availability of
immediate treatment for any detected case will help reduce the spread of COVID-19 in Kenya.
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