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ABSTRACT 
 

Since glaucoma is a serious health problem, numerous therapeutics are being developed to reduce 
Intraocular Pressure (IOP) as the only modifiable factor of all glaucoma symptoms. IOP-lowering 
agents are divided into six groups, each of which has a specific mechanism of action and side 
effects, which are the focus of this article and are explained in detail. All the mentioned agents are 
formulated as eye drops. However, as conventional topical eye drops have significant 
disadvantages, of which poor bioavailability and patient noncompliance are the main, novel 
approaches to designing their drug delivery systems were used and briefly presented in this review. 
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ABBREVIATIONS 
   
AAs  -  Adrenergic Agonists 
BBs  - Beta-adrenergic Blockers 
CAIs  -  Carbonic Anhydrase Inhibitors 
CLs  -  Contact Lenses 
IGS  -  In situ Gel Systems  
IOP  -  Intraocular Pressure 
MNs  -  Microneedles 
PAs  -  Prostaglandin Analogs 
PNIPAAm  -  poly(N-isopropyl acrylamide) 
PP  -  Punctal Plug  
RGC  -  Retinal Ganglion Cell  
RK  -  Rho-kinase 
RKIs  -  Rho-kinase Inhibitors 
SLN  -  Solid Lipid Nanoparticles 
TODDD  -  Topical Ophthalmic Drug 
Delivery Device  

 
1. INTRODUCTION 
 
Glaucoma is the most common cause of 
avoidable blindness worldwide. The health 
problem of glaucoma is its asymptomatic 
character in the early stages and patients’ 
noncompliance [1–3]. Glaucoma comprises a 
group of neurodegenerative disorders 
characterized by changes in the optic nerve head 
due to damage to the retinal ganglion cell (RGC) 
axons. Damage to the RGC axons is at most the 
result of increased intraocular pressure (IOP). 
Increased IOP can occur either due to increased 

aqueous humor production or its impaired 
drainage. Damage to the RGC axons can be so 
severe that it can lead to the death of the RGC 
and thus to blindness [4,5].  
 
Laser therapy, incisional surgery or drug therapy 
are options for glaucoma treatment. In most 
cases, initial treatment is drug therapy [6]. 
Although the IOP is not increased in all types of 
glaucoma, drugs that lower the IOP can delay or 
even stop the progression of the disease, even if 
the IOP is within physiological range [7,8].  
 
There are numerous medical agents that reduce 
IOP and are currently in use that have different 
mechanisms of action, efficacy and side effects. 
Sometimes these represent their advantages 
and sometimes their disadvantages. In order to 
overcome their disadvantages, drugs should be 
integrated into improved novel drug delivery 
systems. 
 

2. IOP LOWERING AGENTS 
 
The groups of medications used in the treatment 
of glaucoma are [6]:  
 

 Prostaglandin analogs (PAs); 

 Beta-adrenergic blockers (BBs); 

 Adrenergic agonists (AAs); 

 Carbonic anhydrase inhibitors (CAIs); 

 Miotics; 
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 Rho-kinase inhibitors (RKIs). 
 

The most effective IOP lowering agents are PAs, 
as they reduce the IOP by 28–33%. Therefore, 
PAs are usually included in glaucoma treatment 
first. Slightly less reduction is induced by BBs, 
while AAs and CAIs reduce the IOP by 15–20% 
[9]. 
 

2.1 Prostaglandin Analogues 
 
Prostaglandins are normally produced by the 
eye, but also by the prostate gland, after which 
they are named [10]. In animal studies during the 
1960s and 1970s, IOP was found to be lower in 
inflamed eyes than in healthy eyes, which was 
caused by intraocular injection of prostaglandins. 
Camras et al. [11] demonstrated that IOP in the 
rabbit’s eye was reduced after topical 
administration of prostaglandins. Nevertheless, 
natural prostaglandins, when administered to the 
human eye, caused significant side effects, such 
as conjunctival hyperemia, irritation and in some 
cases headache. Thus, PAs, also known as 
hypotensive lipids, were developed. They were 
equally effective in lowering IOP but showed 
fewer side effects [12].  
 
The use of PAs in the therapy began in 1996 with 
latanoprost. Today, in addition to latanoprost, 
travoprost, bimatoprost, and unoprostone can be 
used in the treatment of glaucoma. Latanoprost 
and travoprost are selective agonists of 
prostaglandin receptors. Unoprostone differs 
structurally from latanoprost and travoprost and 
has the lowest affinity for prostaglandin receptors 
[12–14]. It is not as efficacious as other PAs in 
reducing IOP and must be taken twice daily [12]. 
Unoprostone is significantly different in the 
mechanism of action than other PAs as well. 
Studies have also shown that it can achieve its 
effect, at least partially, by activating potassium 
and chloride channels, thus leading to the 
relaxation of the trabecular meshwork and 
increased aqueous humor outflow via the 
conventional route. However, the exact 
mechanism of its action remains unknown. But 
its relatively weak affinity for prostaglandin 
receptors may be the reason for its 
advantageous local tolerability compared with 
other PAs. It should also be noted that it is 
effective both as a monotherapy and as an 
adjunctive therapy [15].  

 
Although the structure of bimatoprost is similar to 
the other two PAs, it is indeed analogous to 
prostamides, which are a group of endogenous 

ocular hypotensives [14]. Bimatoprost is an 
amide prodrug. Its active form is latanoprost [16–
18].  
 
In contrast to other ocular hypotensives, PAs 
have almost no influence on aqueous humor 
production, but on uveoscleral outflow through 
the iris and ciliary body, which has been 
confirmed by many animal studies [19,20]. 
Similarly, other studies have confirmed that the 
exact mechanism of influencing the uveoscleral 
outflow is by facilitating it [19,21–24]. The 
aqueous humor drainage through the ciliary body 
may be increased by the relaxation of the ciliary 
muscle, as shown in studies conducted on 
monkeys [19–21,25]. Furthermore, PAs can 
potentiate the uveoscleral outflow by activating 
some enzymes, such as metalloproteinases that 
lead to collagen degradation. As a result, 
intercellular spaces open and the rate of 
uveoscleral drainage increases, leading to a 
decrease in IOP [20,26]. The same has been 
confirmed for humans in in vitro and in vivo 
studies [27–30]. To a certain extent, the 
trabecular meshwork plays role in enhancing 
aqueous humor drainage and lowering IOP [28–
31].  

 
Studies have confirmed that taking latanoprost 
[32–34], travoprost [33] and bimatoprost [35,36] 
twice daily is less effective than taking them once 
daily, preferably in the evening. Administration in 
the evening, rather than in the morning, seems to 
be more effective and can prevent the early 
morning surge in IOP that can be observed in 
many patients [13]. It is very important to be 
careful when adding bimatoprost to latanoprost in 
the treatment of glaucoma as the paradoxical 
increase in IOP can occur [37].  
 
A great number of studies have confirmed the 
safety of using PAs either as a monotherapy or 
as a concomitant therapy to other ocular 
hypotensives. The most common local side 
effects are eye irritation, conjunctival hyperemia, 
and eyelash changes (lightening and darkening), 
as well as darkening of the iris and periocular 
skin pigmentation [12,13,38]. Systemic side 
effects include dyspnea, chronic and acute 
asthma [12,39].  
 

In 2017, FDA approved a new PA in the United 
States, with a unique, dual mechanism of action, 
called latanoprostene bunod [40]. 
Latanoprostene bunod metabolizes to 
latanoprost, which increases uveoscleral outflow 
and the nitric oxide level, responsible for 
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intensifying the trabecular outflow. It is dosed 
once daily [41].  
 
2.2 Beta-Adrenergic Blockers 
 
The initial therapeutic application of BBs was in 
the treatment of various cardiovascular diseases, 
such as hypertension, angina pectoris and 
cardiac arrhythmias. The first BB ever 
administered to humans to lower IOP was 
propranolol in 1967 [42]. Propranolol is not used 
topically. However, it can cause damage to the 
cornea if taken for a long time. This effect is 
caused by its membrane-stabilizing properties 
[12,43].  
 
The first BB formulated as an ophthalmic solution 
was timolol, the most frequently studied and 
used drug in glaucoma therapy. However, the 
use of BBs, even timolol, has been reduced 
since the introduction of PAs, because PAs lower 
IOP more effectively and have fewer systemic 
side effects [12,44].  
 

Apart from timolol, other available BBs are 
betaxolol, levobunolol, metipranolol, and 
carteolol. They are administered once or twice 
daily. Since BBs bind competitively to beta-
adrenergic receptors, they act antagonistically to 
adrenergic responses [12]. Timolol reduces IOP 
by reducing aqueous humor production and does 
not affect its drainage, whatsoever. The exact 
mechanism by which this is achieved is not yet 
undoubtedly determined [12,13,45].  
 

It is believed that the underlying mechanism is 
binding to beta2-adrenergic receptors in the 
ciliary epithelium, which in turn leads to 
antagonistic effects. The additional effect may be 
binding to beta2-adrenergic receptors in ciliary 
arteries, leading to vasoconstriction and 
subsequently a decrease in aqueous humor 
production [12,13]. It may be interesting that it 
does not only lower IOP in the treated eye but 
also the contralateral eye without treatment. It is 
assumed that this bilateral effect of timolol occurs 
as a result of its systemic absorption [46].  
 

Side effects of BBs are usually the result of beta-
blocking action. Local or systemic side effects 
can occur. Local side effects are rare and include 
dry eyes or allergic reactions. However, since 
BBs are directly absorbed in venous circulation 
after topical administration and do not undergo 
first-pass metabolism in the liver, there is a risk 
of more significant systemic side effects 
compared with their oral administration. Systemic 

side effects include respiratory, cardiovascular, 
metabolic and central nervous system side 
effects [12,13].  
 

2.3 Adrenergic Agonists 
 
The AAs have been used in glaucoma 
medication therapy for a long time. Since the 
discovery of two different types of adrenergic 
receptors, alpha and beta, various approaches 
that include interaction with these receptors have 
been developed to produce the most significant 
IOP reduction possible. Some agonists of alpha1, 
alpha2 and imidazole receptors are powerful IOP 
reducers. Nowadays, clonidine and more 
frequently, its derivatives apraclonidine and 
brimonidine, are used. The exact location of their 
effect on IOP is uncertain. However, it is known 
that AAs can interact with adrenergic and 
imidazole receptors in the ciliary body, trabecular 
meshwork and brain. To some extent, they can 
reduce IOP bilaterally, although applied 
unilaterally [12,13].  
 

In a study performed by Toris et al. [47], it has 
been proven that the effects of apraclonidine on 
IOP were achieved by facilitating the trabecular 
outflow, reducing aqueous humor production, 
and reducing episcleral venous pressure. On the 
other hand, brimonidine acts somewhat 
differently. It lowers aqueous humor flow and 
alters uveoscleral outflow [48]. 
  
Topically administered AAs cause some side 
effects, which typically consist of vasoconstriction 
in the conjunctiva, oral or nasal cavity, which 
leads to dryness in the nose and mouth. In 
combination with these, the conjunctiva can be 
blanched and eyelids slightly retracted. In 
contrast to brimonidine, apraclonidine has hardly 
any effect on the cardiovascular or central 
nervous system. However, the most annoying 
and alarming side effect of AAs is allergic 
reactions, which can be very severe [12,13].  
 

2.4 Carbonic Anhydrase Inhibitors 
 

Carbonic anhydrase (CA) in the eye plays a 
crucial role in aqueous humor production in the 
ciliary epithelium. If CA is inhibited, aqueous 
humor secretion decreases and as a result, IOP 
decreases. The CAIs are very efficient ocular 
hypotensives. Acetazolamide, methazolamide, 
and dichlorphenamide are systemic CAIs. Given 
their serious side effects, the question arose as 
to patients’ adherence, so topical agents, such 
as brinzolamide and dorzolamide, were 
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developed [12,13,43]. Topical CAIs are more 
selective than systemic ones, but not as efficient 
in lowering IOP. In contrast to topical BBs, the 
duration of the effect of CAIs is 24 h [12].  
 
The most troubling systemic side effect of CAIs is 
severe blood dyscrasia, which has been the 
cause of numerous fatal outcomes [49,50]. Other 
systemic side effects, such as fatigue, 
paresthesia, gastrointestinal problems and 
kidney stone formation, are common results of 
their long systemic administration, but rarely 
occur during the administration of topical CAIs. 
Ocular side effects include itching, blurred vision, 
allergic conjunctivitis, etc. and are more 
pronounced with dorzolamide than with 
brinzolamide [12].  
 

2.5 Miotics 
 
Miotics, also known as parasympathomimetics or 
cholinergic drugs, exhibit effects like 
acetylcholine and have been in use for more than 
a century. Miosis occurs as a result of a 
contraction of the ciliary muscle, which puts 
pressure on the trabecular meshwork, leading to 
an increase in outflow and a decrease in IOP 
[43].  
 
There are two types of miotics: direct-acting ones 
such as pilocarpine, carbachol, and acetylcholine 
and indirect-acting ones, such as demecarium 
bromide and echothiopate iodide. Direct miotics 
directly affect the neuromuscular junction, while 
indirect miotics bind to acetylcholine esterase at 
the neuromuscular junction, thus inducing 
acetylcholine secretion and promoting the 
parasympathetic nervous system. Of all miotics, 
only pilocarpine is regularly used in glaucoma 
therapy. Others serve as a substitution in case of 
the occurrence of allergic reactions to pilocarpine 
[12,13].  
 
Systemic side effects of pilocarpine include 
sweating, salivation, bradycardia, hypotension, 
bronchospasm and increased production of 
bronchial mucus. Pilocarpine affects various 
smooth muscles in the body and can cause 
nausea, vomiting and diarrhea [12,13].  
 

2.6 Rho-kinase Inhibitors 
 
The RKIs are a completely new class of drugs 
available for glaucoma therapy since 2017 when 
FDA approved netarsudil [51]. Rho-kinase (RK) 
is serine/threonine kinase and RKIs inhibit 
norepinephrine transporter in addition to 

inhibition of RK. Netarsudil enhances trabecular 
meshwork outflow and reduces episcleral venous 
pressure [52].  
 

3. BARRIERS IN EFFECTIVE 

GLAUCOMA TREATMENT 
 

3.1 Absorption and Distribution in Ocular 
Compartments 

 
The application of a drug to the eye is a 
demanding process because of many factors that 
affect its absorption. The eye is a complex organ, 
consisting of several components that present 
barriers to drug absorption and distribution. The 
cornea and the anterior chamber are important 
for drug distribution inside the eye. Drug 
absorption begins with mixing a drug with tears, 
after its topical application. The quantity of a drug 
absorbed is directly proportional to its 
concentration in tears if it does not bind with 
other substances in the cornea. With eye blinking 
pushing a drug to go through the nasolacrimal 
duct, tears’ evaporation, drug deposition on 
eyelid borders and binding to proteins and 
enzymes, a very limited amount of a drug can 
penetrate the eye (1–10% of the applied dose). 
Drug distribution inside the eye is impeded by the 
iris, lens and ciliary body [13].  
 

If a sufficient amount of a drug is not present on 
the eye surface, then the absorbed dose will be 
too low to produce a therapeutic effect. By 
applying a larger amount of a drug to the eye, the 
excess amount will be removed from the eye 
surface through the lacrimal canals within a few 
minutes. Once again, there is no therapeutic 
effect. Therefore, it is necessary to develop drug 
formulations that will enable longer contact of a 
drug with the eye surface. Another undesirable 
way of losing a drug is its systemic absorption 
instead of the ocular one. A drug may be 
systemically absorbed from the conjunctival sac 
via blood capillaries or after a drug solution has 
been drained into the nasal cavity [53].  
 

3.2 Flaws of Conventional Ophthalmic 
Topical Medications 

 

More than 90% of all available ophthalmic drugs 
are administered in the form of eye drops, which 
is not surprising given the ease of their 
manufacture and the ease of use and application. 
Nevertheless, they have some flaws, of which 
the poor drug bioavailability of only up to 10% is 
the most important [54,55]. After administration, 
eye drops have a limited retention capacity in the 
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conjunctival sac of only 7-10 μL [54] on the one 
hand, followed by rapid drainage through the 
nasolacrimal duct [55] on the other, which leads 
to poor bioavailability. 
 

3.3 Patients’ (Non)Compliance 
 

Regardless of how effective conventional eye 
drops may be in lowering IOP, the therapeutic 
outcome ultimately depends on the patient’s 
ability to maintain the therapy. According to a 
study by Newman-Casey et al [56], the main 
reason for patient’s noncompliance is their 
forgetfulness, either when refilling prescriptions 
or when omitting the dose. It is also important to 
mention the lack of self-efficacy in administering 
eye drops and the lack of patient education about 
glaucoma outcomes and the effectiveness of 
medications. 
 

4. MORE EFFECTIVE APPROACHES IN 

GLAUCOMA TREATMENT 
 
To solve the above problems, scientists have 
steered their research in the development of drug 
delivery systems in two parallel directions, either 
extending the contact time of the drug and the 
eye or slowing drug elimination [57]. In this way, 
a plethora of sustained drug delivery systems 
have been developed, many of which never 
reached preclinical trials but have been retained 
as a possible option for glaucoma treatment. On 
the other hand, few are commercially available. 
Fig. 1. shows novel drug delivery systems 
developed for the treatment of glaucoma, while 
Table 1 lists novel drug delivery systems for each 
specific IOP lowering drug, that provide 
additional data on their efficacy. 
 

 

 
Fig. 1. Summary of drug delivery devices for glaucoma treatment. (A) In situ gel systems, (B) 

Nanoparticles: liposomes, niosomes, nanoparticles, lipid nanoparticles, dendrimers, 
nanodiamonds, (C) Ocular inserts: Ocusert®, Ocufit SR® system, topical ocular ring, Topical 
Ophthalmic Drug Delivery Device (TODDDTM), punctal plug, (D) Contact lenses, (E) Ocular 

implants: NovadurTM drug delivery system, (F) Microneedles, (G) Ocular iontophoresis: 
EyeGate II delivery system 
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Table 1. Summary of the groups of medications used in the treatment of glaucoma 
 

 

Drug group Active 
substance 

Drug delivery system  Efficacy Ref. 

Prostaglandin 
analogs 

Latanoprost o Latanoprost-loaded liposomes 
o Propylamino-β-cyclodextrin 
o Topical Ophthalmic Drug Delivery 

Device (TODDD) 
o L-shaped punctal plug (PP) 
o Latanoprost-eluting contact lenses 

(CLs) 
o Ocular implant 

o In vivo 90-day IOP reduction  
o In vitro stability tests, in vivo ocular irritation 
o In vitro 16-day release, in vivo 2-3-month IOP 

reduction  
o In vitro 90-day release, in vivo 3-month release 
o In vitro / in vivo 1-month release  

 
o In vivo 6-month release, phase Ib clinical trial 

[58–65] 

Travoprost o Travoprost PP 
 

o iDose ocular implant 

o In vitro 3-month release, in vivo 6-month IOP 
reduction  

o In vivo 12-month IOP reduction  
 

[62,63,66–
68] 

Bimatoprost o Ocular inserts 
o Topical ocular ring 

 
o Bimatoprost SR - ocular implant 

o In vivo 4-week IOP reduction  
o In vitro 180-day release, in vivo 6-month IOP 

reduction  
o In vivo 6-month IOP reduction  

[69–72] 

Beta-
adrenergic 
blockers 

Timolol o In situ gel systems (IGS): 
Xyloglucan based 
PNIPAAm based 

o Solid lipid nanoparticles (SLN) 
o Timolol-loaded chitosan 

nanoparticles 
o Timolol-loaded liposomes 
o Timolol-loaded niosomes 
o Hybrid poly(amidoamine) 

(PAMAM)-dendrimer hydrogel-
PLGA nanoparticles 

o Ocufit SR® - ocular insert 
o TODDD 
o Topical ocular ring 

o In vivo 24 h IOP reduction  
o In vivo 12 h IOP reduction  
o In vitro 3 h release  
o In vitro 24 h release, in vivo 8 h IOP reduction  

 
o In vitro 6 h release, in vivo 4 h IOP reduction  
o In vitro 10 h release, in vivo 8 h IOP reduction  
o In vitro 28-35-day release, in vivo 4-day IOP 

reduction  
 

o In vitro 8 h release, in vivo 14-day IOP retention  
o In vivo 3-month IOP reduction  
o In vivo 6-month IOP reduction, phase II clinical trial 
o In vivo 5-day IOP reduction  

[70,73,74–
76,77–84] 
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Drug group Active 
substance 

Drug delivery system  Efficacy Ref. 

o CLs  
Betaxolol o IGS 

o Betaxolol-loaded 
montmorillonite/chitosan 
nanoparticles 

o Betaxolol-loaded nanosuspension 
 

o In vitro 8 h release, in vivo 12 h IOP reduction  
o In vitro 10 h release, in vivo 3 h IOP reduction  

 
 

o In vivo 3-month IOP reduction  

[85–87] 

Carteolol o Carteolol-loaded dendrimers o Bioavailability 2.5 times higher compared with a 
solution 

[88] 

Adrenergic 
agonists 

Clonidine o IGS o In vitro 6 h release [89] 
Brimonidine o IGS 

o Brimonidine tartarate-loaded 
Eudragit nanoparticle 

o Brimonidine tartarate-filled chitosan 
nanoparticles 

o PAMAM-dendrimer hydrogel-PLGA 
nanoparticles 

o Ocular inserts 
o CLs 
o Ocular implant 

 
o Hollow microneedles (MNs)  

o In vitro 28-day release 
o In vitro 48–72 h release, in vivo 72 h IOP reduction  

 
o In vitro 4 h release, in vivo 8 h IOP reduction  

 
o In vitro 28–35-day release, in vivo 4-day IOP 

reduction 
o In vitro 24 h release, in vivo 24 h IOP reduction  
o In vivo 7-day IOP reduction  
o In vitro 60-day release, in vivo 13-week IOP 

reduction  
o In vitro 35-day release, in vivo 1-month IOP 

reduction  
 

[80,90–97] 

Carbonic 
anhydrase 
inhibitors 

Acetazolami
de 

o Acetazolamide-loaded Eudragit 
nanoparticles 

o Acetazolamide-filled cationic 
nanoemulsions 

o Acetazolamide-loaded liposomes 
o Acetazolamide-loaded niosomes 
o Acetazolamide-loaded carbosilane 

dendrimers 

o In vitro 7 h release, in vivo 8 h IOP reduction  
 

o In vitro 90-minute release 
 

o In vivo 8 h IOP reduction  
 
o In vivo 6 h IOP reduction  
 
o In vivo 7 h IOP reduction  

[98–103] 
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Drug group Active 
substance 

Drug delivery system  Efficacy Ref. 

Methazolam
ide 

o Methazolamide-bound calcium 
phosphate nanoparticles 

o Methazolamide-filled SLNs 

o In vivo 18 h IOP reduction  
 

o In vitro 8 h release, in vivo 8 h IOP reduction  
 

[104,105] 

Brinzolamid
e 

o IGS 
o Brinzolamide-loaded hydroxypropyl 

β-cyclodextrin liposomes 
o Nanocrystals 

o In vitro 12 h release, in vivo 6 h IOP reduction  
o In vitro 9 h release, in vivo 12 h IOP reduction  
o In vitro immediate release, in vivo 1 h IOP 

reduction 
  

[106–108] 

Dorzolamid
e 

o IGS 
o Dorzolamide-loaded poly(D,L-

lactide-co-glycolide) nanoparticles 
o Dorzolamide hydrochloride-filled 

nanoemulsions 
o Dorzolamide-loaded liposomes 
o Dorzolamide with γ-cyclodextrin 
o Ocular insert 
o ACUVUE® OASYS™ CLs 

o In vitro 8 h release, in vivo 8 h IOP reduction  
o In vitro 3-day release, in vivo 20 h IOP reduction  
o In vivo 6 h IOP reduction  
o In vitro 6 h release, in vivo 8 h IOP reduction  
o In vivo 24 h IOP reduction  
o In vitro 18 h release, in vivo 2-week IOP reduction  
o In vitro 48 h release, in vivo 48 h IOP reduction  

[109–116] 
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Drug group Active 
substance 

Drug delivery system  Efficacy Ref. 

Miotics Pilocarpine o Pilocarpine-loaded glutathione-
PNIPAAm1 IGS 

o Pilocarpine-loaded nanoparticles 
o Pilocarpine-loaded liposomes 
o Pilocarpine-loaded dendrimers 
o β-cyclodextrin complex 

 
o Pilocarpine-loaded nanocrystals 
o Ocusert® - ocular insert 

 
 

o CLs 
o Collagen corneal shields 
o Titanium MNs 
o Pilocarpine-coated MNs 

 
 
 

o Dissolving MN ocular patch 

o In vivo 14-day IOP reduction  
o In vitro 36-day release, in vivo 21-day IOP 

reduction  
o In vivo 9 h IOP reduction  
o In vivo 5 h IOP reduction  
o Reduced the ocular irritation by preventing its rapid 

absorption and precipitation in the pre-corneal area 
o In vitro 20 h release 
o In vivo 7-day IOP reduction, withdrawn from the 

market because of burst drug release and 
dislocation problems 

o In vitro 4 h release 
o In vitro 14-day release 
o In vitro 1-month release 
o With the excellent penetration of MNs into the 

sclera (up to 300μm) and a rapid dissolution rate of 
active substances, MNs caused fast and extensive 
constriction of a pupil 

o Provided a deliver significantly higher flux of 
pilocarpine compared to pilocarpine solution 

[117,118,119
–123,124–
131] 
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PAs proved to be the most effective in IOP 
lowering, of which latanoprost is most frequently 
used as an active in the development of novel 
drug delivery systems. As can be seen in Table 1, 
different approaches were applied, of which 
ocular implant showed the longest IOP reduction 
effect in vivo. Nevertheless of all novel drug 
delivery systems containing PAs, the longest IOP 
reduction in vivo is clearly provided with 
travoprost iDose ocular implant, which is at the 
same time the longest-lasting effect of all novel 
drug delivery systems for treating glaucoma. 
Second in effectiveness are BBs, of which timolol 
formulated as an ocular ring achieved a 6-month 
IOP reduction as demonstrated in phase II 
clinical trial. Pilocarpine, the most commonly 
used miotic in glaucoma treatment is also 
present in numerous novel drug delivery systems, 
some of which are only available in vitro tests, as 
no in vivo tests have been performed. A large 
number of novel drug delivery systems are being 
tested for brimonidine, whose ocular ring showed 
a 13-week IOP reduction, the longest of all. 
 

5. CONCLUSIONS 
 
Although elevated IOP in glaucoma is treated 
with six different groups of drugs they all have 
different mechanisms of action, are not equally 
effective and cause more or less serious side 
effects. However, since glaucoma is recognized 
as a major health problem, scientists are trying to 
find a way to deal with it by developing novel 
drug delivery systems, which are different 
approaches with varying success and efficacy. 
However, since the results available are obtained 
using different methods, different tests and 
formulation approaches, it is very difficult to 
compare the effectiveness of novel drug delivery 
systems. However, considering the extent and 
number of available systems, we must be very 
optimistic that each patient will receive the most 
appropriate treatment for his glaucoma. 
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