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Abstract

This study intends to provide a fundamental step towards studying the properties of directed
graphs with their corresponding generalized topological spaces. A generalized topology (GT) µ
on a nonempty set X is defined as a family of subsets of X such that ∅ and an arbitrary union
of sets in µ is in µ. In this study, we introduce a new generalized topology generated by the set
of edges of maximal paths of the directed graph D called the maximal path edge generalized
topology (MPEΓ), denoted by ΓMP (D). The basic topological properties and connectedness
in the context of this new structure are explored and illustrated. In particular, this paper
established that (E(D),ΓMP (D)) is a strong generalized topological space and characterized
the open and closed sets in this space. Moreover, it was seen that the MPEΓ space of every
disconnected digraph is ΓMP -disconnected and the MPEΓ space of every connected digraph is
also characterized.
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1 Introduction

Graphs can be used to represent a variety of real-life situations. This makes graph theory one of
the important structures in discrete mathematics. It is a prominent mathematical tool in many
subjects, with applications in chemistry, operations research, social sciences, and computer science
[1]. On the other hand, topology is also of great importance. Its main interests are the properties
that remain unchanged by continuous deformations [2]. Topological structures are significant in
data analysis even when the concept of distance is ignored for the extraction and processing of
knowledge [1]. As a result, topology is a powerful tool that leads to ideas like connectedness,
continuity, and homotopy [1]. In 2002, Császár [3] weakened the conditions of a topological space
and introduced the idea of a generalized topological space. In this space, the set itself and the finite
intersection of the members of the topology may not be in the topology, which distinguishes this
concept from that of a topological space.

Graph theory and topology, particularly the connection between topologies and digraphs, have
been shown to have a significant link in numerous studies. In 1967, Evans J. W. et al. [4] found a
correlation between the set of all topologies and the set of all transitive digraphs, that is, the family
B = {Q(v) : v ∈ V } forms a base for a topology on the set V of nodes of a transitive directed
graph D = (V,E) where Q(v) = {v} ∪ {u ∈ V : (u, v) ∈ E(D)}. In the same year, Anderson and
Chartrand [5] investigated the lattice-graph of the topologies of transitive directed graphs presented
by Evans, J. W. et al [4]. In 1968, Bhargava T. N. and Ahlborn T. J. [6] showed that each directed
graph D = (V,E) defines a unique topological space (V, τE) where τE = {U : U ∈ 2V , Uopen};
and the subset U is said to define an open set if for every pair of points (u, v) with v in U and
u not in U that is (u, v) /∈ E. In 1972, Lieberman R. N. [7] defined two topologies on the set of
vertices of every directed graph D = (V,E) called the left E-topology and the right E-topology.
He illustrated that the left E-topology is equivalent to the topology presented by Bhargava T. N.
and Ahlborn T. J. [6]. In 2010, Marijuan C. [8] studied the relation between directed graphs and
finite topologies for which he associated a topology τ with the vertex set of each directed graph. In
addition, Abdu and Kilicman [1] in 2018 introduced a new approach to the construction of topology
on directed graphs by using two subbasic families to generate two topologies on the edge set, namely,
the compatible and incompatible edge topologies. Furthermore, Balingit C. and Benitez J. [9] in
2019 on their study on sets, functions and separation axioms in n-generalized topological space,
introduced a particular example constructing an n-GT space (E(D),GE) defining GE = {v1, ..., vn}
where vi = P(Ei) with Ei as the collection the edge set of the nontrivial maximal paths on a
directed graph D, for i = 1, 2, ..., n.

Investigating topology on graphs has yielded numerous practical applications. One of its significance
is evident in the study of digital topology [10]. Abdu and Kilicman [1] mentioned that weighted
digraph problems may benefit from their study of topologies on the edge set of directed graphs. They
added that in some applications, the edge represents affinity, distance, bandwidth, or connection
cost depending on the application considered in a weighted digraph. In connection, the generated
topology on graphs introduced by Shokry [11] in the context of distance can be applied to airline
connections in determining the minimum flights required for travelling between two cities.

Many prior efforts on topologizing discrete structures have focused on the construction of topologies
around the vertex set of directed graphs, while no one has tried to associate a generalized topology
on the set of edges of a given directed graph. This motivated us to study some properties of directed
graphs by their corresponding generalized topology. This paper introduces and defines, for the first
time, a generalized topology on the edge sets of directed graphs. In particular, we introduce a
base consisting of the family of edge sets of the maximal paths in a directed graph to generate a
generalized topology and establish its relevant properties. Also, the concept of connectedness is
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explored in the sense of this new space. The directed graphs considered in this study are nonempty,
finite, and without loops.

2 Preliminaries

In this part, we review some basic notions from graph theory and generalized topology that are
relevant to this paper. Also, some known results necessary for the study are presented.

Definition 2.1. [1] (Directed Graph (Digraph)) A directed graph, denoted byD = (V (D), E(D),
φD), consists of a nonempty set V (D) of vertices (or nodes), a set E(D) of directed edges (or arcs),
and an incidence function φD that joins each directed edge of D with an ordered pair of vertices of
D.

It is defined in [12] that a graph with a finite number of vertices as well as a finite number of edges
is called a finite graph; otherwise, it is called an infinite graph. If an edge e begins on a vertex u and
terminates at a vertex v, then e is incident out of u and incident into v, and u is called the initial
vertex and v is called the terminal vertex of e [12]. A self-loop (or simply loop) is an edge whose
initial and terminal vertices are the same [12]. A directed walk is a finite sequence whose terms
are alternately vertices and edges in D such that each edge is incident out of the vertex preceding
it in the sequence and incident into the vertex following it; a directed walk in which no vertex is
repeated is called a directed path (or briefly dipath); and given two vertices u and v, we say that v
is reachable (or accessible) from u if there exists at least one directed path in D from u to v [12]. If
D and H are two digraphs with vertex sets V (H), V (D), and edge sets E(H), E(D), respectively,
such that V (H) ⊆ V (D) and E(H) ⊆ E(D), then we call H as a subdigraph of D [13]. A member
F of a family of subdigraphs F in D is maximal in F if no member of F properly contains F [13].
Other notions in graph theory that are used such as the underlying graph, semi-walk and semi-path
can be seen in [12].

Fig. 1. Subdigraphs of Directed Graph D

Example 2.2. Consider the finite digraphs in Figure 2. Here, H1 and H2 are subdigraphs of D.
Let F = {H1, H2}. Because H1 is not a subdigraph of H2 and H2 is not a subdigraph of H1,
both H1 and H2 are maximal subdigraphs. In addition, v4e5v1e1v2e2v1e4v3 is a directed walk and
v4e5v1e1v2e3v3 is a directed path. We can say that vertex v4 is reachable from vertex v3, but v3 is
not reachable from v4.

As cited by Khayerri and Mohamadian in [14], Császár A. introduced the notion of generalized
topological space in 2002 as follows:

Definition 2.3. [14] (Generalized Topological (GT) Space) Let X be a nonempty set and
P(X) the power set of X. A subset µ of P(X) is said to be a generalized topology (GT) on X if
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∅ ∈ µ and an arbitrary union of elements of µ belongs to µ. The elements of µ are called µ-open
sets and the complements of µ-open sets are called µ-closed sets. The ordered pair (X,µ) is called
generalized topological (GT) space. A generalized topology is said to be strong if X ∈ µ.

A point x ∈ X is said to be an interior point of B ⊆ X if x belongs to an open set O contained
in B. The set of all interior points of B is referred to as the interior of B and is denoted by
intµ(B). Equivalently, intµ(B) is the union of all µ-open subsets of B and clµ(B) is called the
closure of B, the smallest µ-closed subset containing B. Equivalently, clµ(B) is the intersection
of all µ-closed subsets which contains B and a point x ∈ X is said to be an exterior point of
B if x ∈ intµ(X \ B). The set of all exterior points of B is referred to as the exterior of B
and is denoted by extµ(B) and the frontier (or boundary) of B, denoted by frµ(B), is the set
frµ(B) = X \ (intµ(B) ∪ extµ(B)) [15]. A point x ∈ X is called a µ-cluster point of B ⊆ X, if
U ∩ (B \ {x}) 6= ∅ for each U ∈ µ with x ∈ U . The set of all µ-cluster points of B, denoted by
dµ(B), is called derived set of B [14]. A subset B of X is said to be µ-dense in X if X = clµ(B)
[16].

Example 2.4. Let X = {a, b, c} and µ = {∅, {a, b}, {a, c}, {b, c}, X}. Consider B = {b, c} ⊆ X.
Then, intµ(B) = intµ({b, c}) = {b, c}. Observe that the µ-closed sets are X, {c}, {b}, {a} and ∅.
Then, clµ(B) = X. Also, X \ B = X \ {b, c} = {a}. So, extµ(B) = intµ(X \ B) = intµ({a}) = ∅.
Moreover, frµ(B) = X \ ({b, c} ∪∅) = {a}. Now, if we consider B = {a, c}, then d(B) = {b} since
{a, b} ∩ {a, c} = {a}, {b, c} ∩ {a, c} = {c} and X ∩ {a, c} = {a, c}. Additionally, if B = {a, b}, then
clµ = X. Hence, B is µ-dense in X.

Definition 2.5. [14] (Base of a Generalized Topology) Let X be a nonempty set and β ⊆
P(X). Then β is called a base for a generalized topology µ if µ = {

⋃
β′ | β′ ⊆ β}.

Example 2.6. Consider the following class of subsets ofX = {a, b, c, d}. B = {∅, {d}, {b}, {a, b}, {b, c}}.
Then taking unions of members of B gives the class µ = {∅, {d}, {b}, {a, b}, {b, c}, {b, d}, {a, b, d}, {b, c, d},
{a, b, c}, X} which is the GT on X generated by the class B. Here, B is a base for µ.

Several properties that are known to exist in a regular topological space were discovered as a result
of Khayerri and Mohamadian’s research. Some of these are as follows:

Proposition 2.7. [14] Let B be a subset of a space X. Then the following hold:

1. int(B) ⊆ B ⊆ cl(B).

2. int(int(B)) = int(B) and cl(cl(B)) = cl(B).

3. If B
′
⊆ B, then int(B

′
) ⊆ int(B) and cl(B

′
) ⊆ cl(B).

4. int(B) = B iff B is µ-open.

5. cl(B) = B iff B is µ-closed.

6. cl(B) = X \ int(X \B) and int(B) = X \ cl(X \B).

7. x ∈ cl(B) iff U ∩B 6= ∅ for each U ∈ µx.

8. x ∈ int(B) iff U ⊆ B for some U ∈ µx.

Proposition 2.8. [14] For any subset B of a generalized topological space X, we have:

1. cl(B) = B ∪ fr(B).

2. cl(B) = int(B) ∪ fr(B).

3. int(B) = B \ fr(B).

4. int(B) = cl(B) \ fr(B).

5. X = int(B) ∪B ∪ int(X \B).
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In the same paper, Khayerri and Mohamadian [14] presented their findings regarding the basis of a
GT space as follows:

Theorem 2.9. [14] Any subset of P(X) is a base for some generalized topology on X.

Theorem 2.10. [14] β is a base for some strong generalized topology if and only if X =
⋃
B∈β B.

3 Maximal Path Edge Generalized Topological Spaces

First, we introduce the maximal path edge generalized topological space (MPEΓ) as follows:

Definition 3.1. (Maximal Path Edge Generalized Topology) Let D = (V (D), E(D), φD)
be a nonempty finite directed graph without loops. Let {P1, P2, ..., Pn} be the family of all distinct
maximal paths in D and let Mi = E(Pi) be referred to as the ith edge set of D for i ∈ {1, 2, ..., n}.
Define β = {Mi|i ∈ {1, 2, ..., n}}. By Theorem 2.9, β forms a base for a unique generalized topology
ΓMP (D) on E(D) called the maximal path edge generalized topology (or briefly, MPEΓ ) of D. The
pair (E(D),ΓMP (D)) is called the maximal path edge generalized topological space (MPEΓ space).

Remark 3.2. In view of Definition 2.3, the elements of ΓMP (D) are called ΓMP -open sets. In the
same manner, the complements of these ΓMP -open sets are called ΓMP -closed sets. From this point
forward, we denote ΓMP (D) to be the set of all ΓMP -closed sets, that is, ΓMP (D) = {E(D) \ O |
O ∈ ΓMP (D)}.

Definition 3.3. (Deleted ith Edge Set) Let D = (V (D), E(D), φD) be a directed graph. For
any e ∈ E(D), suppose e ∈ Mi. Then, EiM (e) = Mi \ {e} is called the deleted ith edge set with
respect to e.

Fig. 2. Directed Graph D for Example 3.4.

Example 3.4. Consider the finite directed graphD without loops in Figure 3 with its corresponding
maximal paths in Figure 3. The ith edge sets of D are M1 = {e1, e2, e4}, M2 = {e1, e5}, and
M3 = {e3, e4}. So, we have β = {{e1, e2, e4}, {e1, e5}, {e3, e4}}. By taking the arbitrary unions of
Mi, the maximal path edge generalized topology (MPEΓ) of D is given by
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Fig. 3. Maximal Paths of Directed Graph D for Example 3.4

ΓMP (D) = {∅, {e3, e4}, {e1, e5}, {e1, e2, e4}, {e1, e2, e3, e4}, {e1, e2, e4, e5}, {e1, e3, e4, e5}, E(D)}.

Also, ΓMP (D) = {E(D), {e1, e2, e5}, {e2, e3, e4}, {e3, e5}, {e5}, {e3}, {e2},∅}. Additionally, the
deleted ith edge sets of the edges of D are as follows: E1

M (e1) = M1 \ {e1} = {e2, e4} and
E2
M (e1) = M2 \ {e1} = {e5}, E1

M (e2) = M1 \ {e2} = {e1, e4}, E1
M (e3) = M3 \ {e3} = {e4},

E1
M (e4) = M1 \ {e4} = {e1, e2} and E2

M (e4) = M3 \ {e4} = {e3}, and E1
M (e5) = M2 \ {e5} = {e1}.

Theorem 3.5. The MPEΓ of a directed graph D is a strong generalized topology on E(D).

Proof : Let ΓMP (D) be the MPEΓ of the directed graph D = (V (D), E(D), φD). Since D does not
have a loop, for every e ∈ E(D), e belongs to some maximal path Pi. Hence, for every e ∈ E(D),
e ∈ Mi for some i ∈ {1, 2, ..., n}. Thus, E(D) ⊆

⋃n
i=1Mi. Since

⋃n
i=1Mi ⊆ E(D), and so,⋃n

i=1Mi = E(D). Consequently, E(D) ∈ ΓMP (D). Therefore, ΓMP (D) is a strong generalized
topology. �

Theorem 3.6. Let ΓMP (D) be the MPEΓ of the directed graph D = (V (D), E(D), φD). For any
e ∈ E(D), EiM (e) = ∅ for some i ∈ {1, 2, ..., n} if and only if {e} ∈ ΓMP (D).

Proof : Suppose e ∈ E(D) such that EiM (e) = ∅ for some i ∈ {1, 2, ..., n}. Then, Mi = {e} for
some i ∈ {1, 2, ..., n}. Thus, {e} ∈ ΓMP (D). Conversely, let {e} ∈ ΓMP (D). Then for some S ⊆
{1, 2, ..., n}, {e} =

⋃
i∈SMi. So, for some i ∈ {1, 2, ..., n}, Mi = {e}; hence, EiM (e) = Mi \ {e} = ∅.

�

Corollary 3.7. Let D = (V (D), E(D), φD) be a directed graph. If EiM (e) = ∅ for all e ∈ E(D),
then ΓMP (D) = P(E(D)).

Proof : Suppose that EiM (e) = ∅ for all e ∈ E(D). Then by Theorem 3.6, {e} ∈ ΓMP (D) for
all e ∈ E(D). Now, if A ⊆ E(D), then A =

⋃
e∈A{e} ∈ ΓMP (D). Hence, ΓMP (D) is a discrete

generalized topology. �

4 Basic Properties of the Maximal Path Edge Generalized
Topology

This section presents the following properties that were generated for ΓMP (D) of a finite directed
graph D without loops.
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Theorem 4.1. Let D = (V (D), E(D), φD) be a directed graph. A subset O of E(D) is ΓMP -open
if and only if for each e ∈ O, there exists i ∈ {1, 2, ..., n} such that at least one of the following is
satisfied:

1. EiM (e) = ∅; or

2. EiM (e) 6= ∅ and EiM (e) ⊆ O.

Proof : Let D = (V (D), E(D), φD) be a directed graph. Suppose that O is ΓMP -open. By definition
of ΓMP (D), O =

⋃
i∈SMi for some S ⊆ {1, 2, ..., n}. Let e ∈ O. Then, there exists i ∈ {1, 2, ..., n}

such that e ∈Mi. If Mi = {e}, then EiM (e) = Mi \ {e} = ∅. Now, if Mi 6= {e}, then for each edge
g ∈Mi such that g 6= e, g ∈ O. But, g ∈ EiM (e) for all g ∈Mi; hence, EiM (e) 6= ∅ and EiM (e) ⊆ O
for some i ∈ {1, 2, ..., n}.

Conversely, let O ⊆ E(D) and suppose that for each e ∈ O, there exists i ∈ {1, 2, ..., n} such that
either EiM (e) = ∅ or EiM (e) 6= ∅ and EiM (e) ⊆ O. Then consider the following; Let A ⊆ O such
that for all e ∈ A, EiM (e) = ∅ for some i ∈ {1, 2, ..., n}. By Theorem 3.6, A is ΓMP -open. Let

B = {e ∈ O|EiM (e) 6= ∅ and EiM (e) ⊆ O}. Then for e
′
∈ EiM (e) ⊆ O, EiM (e

′
) = {e}∪EiM (e)\{e

′
}.

It follows that EiM (e′) ⊆ O. Hence, e
′
∈ B for all e

′
∈ EiM (e), and so, EiM (e) ⊆ B. Hence, for some

i ∈ {1, 2, ..., n}, Mi = {e} ∪ EiM (e) ⊆ B. It implies that B =
⋃
e∈Mi

Mi. Thus, B is ΓMP -open.
Therefore, O = A ∪B implies that O is a ΓMP -open. �

Corollary 4.2. A subset F of E(D) is ΓMP -closed if and only if for each e ∈ E(D)\F there exists
i ∈ {1, 2, ..., n} that satisfies the following:

1. EiM (e) = ∅; or

2. EiM (e) 6= ∅ and EiM (e) ⊆ O.

Proof : This is immediate from the fact that F is ΓMP -closed if and only if E(D) \ F is ΓMP -open
that was shown in Theorem 4.1. �

Theorem 4.3. Let D = (V (D), E(D), φD) be a directed graph and A ⊆ E(D). Then, intMP (A) =
{e ∈ A | EiM (e) = ∅ or EiM (e) 6= ∅ and EiM (e) ⊆ A for some i ∈ {1, 2, ..., n}}.

Proof : Let A ⊆ E(D) and A∗ = {e ∈ A | EiM (e) = ∅ or EiM (e) 6= ∅ and EiM (e) ⊆ A for some
i ∈ {1, 2, ..., n}}. Suppose e ∈ intMP (A). Then, there exists O ∈ ΓMP (D) such that e ∈ O ⊆ A.
By Theorem 4.1, there exists i ∈ {1, 2, ..., n} such that EiM (e) = ∅ or EiM (e) 6= ∅ and EiM (e) ⊆ A.
Thus, e ∈ A∗. Therefore, intMP (A) ⊆ A∗.
On the other hand, let e ∈ A∗. Then, e ∈ A and either EiM (e) = ∅ or EiM (e) 6= ∅ and EiM (e) ⊆ A,
for some i ∈ {1, 2, ..., n}. Thus, by Theorem 4.1, A∗ is ΓMP -open. Since A∗ ⊆ A, it follows that
A∗ ⊆ intMP (A). Therefore, intMP (A) = A∗. �

Theorem 4.4. Let D = (V (D), E(D), φD) be a directed graph and A ⊆ E(D). Then, clMP (A) =
A ∪ {e ∈ E(D)|EiM (e) ∩A 6= ∅ for all i ∈ {1, 2, ..., n}}.

Proof : Let A ⊆ E(D) and A
′

= {e ∈ E(D)|EiM (e) ∩ A 6= ∅ for all i ∈ {1, 2, ..., n}}. Suppose

e ∈ clMP (A). If e ∈ A, then e ∈ A∪A
′
. Now, suppose e /∈ A. By Proposition 2.7 (6), it follows that

e ∈ E(D) \ intMP (E(D) \ A). By Theorem 4.3, intMP (E(D) \ A) = {e ∈ E(D) \ A|EiM (e) = ∅ or
EiM (e) 6= ∅ and EiM (e) ⊆ E(D)\A for some i ∈ {1, 2, ..., n}}. So, for all i ∈ {1, 2, ..., n}, EiM (e) 6= ∅
and EiM (e) * E(D) \ A. Hence, there exists g 6= e such that g ∈ EiM (e) but g /∈ E(D) \ A which

implies g ∈ A. So, EiM (e) ∩ A 6= ∅ for all i ∈ {1, 2, ..., n}. Therefore, e ∈ A ∪ A
′

and so,

clMP (A) ⊆ A ∪A
′
.

Now, suppose e ∈ A ∪ A
′
. If e ∈ A, then by Proposition 2.7 (1), e ∈ clMP (A). On the other
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hand, if e ∈ A
′
, then EiM (e) ∩ A 6= ∅ for all i ∈ {1, 2, ..., n}. This implies that EiM (e) 6= ∅ and

EiM (e) * E(D) \ A for all i ∈ {1, 2, ..., n}. So, by Theorem 4.3, e /∈ intMP (E(D) \ A); hence,

e ∈ E(D) \ intMP (E(D) \A). By Proposition 2.7 (6), e ∈ clMP (A). Therefore, A ∪A
′
⊆ clMP (A).

Consequently, clMP (A) = A ∪A
′
. �

Theorem 4.5. Let D = (V (D), E(D), φD) be a directed graph and A ⊆ E(D). Then, extMP (A) =
{e ∈ E(D) \A | EiM (e) ∩A = ∅ for some i ∈ {1, 2, ..., n}}.

Proof : Let A ⊆ E(D) and A� = {e ∈ E(D) \A|EiM (e) ∩A = ∅ for some i ∈ {1, 2, ..., n}}. Suppose
e ∈ extMP (A). Then, e ∈ intMP (E(D) \ A), that is, e ∈ E(D) \ A such that EiM (e) = ∅ or
EiM (e) 6= ∅ and EiM (e) ⊆ E(D) \ A for some i ∈ {1, 2, ..., n} by Theorem 4.3. If EiM (e) = ∅,
then EiM (e) ∩ A = ∅ for some i ∈ {1, 2, ..., n}. Now, if EiM (e) 6= ∅ and EiM (e) ⊆ E(D) \ A, then
EiM (e) ∩A = ∅ for some i ∈ {1, 2, ..., n}. Hence, e ∈ A�, and so, extMP (A) ⊆ A�.

Now, suppose e ∈ A�. Then, e ∈ E(D) \ A such that EiM (e) ∩ A = ∅ for some i ∈ {1, 2, ..., n}.
If EiM (e) ∩ A = ∅, then either EiM (e) = ∅ or EiM (e) 6= ∅ and EiM (e) ⊆ E(D) \ A. Thus,
e ∈ intMP (E(D) \A) = extMP (A). Therefore, A� ⊆ extMP (A). Consequently, extMP (A) = A�. �

Theorem 4.6. Let D = (V (D), E(D), φD) be a directed graph and A ⊆ E(D). Then, frMP (A) =
(A \ intMP (A)) ∪ {e ∈ E(D) \A|EiM (e) ∩A 6= ∅ for all i ∈ {1, 2, ..., n}}.

Proof : Let A ⊆ E(D) and A
′′

= {e ∈ E(D) \ A|EiM (e) ∩ A 6= ∅ for all i ∈ {1, 2, ..., n}}. Suppose

e ∈ frMP (A). Then, e ∈ E(D) \ (intMP (A) ∪ extMP (A)). If e ∈ A, then e ∈ (A \ intMP (A)) ∪A
′′

.
Now, if e /∈ A, then e ∈ E(D) \A. Note that, e /∈ intMP (A), so EiM (e) 6= ∅ and EiM (e) * A for all
i ∈ {1, 2, ..., n}. Since e /∈ extMP (A), it follows that EiM (e) ∩ A 6= ∅ for all i ∈ {1, 2, ..., n}. Hence,

e ∈ E(D) \ A such that for all i ∈ {1, 2, ..., n}, EiM (e) ∩ A 6= ∅. Thus, e ∈ A
′′

which implies that

e ∈ (A \ intMP (A)) ∪A
′′

. Therefore, frMP (A) ⊆ (A \ intMP (A)) ∪A
′′

.

On the other hand, let e ∈ (A \ intMP (A)) ∪ A
′′

. If e ∈ A \ intMP (A), then By Proposition 2.7

(1), e ∈ clMP (A), and by Proposition 2.8 (2), e ∈ frMP (A). Now, if e ∈ A
′′

, then e ∈ E(D) \ A
such that EiM (e) ∩ A 6= ∅ for all i ∈ {1, 2, ..., n}. So, by Theorem 4.4, e ∈ clMP (A) which implies

that e /∈ intMP (E(D) \ A) = extMP (A) by Proposition 2.7 (6). Since e ∈ A
′′

implies e /∈ A,
which further implies that e /∈ intMP (A). Hence, e ∈ E(D) \ (extMP (A) ∪ intMP (A)) = frMP (A).

Therefore, (A \ intMP (A)) ∪A
′′
⊆ frMP (A). Consequently, (A \ intMP (A)) ∪A

′′
= frMP (A). �

Theorem 4.7. Let D = (V (D), E(D), φD) be a directed graph and B ⊆ E(D). Any e ∈ E(D) is a
ΓMP -cluster point of B if and only if for all i ∈ {1, 2, ..., n}, EiM (e) ∩B 6= ∅.

Proof : Let e ∈ E(D) and B ⊆ E(D) such that EiM (e) ∩ B 6= ∅ for all
i ∈ {1, 2, ..., n}. This is true if and only if there exists d 6= e such that d ∈ EiM (e) ∩ B for all
i ∈ {1, 2, ..., n}. Equivalently, d, e ∈ Mi for some i ∈ {1, 2, ...n}. So that for every U ∈ ΓMP (D)
where e ∈ U , d is also in U . Hence, d ∈ U ∩ {B \ {e}} 6= ∅ if and only if EiM (e) ∩ B 6= ∅ for all
i ∈ {1, 2, ..., n}. �

Remark 4.8. In view of Theorem 4.7, it is worthy to note of the following:

1. The set of all ΓMP -cluster points of B is called the ΓMP -derived set of B, denoted by dMP (B),
that is, dMP (B) = {e ∈ E(D)| EiM (e) ∩B 6= ∅ for all i ∈ {1, 2, ..., n}}.

2. Recall that in the proof of Theorem 4.4, clMP (A) = A∪A
′

where A
′

= {e ∈ E(D)|EiM (e)∩A 6= ∅
for all i ∈ {1, 2, ..., n}}. Then, we see that clMP (A) = A ∪ dMP (A).

Theorem 4.9. Let D = (V (D), E(D), φD) be a directed graph and A ⊆ E(D). If A consists of at
least one edge of every maximal path of D, then A is ΓMP -dense in E(D).
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Proof : Let D = (V (D), E(D), φD) be a directed graph and A ⊆ E(D). Suppose A consists of
at least one element of Mi for all i ∈ {1, 2, ..., n}. Let O ⊆ E(D) \ A. Then, either O = ∅ or
O 6=

⋃
i∈SMi for any S ⊆ {1, 2, ..., n}. So, E(D) \ A has no nonempty open subsets, that is,

intMP (E(D) \ A) = ∅. Hence, by Proposition 2.7 (6), clMP (A) = X \ intMP (E(D) \ A) = X.
Thus, A is ΓMP -dense in E(D). �

5 Connectedness

In this section, the topological notion of connectedness in the MPEΓ space with respect to a directed
graph D = (V (D), E(D), φD) is introduced.

Definition 5.1. [17] (Connectedness in Digraphs) Let D = (V (D), E(D)) be a digraph. D is
said to be strongly connected, or strong, if every two points are mutually reachable; it is unilaterally
connected, or unilateral, if for any two points at least one is reachable from the other; and it is
weakly connected, or weak, if every two points are joined by a semipath. A digraph is connected if it
is either strongly, unilaterally or weakly connected. A digraph is disconnected if it is not a weakly
connected digraph.

It is worthy to note that, every strongly connected digraph is a unilaterally connected digraph, and
every unilaterally connected digraph is a weakly connected digraph. Hence, a digraph is connected
if it is at least a weakly connected digraph.

Definition 5.2. [18] (Connectedness) A generalized topological space (X,µ) is µ-connected if it
is not the union X = O0 ∪O1 of two disjoint nonempty µ-open subsets O0 and O1 in µ. Otherwise,
(X,µ) is µ-disconnected.

Remark 5.3. Let D = (V (D), E(D), φD) be a directed graph and ΓMP (D) be the MPEΓ of
D. By Corollary 3.7, the MPEΓ space (E(D),ΓMP (D)) where EiM (e) = ∅ for all e ∈ E(D) is
ΓMP -disconnected since it is the discrete generalized topological space on E(D).

In the next result, consider a disconnected digraph D = (V (D), E(D), φD), that is, D has more
than one connected components.

Theorem 5.4. The MPEΓ space (E(D),ΓMP (D)) of every disconnected digraph is ΓMP -disconnected.

Proof : Let D = (V (D), E(D), φD) be a disconnected digraph. Suppose {Dj |j ∈ {1, 2, ..., k} is
the set of all connected components of D and {M1, ...,Mn} is the basis of ΓMP (D). Then for
every component Dj , we have E(Dj) =

⋃
i∈SMi where S ⊂ {1, 2, ..., n}. This implies that

E(Dj) ∈ ΓMP (D) for each j = 1, 2, ..., k. Since E(D)\E(Dj) is the union of the edge sets of the other
components of D, we see that E(D)\E(Dj) ∈ ΓMP (D). So, we have E(D) = E(Dj)∪E(D)\E(Dj).
Therefore, (E(D),ΓMP (D)) is ΓMP -disconnected. �

For the next theorem, a characterization for connectedness of the MPEΓ space (E(D),ΓMP (D)) of
any connected digraphs is introduced.

Theorem 5.5. Let D = (V (D), E(D), φD) be any connected digraph and ΓMP (D) be the MPEΓ of
D with basis {M1, ...,Mn}. Then, the MPEΓ space (E(D),ΓMP (D)) is ΓMP -connected if and only
if {1, 2, ..., n} has no partition {S1, S2} such that Mi ∩Mj = ∅ for all i ∈ S1 and j ∈ S2.

Proof : Suppose there exists a partition {S1, S2} of {1, 2, ..., n} such that Mi ∩Mj = ∅ for all i ∈ S1

and j ∈ S2. Then,
(⋃

i∈S1
Mi

)
∩
(⋃

j∈S2
Mj

)
= ∅; but,

(⋃
i∈S1

Mi

)
∪
(⋃

j∈S2
Mj

)
= E(D) and⋃

i∈S1
Mi,

⋃
j∈S2

Mj ∈ ΓMP (D). Hence, (E(D),ΓMP (D)) is ΓMP -disconnected.
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Conversely, suppose (E(D),ΓMP (D)) is ΓMP -disconnected. Then there exist O1 and O2 in ΓMP (D)
such that O1 ∩ O2 = ∅ and O1 ∪ O2 = E(D). This implies that, there exists a partition {S1, S2}
of {1, 2, ..., n} such that O1 =

⋃
i∈S1

Mi and O2 =
⋃
i∈S2

Mj . It follows that
(⋃

i∈S1
Mi

)
∩(⋃

j∈S2
Mj

)
= ∅. Thus, Mi ∩Mj = ∅ for all i ∈ S1 and j ∈ S2. �

Remark 5.6. In view of Theorem 5.5, the following are observed:

1. If for some i ∈ {1, 2, ..., n}, Mi ∩Mj = ∅ for all j 6= i, then the MPEΓ space (E(D),ΓMP (D))
is ΓMP -disconnected.

2. By (1), if
⋂n
i=1Mi = ∅, then the MPEΓ space (E(D),ΓMP (D)) is ΓMP -disconnected.

Corollary 5.7. Let D = (V (D), E(D), φD) be any connected digraph. If there exists an edge
e ∈ E(D) such that EiM (e) = ∅, then the MPEΓ space (E(D),ΓMP (D)) is ΓMP -disconnected.

Proof : Let D = (V (D), E(D), φD) be any connected digraph. Suppose there exists e ∈ E(D) such
that EiM (e) = ∅. It follows that, there exists i ∈ {1, 2, ..., n} such that Mi = {e}. Then, e /∈ Mj

for all j 6= i. So, Mi ∩Mj = ∅. Hence, by Remark 5.6 (1), the MPEΓ space (E(D),ΓMP (D)) is
ΓMP -disconnected. �

6 Concluding Remarks

In this paper, we have presented a synthesis between graph theory and topology. We introduced
a new approach in the construction of a generalized topology on the edge set of directed graphs
called the maximal path edge generalized topology (MPEΓ). The basic properties of this new space
were established. The construction of the MPEΓ on directed graphs gives many possible research
directions, one of which is to explore topological concepts such as continuity, homeomorphism,
compactness, and separation axioms.
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