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Abstract 

 
Aims: To investigate how the number of bootstrapping B affects the values returned by the bootstrap 

standard error of the arithmetic mean and the α-trimmed mean of response data using bootstrap confidence 

intervals (CI) at 95% level; carried out to fill up observed gap for study on standard error, the tool generally 

employed in assessing the long run accuracy of a given statistical estimator of θ.  

Study Design: This was a parametric, empirical bootstrap simulation study.  

Place and Duration of the Study: Departments of Computer Science and Statistics, Federal Polytechnic 

Oko, 2020/2021 session. 

Methodology: Response time data were generated with student customers of mobile telephone network 

(mtn) Nigeria and stored in SPSS. A sample n = 51 responses was selected using “Select Cases” command to 

increase precision and minimize bias. Bootstrap simulation study was carried out using R programming 

language. Four approaches for estimating bootstrap confidence intervals were used. The interval coverage 
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and the interval lengths were determined and compared for B = 20, 50, 100, 500, 1000, 5000, and 10000.  

Results: The 95% CI for      0.2266338 (the estimated sample standard error of 10% trimmed mean) 

returned the best interval for our skewed data set; when B = 20; the CI for     returned (0.2051, 0.2343) for 

the normal approach, (0.2082, 0.2371) for the basic, (0.2071, 0.2360) for the percentile and (0.2071, 0.2360) 

for the BCa method. As B increased to 5000, it returned (0.2259, 0.2277) for the normal approach, (0.2259, 

0.2277) for the basic, (0.2260, 0.2277) for the percentile and (0.2261, 0.2279) for the BCa showing a shorter 

interval yet covering the estimate.  

Conclusion: Thus for our response data study, increasing B in estimating standard error increases the 

chances of more precise and shorter confidence intervals rather than the chances for coverage.  

 

 

Keywords: Bootstrap; standard error; trimmed mean; number of bootstrapping; response data. 

 

1 Introduction 

 
A bootstrap method is a resampling technique often employed in the construction of confidence intervals to 

estimate the variation of point estimates. The approach is largely based on the law of large numbers [1]. Dixon 

[2] noted that at the heart of the bootstrap method is the concept that the distribution of the statistic of interest 

can be approximated by estimates from repeated samples. The bootstrap technic makes use of the information 

available in the data without making any adventitious assumptions about the distribution of the population of the 

data. The bootstrap is a general methodology for answering question on the accuracy of an estimator of θ and 

the standard error is often used to measure long run accuracy of such estimator. A concern however is often on 

the number of resampling that will yield the optimum estimate of interest especially for asymmetric data set. 

Most available works have been about the mean and other measures of the center than about the standard error. 

Efron and Tibshirani [3], Davison and Hinkley [4], Davidson and Mackinnon [5], Wei, [6], Rousselet, Pernet, 

and Wilcox, [7], Diez,(n.d.), [8], Hesterberg [9], Robert [10]. 

 

The distributions of response time (RT) data violates the normality assumption underlying classical statistical 

analyses because they are generally positively skewed and unimodal in shape [11]. Customers of service 

providers in Nigeria of which the researcher is one, often experience delays from the service providers in 

responding to their online complaints via their online customer care. This can be frustrating most times. Service 

providers’ response to online customers’ complaint is a response time data set and as such should be expected to 

be skewed.  

 

According to Chernick and LaBudde, [12], the arithmetic sample mean is the theoretical mean of the bootstrap 

distribution. Lampert, Stahel and Abbt [13] opined that response time data distributions are mostly skewed and 

the arithmetic mean generally delivers a poor measure of central tendency for skewed distributions. The α-

trimmed mean provides more accurate information about the central tendency than the mean for an asymmetric 

distribution. Since the sample mean is the theoretical mean of the bootstrap distribution and the α-trimmed mean 

is the preferred mean for skewed data, we decided to study the bootstrap standard error of the mean as well as 

that of the α-trimmed mean. Writing on the bootstrap confidence interval coverage, Rousselet, Pernet, and 

Wilcox, [14] and Rousselet, and Wilcox, [15] noted that when sampling from skewed data, a 95% bootstrap 

percentile confidence interval for the mean can actually yield a 88% interval while that of 20% trimmed mean 

may yield as much as 94.6% coverage. 

 

Our interest was to investigate how the number of resampling affects the values returned by the bootstrap 

standard error of the arithmetic mean and that of the α-trimmed mean using bootstrap confidence interval at 

95% level.  

 

Writing on the needed number of bootstrap samples, Davidson and Mackinnon [5], Orloff and Bloom [1] 

believe that B the number of bootstrap resampling can influence the accuracy of the bootstrap estimate. 

According to Davison, Hinkley, and Young [16] typically to achieve a negligible simulation variation, a few 

thousand bootstrap samples are needed. Specifically in the opinion of Davidson and Mackinnon [5], where the 

cost of computation is affordable, B should be extremely large. On the basis of the above opinions, researchers 

may spend much resources trying to run large number of resampling in setting up bootstrap confidence intervals 

hoping possibly to increase the chances of the interval including the estimate of interest.    
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Four different approaches are considered to estimating bootstrap confidence interval namely: the first order 

normal approximation, the basic bootstrap interval, the bootstrap percentile interval, and the adjusted bootstrap 

percentile that is the bias-corrected accelerated (BCa) interval. These were used to set up the confidence 

intervals for the selected measures. How these different approaches behave in the estimation of the confidence 

interval of the standard error for the mean and trimmed mean for skewed response time data and as the number 

of bootstraps increased was considered.  

 

Efron and Tibshirani [3] opined that for estimating the standard errors and coefficient of Variations                        

(CV), B as small as 25 gives reasonable results. They iterated however that the situation is different for the 

construction of confidence intervals. Efron and Tibshirani [3] quoting the calculations of Efron [17] stated that 

B =1000 is a rough minimum for the number of Monte Carlo bootstraps necessary to compute BC or BCa. They 

maintained however that somewhat smaller values like B = 250 can give a useful percentile interval. Davison 

and Hinkley [4] recommended the number of bootstraps B = 999 for confidence interval levels of 95% and 99% 

where such is practically feasible. Using computer packages today, it will take a few seconds to reach such 

number. The question however is how relevant is it to keep B increasing irrespective of the shape of the data 

set?    

 

From the fore going therefore, it is expected that the more the number of resampling B, the                                              

more accurate the estimate and the shorter the confidence interval. It is therefore expected that the                  

interval will be getting shorter as B gets larger and with an increased probability of coverage. Using the service 

provider data therefore and employing the confidence interval tool, we studied how B affects the accuracy and 

the precision of the estimates of bootstrap standard error for the selected bootstrap methods for calculating CI at 

95% level.  

 

The bootstrap standard error of the arithmetic mean as well as that of the α-trimmed mean and their 95% 

confidence intervals were estimated using the four approaches and compared. The interval lengths were equally 

calculated and compared. The study covered for B (the number of bootstrap resampling) = 20, 50, 100, 500, 

1000, 5000, 10000.  

 

2 Materials and Methods 

 
2.1 Data collection procedure 

 
The data for this research was obtained from Statistics and Computer Science students of Federal                          

Polytechnic Oko Atani campus, Anambra state Nigeria. The selected students were all customers of Mobile 

Telephone Network (MTN) Nigeria; one of the major service providers in the southeast of Nigeria.                          

Volunteer participants were utilized to obtain the data. In the course of obtaining the data, the participants                   

were asked to place calls to their network provider MTN using the network’s call center number at separate 

times. The intention of a caller/customer in using online customer care is always to speak with the online 

customer care representative within the shortest possible time. Oftentimes however, when calls are placed on 

them, some messages are being played in the form of adverts and jingles before transferring the caller to a 

customer care representative. Some network providers will display their adverts and jingles for a long time 

before finally allowing the caller/customer to speak with an agent. This could be very frustrating as well as time 

and money- consuming. I personally do not like that and it often discourages customers from utilizing such 

services.  

 

The participants were told to call their customer care line and follow the required processes until they are 

transferred to a customer care agent to attend to them. They were to end the call immediately after the customer 

care representative responds to the call and record the total time spent in minutes. These were done severally for 

different periods and the time/duration of the calls recorded. In the end, the data were retrieved, organised and 

entered in the Statistical Product and Services Solutions [18] IBM SPSS and the desired sample was randomly 

selected using the “Select Cases” command from the data menu with the purpose to increase precision and avoid 

bias. 
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2.2 Theory and methods 

 
2.2.1 The bootstrap principle and procedure 

 

The bootstrap principle indicates that the empirical distribution obtained by resampling from a sample is 

approximately equal to the theoretical or true distribution [1].    

 

Let θ = any statistics computed from the original sample data;  

 

θ
*
 = a statistic by the same formula as θ but computed instead using a resampled data from the original sample.  

 

To calculate the desired bootstrap estimate θ
 
, we apply the following procedure: 

 

(1) Select a sample of size n;              from a distribution F to form an empirical distribution Fn which 

puts equal mass 
 

 
 on the selected n data points. 

(2) Calculate the desired estimate θ.  

(3) Select a sample of size      
    

    
      

   with replacement from the original sample  in (1) above 

(4) Calculate   
  the value of θ from the ith resampled data using the same formula for calculating θ. 

(5) Repeat (3) and (4) B times so that we have θ 
  θ 

   θ 
       θ 

 
 

(6) The bootstrap estimate of θ, θ  is obtained by calculating θ still using the same formula but based on 

θ 
  θ 

   θ 
       θ 

 
 [19]. 

 

2.2.2 Bootstrap estimate of the standard error of the mean 

 

The long run accuracy of a given statistical estimator of   is usually assed with its standard error [20]. 

 

The standard error of the arithmetic mean given n samples is given as 

 

       
          
 

   
 [21] 

 

Following the procedure for bootstrap estimates presented above, the bootstrap estimate for the standard error of 

the standard error of arithmetic mean is given as: 

 

         
      

  
   

   
                                                                                                                                (1) 

 

                                                             
  
                                                   

     
   

  
   

 
 = 

                                                                                    and B= the 

number of bootstrap samples.   

 

2.2.3 Bootstrap estimate of the standard error of the α-trimmed mean 

 

The standard error of the α-trimmed mean is given as: 

 

     
  

 

       
 

  

       
                                                                                                                                         

 

        
  

 

   
          

                               [20] Wilcox; 2005 [19] 
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The bootstrap version      
   
 

       
 

   

       
          

  
 

   
          

                             

(3) 

The limit cases of               corresponds to the sample mean and median respectively [12,14]. The 

choice of   is of practical importance. It is generally chosen so that     is apt to have a relatively small standard 

error            among commonly occurring situations. 

 

Wilcox [19] noted that if   is too small, the standard error of the trimmed mean can be drastically inflated by 

outliers or by sampling from a heavy - tailed distribution. When one is sampling from a normal distribution if 

the percentage of trimming α is quite large, the standard error of the trimmed mean can be relatively large when 

compared to that of the arithmetic sample mean. 

  

2.3 Method of comparison 

 
The method of comparison employed for the study is confidence interval (CI). CI is used to measure the 

precision of an estimate, to know the plausible range of values given the parameter of interest. It is the 

probability that the computed interval will include the population parameter [22]. There are several available 

approaches for estimating bootstrap confidence intervals but as earlier stated, for this study four methods were 

considered. These are the first-order normal approximation, the basic bootstrap interval, the bootstrap percentile 

interval, and the adjusted bootstrap percentile which is the bias-corrected accelerated (BCa) interval [23]. 

 

The first- order normal approximation is calculated using the normal approximation. The basic bootstrap 

interval uses the estimated standard error and is calculated using the basic bootstrap method, the bootstrap 

percentile interval and the BCa intervals use the bootstrap percentile method but the BCa interval in addition is 

also adjusted to account for bias and skewness [24]. 

 

A 95% confidence interval was set up using the four approaches named above.  

 

We compared the confidence interval coverage of the selected procedures for B, (the number of bootstrap 

resampling) = 20, 50, 100, 500, 1000, 5000, and 10000.  

 

The length of each confidence interval was determined as:  

 

                                                                      

                                                
 

Dixon [2] opined that a percentile interval may not have the correct coverage for a skewed sampling 

distribution. Efron [17] showed that B=1000 is a rough minimum for the number of Monte Carlo bootstraps 

needed to compute BCa intervals. Efron [25] stated that the BCa approach to calculating the bootstrap 

confidence interval properties that put it at advantage over the other methods. The coverage errors for the 

confidence interval for the mean and the median is usually small using the BCa method whether the population 

distribution is normal or non- normal even for a sample size of about 20 or more [22]; Lei and Smith, [26].  

 

Setting up a (1-α)% confidence interval implies that on average one would expect (1-α)% of the intervals to 

include the true value of the estimate while α%  would not include it [27,28]. 

 

The R programming language was employed both for the simulation and analysis.  

 

3 Results and Discussion 

 
The data for this research work is presented on a histogram below. As should be expected from our literature 

review, the data is positively skewed being response data (Fig. 1).  
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Fig. 1. Histogram of the response data used for the study 

 

From the analysis, the estimated sample standard error     of the arithmetic mean for the n = 51 set of data 

studied was           that of 10% trimmed mean      was  0.2266338:   and                 for the sample 

standard error of 20% trimmed mean. Thus: the α - trimmed mean returned smaller standard error than the 

arithmetic mean with the 10% trimming returning slightly smaller value than 20% trimming this could be 

possibly explained by the non-symmetric nature of our data set.  

 

Table 1 is a summary of the results of the analysis while Table 2 is a display of the width of the bootstrap 

confidence intervals.   

 

From Table 1, the confidence interval for the sample standard error of 10% trimmed mean exhibited a100% 

coverage of its estimated sample standard error in all four approaches and for all the values of B considered in 

this research work. This same confidence interval for the sample standard error of the 10% trimmed mean was 

equally getting more precise as the B the number of bootstraps increased. For instance, the estimated sample 

standard error for the 10% trimmed mean was      0.2266338; when B = 20, the bootstrap CI for the standard 

error returned (0.2051, 0.2343) for the normal approach CI, (0.2082, 0.2371) for the basic, (0.2071, 0.2360) for 

the percentile: and (0.2071, 0.2360) for the BCa method. As B increased to 5000, it returned (0.2259, 0.2277) 

for the normal approach, (0.2259, 0.2277) for the basic, (0.2260, 0.2277) for the percentile: and (0.2261, 0.2279) 

for the BCa method for the same estimated standard error. As B increased further to 10000, the CI for the 

sample standard error of the 10% trimmed mean returned a more precise interval of (0.2271, 0.2283) for the 

normal approach, (0.2271, 0.2282) for the basic, (0.2272, 0.2283) for the percentile: and (0.2272,  0.2283) for 

the BCa showing a shorter interval yet covering the estimate. It returned the best interval for our skewed data 

set. 

 

The bootstrap CI for     (the sample standard error of the arithmetic mean) covered the estimated value only for 

B= 20 and 50. As B increased, to 100, the coverage seized for all four approaches and continued like that even 

up to B = 10000. 
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Table 1. 95% confidence intervals for the bootstrap standard errors     ,     and      

 

 Standard error of the mean (    ) Standard error of the 10% trimmed mean (   ) Standard error of the 20% trimmed mean (   ) 

B FONA BBI BPI BCa FONA BBI BPI BCa FONA BBI BPI BCa 

20 2.762,  4.656 2.651,  4.451 2.933,  4.733 2.933,  4.512 0.2051,  0.2343 0.2082,  0.2371 0.2071,  0.2360 0.2071,  0.2360 0.2246,  0.2507 0.2262,  0.2482 0.2263,  0.2482 0.2263,  0.2482 

50 2.988,  4.355 2.890,  4.446 2.909,  4.465 2.939,  4.507 0.2043,  0.3204 0.1820,  0.2961 0.2277,  0.3418 0.2324,  0.3503  0.2514,  0.2649  0.2486,  0.2643 0.2514,  0.2671 0.2525,  0.2686 

100 3.182,  3.910 3.201,  3.909 3.113,  3.822 3.124,  3.830 0.2201,  0.2293 0.2196,  0.2292 0.2206,  0.2302 0.2197,  0.2288 0.2412,  0.2603 0.2416,  0.2603 0.2409,  0.2595 0.2400,  0.2589 

500 3.536,  3.852 3.529,  3.850 3.543,  3.863 3.543,  3.863 0.2264,  0.2313 0.2263,  0.2312 0.2265,  0.2313 0.2266,  0.2314  0.2504,  0.2575 0.2504,  0.2577 0.2503,  0.2576 0.2498,  0.2572 

1000 3.503,  3.741 3.500,  3.749  3.494,  3.743 3.495,  3.743 0.2278,  0.2393 0.2269,  0.2387 0.2284,  0.2402 0.2294,  0.2419 0.2508,  0.2556 0.2508,  0.2555 0.2509,  0.2556 0.2509,  0.2556 

5000 3.548,  3.651 3.547,  3.650 3.548,  3.652 3.549,  3.653 0.2259,  0.2277 0.2259,  0.2277 0.2260,  0.2277 0.2261,  0.2279 0.2512,  0.2533 0.2512,  0.2533 0.2512,  0.2533 0.2512,  0.2533 

10000 3.633,  3.705 3.633,  3.705 3.633,  3.704 3.633,  3.704 0.2271,  0.2283 0.2271,  0.2282 0.2272,  0.2283 0.2272,  0.2283 0.2519,  0.2534 0.2519,  0.2534 0.2518,  0.2534 0.2518,  0.2534 
Where: FONA = First Order Normal Approximation interval; BBI =Basic Bootstrap Interval, BPI = Bootstrap Percentile Interval; BCa = Bias-Corrected Accelerated interval 

 

Table 2. Confidence interval length based on table 1 above 
 

  Standard error of the mean (    ) Standard error of the 10% trimmed mean (   ) Standard error of the 20% trimmed mean (   ) 

B FONA BBI BPI BCa FONA BBI BPI BCa FONA BBI BPI BCa 

20 1.894 1.8 1.8 1.579 0.0292 0.0289 0.0289 0.0289 0.0261 0.022 0.0219 0.0219 

50 1.367 1.556 1.556 1.568 0.1161 0.1141 0.1141 0.1179 0.0135 0.0157 0.0157 0.0161 

100 0.728 0.708 0.709 0.706 0.0092 0.0096 0.0096 0.0091 0.0191 0.0187 0.0186 0.0189 

500 0.316 0.321 0.32 0.32 0.0049 0.0049 0.0048 0.0048 0.0071 0.0073 0.0073 0.0074 

1000 0.238 0.249 0.249 0.248 0.0115 0.0118 0.0118 0.0125 0.0048 0.0047 0.0047 0.0047 

5000 0.103 0.103 0.104 0.104 0.0018 0.0018 0.0017 0.0018 0.0021 0.0021 0.0021 0.0021 

10000 0.072 0.072 0.071 0.071 0.0012 0.0011 0.0011 0.0011 0.0015 0.0015 0.0016 0.0016 

Note: meaning of the abbreviations remains the same as in Table 1 
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At B = 20, the CI for     (the standard error of the 20% trimmed mean) did not cover the estimated value. It 

rendered its best covering as B was increased to 50 and barely covered at B = 100, and 500. Beyond this point, 

the interval failed to cover the estimate again even for the BCa approach. 

 

No significant difference or improvement in coverage was observed as a result of using a different approach 

even when B increased to 1000 and even got worse at B=5000 and B = 10000. 

 

 It appears that the effect of increasing B should be considered only after the right estimate has been chosen. For 

instance for skewed data like response data, the interest should be first on choosing the proper estimate like the 

alpha trimmed mean before one considers the approach to use.  

 

No particular method appears to have specifically managed the effect of the skewness of data better than the 

other except for the parameter ten percent trimmed mean. 

 

Even though having been adjusted for bias and expected to perform better even skewed data, the result showed 

that the α-trimmed mean out performed it for this set of response data.  

 

We notice that the effect of increasing B was the same irrespective of the approach employed. The difference in 

its effect was only on the different estimates rather than on the approach employed. 

 

Considering all we may conclude that for the set of data we considered, the confidence interval for the standard 

error of the 10% trimmed mean returned the most accurate interval irrespective of the approach employed and 

the accuracy increased as B increased. 

 

From Table 2, as B the number of bootstrapping increases, we notice that all four methods of calculating 

bootstrap CI considered returned shorter confidence intervals. Increasing B however did not improve coverage 

by any of the methods considered and even for all three statistics of interest. 

 

We also observed  from Table 2 that for CI of the standard error of the arithmetic mean, the BCa returned the 

shortest interval among all four approaches when B was as low as 20 returning a confidence interval length of 

1.57. However, the confidence interval for the standard error of the arithmetic mean was longer than that for the 

α - trimmed mean for the same B=20. This could be because of the fact that the data is skewed. The BCa 

approach therefore: recommends itself for use when data is skewed and the arithmetic mean is the measure of 

central tendency.  For this skewed data, the confidence interval for the sample α – trimmed mean performed 

better even when the B is as low as 20. 

 

Increasing the number of bootstrapping B shortens the interval length but may not guarantee accuracy as it does 

not guarantee the inclusion of a parameter within the interval except if the right parameter is employed for the 

right set of data.  

 

4 Conclusion and Recommendations 

 
4.1 Conclusion 

 
The 95% confidence interval for the standard error of the 10% trimmed mean returned accurate coverage of the 

true parameter by all four approaches applied.   

 

In the light of the empirical study, we conclude that increasing B the number of bootstrap samples increases the 

chances of more precise and shorter confidence intervals rather than increasing the chances for coverage and 

accuracy of the interval.  

 

One should not entirely neglect the shape of the data even when employing the bootstrap method of estimating 

the confidence interval no matter the approach used. This is to say that a better result is obtained when the right 

parameter is chosen for the right shape for instance, using the standard error of the alpha trimmed mean for a 

skewed data set, yields a better result irrespective of the approach.  
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4.2 Recommendations 

 
In general, increasing B produces shorter interval rather than increasing coverage/accuracy however, shorter 

interval is not a guarantee for better confidence interval unless the probability of coverage is first guaranteed.  In 

the light of the study therefore, we make the following recommendations:  

 

1. In estimating the bootstrap standard error, attention should be more on employing the appropriate 

measure of central tendency and its sample standard error rather than on arbitrarily increasing B the 

number of bootstrap samples.  

2. When dealing with response data as in the study here, one should seriously consider its skewed nature 

and as such, the standard error of the alpha trimmed mean should be considered irrespective of the 

bootstrap method of estimating the CI.  

3. Once the right tool is employed, increasing B will enhance the accuracy of the bootstrap CI. 

4. With probability of coverage guaranteed, our findings tend to support the opinion of Efron, and 

Tibshirani, [3] and later confirmed by that in estimating the bootstrap confidence interval, B = 1000 is 

enough for a well appreciable precise and short interval irrespective of the bootstrap approach 

employed. B = 500 can render a good short interval really. 

5. If the standard error of the arithmetic mean is to be used, the BCa approach to estimating the 

confidence interval should considered first. 
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