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Abstract

This paper presents the comparison of implicit scheme and modified implicit scheme for solving
parabolic partial differential equations, the modified implicit scheme is compared with the
implicit scheme using its stability, local truncation error, derivation and numerical examples.
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scheme to the implicit scheme for solving problems on parabolic partial differential equations.
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1 Introduction

The simplest and well known heat conduction equation is the one dimensional parabolic partial
differential equation called the diffusion equation. It is first order in time and second order in
space. Most of the problems in Engineering, Physics, Fluid mechanics, Chemistry and other areas
of application rely heavily on this equation.

The solutions of these type of parabolic partial differential equations can be found using analytical
and numerical methods. Since all the partial differential differential equations can not be solve
analytically, therefore, numerical method is mostly employed. The process of obtaining an approximate
solutions which converge closely to the exact solution of a parabolic partial differential equation is
called numerical method. There are different types of numerical methods that can be used to get
the very good approximate results for parabolic equations but in this work, we shall restrict our
method to the finite difference methods (FDM).

Finite difference method is an approximation method for solving partial differential equations. It
is a numerical technique for solving differential equations by approximating derivatives with finite
differences. The process requires the discretization of both the time interval and spatial domain.
The process converts partial differential equations which may be non-linear into a system of linear
equations that can be solved by matrix algebra. The prominent and commonly used types of finite
difference methods are, explicit scheme, implicit scheme, Crank-Nicolson scheme. These schemes
perform better than each other, mostly in terms of stability, accuracy and convergence.

Different numerical experts and researchers in Mathematics and related fields have used the finite
difference methods a lot. [1] Compared the exact solution of parabolic equations with its numerical
solution using modified Crank-Nicolson scheme. [2] considered the practical methods for numerical
solution to partial differential equations of heat conduction type. [3] Investigated the stability of
Modified Crank-Nicolson scheme using Fourier method (von-Newmann method). They prove that
the scheme is consistent, convergent and stable. [4] compared Crank-Nicolson scheme with modified
Crank-Nicolson scheme. They show that the modified Crank-Nicolson scheme is efficient and good
for solving parabolic equations. [6] modified the simple explicit scheme and prove that it is much
more stable than the simple explicit case which enables using of larger time steps. [7] established
an improved θ method to improve the θ-iterated Crank-Nicolson scheme to second order accuracy.
[8] Modified the Crank-Nicolson scheme to a 3-level implicit finite difference scheme similar to the
Crank-Nicolson scheme, their method utilizes an extra grid point at the lower level and the result
is shown to be more accurate than the Crank-Nicolson scheme. There are lot of interesting and
comprehensive texts on finite difference method. They include [9,10,11,12,13 and 14]

In this work, focus is on the implicit scheme and it modification: in terms of local truncation error,
stability and also comparing the results of the schemes using numerical examples.

2 Problem Definition and Methodology

The following initial boundary value parabolic problem of the form

1
c2
∂f
∂t

= ∂2f
∂x2

f(x, 0) = f(x), 0 < x < 1

f(0, t) = f(l, t) = 0 ≤ t ≤ l

 (1)
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is considered. Equation (1) is typical of the heat equation with initial and boundary conditions. For
the derivation of the schemes, the finite difference approximations (2) is substituted into equation
(1), this is done for both the time derivative and the spatial derivatives.

2.1 Finite difference approximation

For the purpose of this work, the following finite difference approximation [14, 15] are required.
Where M means a forward difference operator, O(k) means error of order k, δx means central
difference operator in the x−direction, such that δ(δx) = δ2x.(

∂f
∂t

)
i,j

= 1
k
Mt fi,j =

fi,j−fi,j−1

k
+O(k)

(
∂f
∂t

)
i,j

= 1
k
Mt fi,j =

fi,j+1−fi,j
k

+O(k)(
∂2f
∂x2

)
i,j+1

= 1
h2 δ

2
xfi,j+1 =

fi+1,j+1−2fi,j+1+fi−1,j+1

h2 +O(h2)

∂2f
∂x2

= 1
h2 δ

2
xfi,j−1 =

fi+1,j−2fi,j+fi−1,j

h2 +O(h2)


(2)

2.2 Implicit scheme: The derivation

Substituting the time derivative ∂f
∂t

in equation (1) with the finite approximation 1
k
Mt fi,j and the

second derivative ∂2f
∂x2

with the finite approximation 1
h2 δ

2
xfi,j+1 gives the following finite difference

approximation
1

k
Mt fi,j =

c2

h2
δ2xfi,j+1

which is analogue to equation (1). Solving further gives

fi,j = −r (fi+1,j+1 + fi−1,j+1) + (1 + 2r)fi,j+1 (3)

Equation (3) is the implicit scheme, where r = kc2

h2
and it can be written in matrix form Af = a,

defined as follows: 

1 + 2r −r
−r 1 + 2r −r

−r 1 + 2r
. . .

. . .
. . . −r
−r 1 + 2r




f1,j+1

f2,j+1

f3,j+1

...
fn,j+1

 =


a1
a2
a3
...
an


in the matrix above a1 = f1,j , a2 = f2,j , ..., an = fn,j such that j = 0, 1, 2, ...

2.3 Modified implicit scheme: The derivation

The spatial and time derivatives in equation (1) is replaced with the following finite difference
approximations 1

h2 δ
2
xfi,j−1 and 1

k
Mt fi,j respectively, then the finite difference analogue to equation

(1) becomes
1

k
Mt fi,j =

c2

h2
δ2xfi,j−1

solving further gives
fi,j−1 = −r (fi+1,j + fi−1,j) + (1 + 2r)fi,j (4)
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Equation (4) is the modified implicit scheme. where r = c2k
h2

and it can be written in matrix form
Af = b, defined as follows:

1 + 2r −r
−r 1 + 2r −r

−r 1 + 2r
. . .

. . .
. . . −r
−r 1 + 2r




f1,j
f2,j
f3,j

...
fn,j

 =


f1,j−1

f2,j−1

f3,j−1

...
fn,j−1


where b = f1,j−1 ..., fn,j−1 where j = 1, 2, 3, ...

2.4 Local Truncation error

The local truncation error of the implicit scheme can be found [10], [11] and [12]. We derive below
the local truncation error of the modified Implicit scheme.

2.5 Modified Implicit scheme (Local truncation error)

Considering the parabolic partial differential equation (1) given as

∂f

∂t
=
∂2f

∂x2
,

and the finite difference approximation by

fi,j − fi,j−1

k
=
fi+1,j − 2fi,j + fi−1,j

h2
(5)

If the approximation (5) equals Fi,j(f) such that

Fi,j(f) =
fi,j − fi,j−1

k
− fi+1,j − 2fi,j + fi−1,j

h2

also, if Ti,j = fi,j(f̃) where fi,j(f̃) is the error, so we have

Ti,j = fi,j(f̃) =
f̃i,j − f̃i,j−1

k
− f̃i+1,j − 2f̃i,j + f̃i−1,j

h2
(6)

using Taylor’s expansion and substituting into equation (6) we have

1

k

[
f̃i,j −

(
f̃i,j − k

(
∂f̃

∂t

)
− 1

2
k2
(
∂2f̃

∂t2

)
− 1

6
k3
(
∂3f̃

∂t3

)
− 1

24
k4
(
∂4f̃

∂t4

)
− ...

)]

− 1

h2

[
f̃i,j +

(
f̃i,j + h

(
∂f̃

∂x

)
+

1

2
h2

(
∂2f̃

∂x2

)
+

1

6
h3

(
∂3f̃

∂x3

)
+

1

24
h4

(
∂4f̃

∂x4

)
+ ...

)]
1

h2

[
−2f̃i,j + f̃i,j − h

(
∂f̃

∂x

)
+

1

2
h2

(
∂2f̃

∂x2

)
− 1

6
h3

(
∂3f̃

∂x3

)
+

1

24
h4

(
∂4f̃

∂x4

)
− ...

]
by cancelation of opposite signs, we obtain

Ti,j =
∂f̃

∂t
− ∂2f̃

∂x2
+

1

2
k2
∂2f̃

∂t2
− 1

12
h2 ∂

4f̃

∂x4
+ ...
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since f̃ is the exact solution of ∂f
∂t

= ∂2f
∂x2

then ∂f̃
∂t
− ∂2f̃

∂x2
= 0 therefore the non-zero part of the local

truncation error is
1

2
k
∂2f̃

∂t2
− 1

12
h2 ∂

4f̃

∂x4
(7)

therefore,

Ti,j =

(
1

2
k
∂2f̃

∂t2
− 1

12
h2 ∂

4f̃

∂x4

)
+ ... (8)

such that φ1k− φ2h
2 ∈ O(k+ h2), where φ1 = 1

2
∂2f̃
∂t2

, and φ2 = 1
12
∂4f̃
∂x4

hence Ti,j ∈ O(k+ h2). This
shows that the local truncation error of the modified Implicit approximation is O(k+ h2), which is
also the order of the scheme.

Next, we investigate the stability of the schemes using different stability analysis methods:

2.6 Stability Analysis 1 (von Newmann Method)

The stability of the Implicit scheme using the von Newmann method can be seen in standard text
such as [11] and [12] and is verify as follows:
Considering the approximation

fi,j = −r(fi+1,j+1 + fi−1,j+1) + (1 + 2r)fi,j+1

Given the finite difference approximation solution in separable form as

ζi,j = ξγihξzβjk = ξγih+zβjk (9)

In equation (9) we let γ(β) = γ, let ξ = ςγh be the amplification factor, so that equation (9) becomes

ζi,j = ξiςzβjk (10)

substituting equation (10) into equation (3) gives

ξiςzβjk = −r(ξi+1ςzβ(j−1)k + ξi+1ςzβ(j+1)k) + (1 + 2r)ξi+1ςzβjk

ξiςzβjk = −rξiςzβjk(ξς−zβk + ξςzβk) + (1 + 2r)ξςzβjk

dividing both sides by ξiςzβjk we get

1 = −r(ξς−zβk + ξςzβk) + (1 + 2r)ξ

which can be written as
1 =

[
−r
(
ς−zβk + ςzβk

)
+ (1 + 2r)

]
ξ (11)

using the following trigonometric Identities

ς−zβk + ςzβk = 2 cosβk
and

2 sin2
(
βk
2

)
= 1− cosβk

 (12)

in equation (11) we get
[−r(2 cosβk) + (1 + 2r)]ξ = 1

which gives [
1 + 4r sin2

(
βk

2

)]
ξ = 1

and therefore

ξ =

[
1

1 + 4r sin2
(
βk
2

)]
showing that |ξ| ≤ 1 for all values of r and therefore the implicit approximation is unconditionally
stable.
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2.7 Stability of modified Implicit scheme by von Newmann

For the stability of modified Implicit scheme by von Newmann, see [5] but for the purpose of this
paper we have the following after substituting the trigonometric identities (12),

ξ−1 = (1 + 2r)− r(2 cosβk) = 1 + 2r(1− cosβk)

ξ−1 =

[
1 + 4r sin2

(
βk

2

)]
ξ =

1[
1 + 4r sin2

(
βk
2

)] (13)

from equation (13), it is apparent that |ξ| ≤ 1 for all values of r, and therefore, the modified implicit
scheme is unconditionally stable.

2.8 Stability Analysis II (Implicit scheme)

The stability of the implicit scheme is derived as follows:

fi,j = −r(fi+1,j+1 + fi−1,j+1) + (1 + 2r)fi,j+1

consider the case fi,j = ξj(−1)i substituting this into the equation above, we have

−rξj+1(−1)i−1 − rξj+1(−1)i+1 + (1 + 2r)ξj+1(−1)i = ξj(−1)i

ξ[−r(−1)− 1− r(−1) + 1 + (1 + 2r)] = 1

which implies

ξ =
1

1 + 4r
, 0 < r < 1 ∀ r > 0

This shows that the implicit scheme is unconditionally stable.

2.9 Stability Analysis II (modified Implicit scheme)

The modified implicit schemes, the stability is verified as shown below:

fi,j−1 = −r(fi+1,j + fi−1,j) + (1 + 2r)fi,j

the case fi,j = ξj(−1)i substituting this into the equation we have

−rξj(−1)i−1 − rξj(−1)i+1 + (1 + 2r)ξj(−1)i = ξj−1(−1)i

which gives
ξj [−r(−1)− 1− r(−1) + 1 + (1 + 2r)]ξj−1

from where we have
ξ[−r(−1)− 1 + (1 + 2r)− r(−1) + 1] = 1

which implies

ξ =
1

1 + 4r

0 < r < 1∀r > 0. Note the magnitude of all eigenvalues of [A] is < 1, such that |ξ| < 1, which
shows that the modified implicit scheme is unconditionally stable.
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3 Numerical Examples

For clarity and numerical comparison, the following parabolic partial differential equation is considered
for h = 0.1, r = 0.05.

Example 1:

∂f
∂t

= ∂2f
∂x2

, 0 ≤ x ≤ 1
with initial condition

f(x, 0) = sin(πx), 0 < x < 1
and boundary condition

f(0, t) = f(l, t) = 0 ≤ t ≤ l

 (14)

Solution
solution of problems (14) using equation both the Implicit and modified Implicit schemes gives
the following tri-diagonal matrix for 1 ≤ i ≤ 9 at j = 1, we get a tri-diagonal matrix which is
represented below;

1.1 −0.05
−0.05 1.1 −0.05

−0.05 1.1 −0.05
−0.05 1.1 −0.05

−0.05 1.1 −0.05
−0.05 1.1 −0.05

−0.05 1.1 −0.05
−0.05 1.1 −0.05

−0.05 1.1





f1,1
f2,1
f3,1
f4,1
f5,1
f6,1
f7,1
f8,1
f9,1


=



0.3090
0.5878
0.8090
0.9511
1.0000
0.9511
0.8090
0.5878
0.3090


Table 1 present the results of example 1 above using the Implicit scheme with computation at
1 ≤ i ≤ 9, and 0 ≤ j ≤ 8

Table 1. Table of results at k = 0.0005, r = 0.05 and h = 0.1

t x j f1, j f2, j f3, j f4, j f5, j f6, j f7, j f8, j f9, j

0.0005 0.1 0 0.3075 0.3060 0.3045 0.3030 0.3015 0.3000 0.2986 0.2972 0.2958
0.001 0.2 1 0.5895 0.5821 0.5793 0.5765 0.5737 0.5709 0.5681 0.5653 0.5625
0.0015 0.3 2 0.8051 0.8012 0.7973 0.7934 0.7895 0.7857 0.7819 0.7781 0.7743
0.002 0.4 3 0.9465 0.9419 0.9373 0.9327 0.9282 0.9237 0.9192 0.9147 0.9102
0.0025 0.5 4 0.9951 0.9903 0.9855 0.9807 0.9759 0.9712 0.9665 0.9618 0.9571
0.003 0.6 5 0.9465 0.9419 0.9373 0.9327 0.9282 0.9237 0.9192 0.9147 0.9102
0.0035 0.7 6 0.8051 0.8012 0.7973 0.7934 0.7895 0.7857 0.7819 0.7781 0.7743
0.004 0.8 7 0.5849 0.5821 0.5793 0.5765 0.5737 0.5709 0.5681 0.5653 0.5625
0.0045 0.9 8 0.3075 0.3060 0.3045 0.3030 0.3015 0.3000 0.2986 0.2972 0.2958

Table 2 presents the result of example 1 above using the modified Implicit scheme, with computation
at 1 ≤ i ≤ 9, and 1 ≤ j ≤ 9

Example 2.
Compare the solution of the following parabolic partial differential equation using Implicit and
modified Implicit scheme for h = 1.

1
4
∂f
∂t

= ∂2f
∂x2

,
with initial condition

f(x, 0) =
(

8x−x2
2

)
,

and boundary condition
f(0, t) = f(8, t) = 0


(15)

7
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Table 2. Table of results at k = 0.0005, r = 0.05 and h = 0.1

t x j f1, j f2, j f3, j f4, j f5, j f6, j f7, j f8, j f9, j

0.0005 0.1 1 0.3075 0.3060 0.3045 0.3030 0.3015 0.3000 0.2986 0.2972 0.2958
0.001 0.2 2 0.5895 0.5821 0.5793 0.5765 0.5737 0.5709 0.5681 0.5653 0.5625
0.0015 0.3 3 0.8051 0.8012 0.7973 0.7934 0.7895 0.7857 0.7819 0.7781 0.7743
0.002 0.4 4 0.9465 0.9419 0.9373 0.9327 0.9282 0.9237 0.9192 0.9147 0.9102
0.0025 0.5 5 0.9951 0.9903 0.9855 0.9807 0.9759 0.9712 0.9665 0.9618 0.9571
0.003 0.6 6 0.9465 0.9419 0.9373 0.9327 0.9282 0.9237 0.9192 0.9147 0.9102
0.0035 0.7 7 0.8051 0.8012 0.7973 0.7934 0.7895 0.7857 0.7819 0.7781 0.7743
0.004 0.8 8 0.5849 0.5821 0.5793 0.5765 0.5737 0.5709 0.5681 0.5653 0.5625
0.0045 0.9 9 0.3075 0.3060 0.3045 0.3030 0.3015 0.3000 0.2986 0.2972 0.2958

Solution:

in example 2 above, we have that t = 1
8
, c2 = 4 such that r = 0.5 solving the parabolic partial

differential equation above results into the following tri-diagonal matrix:

2 −0.5
−0.5 2 −0.5

−0.5 2 −0.5
−0.5 2 −0.5

−0.5 2 −0.5
−0.5 2 −0.5

−0.5 2





f1,1
f2,1
f3,1
f4,1
f5,1
f6,1
f7,1


=



3.5000
6.0000
7.5000
8.0000
7.5000
6.0000
3.5000


Table 3 shows the result of the Implicit scheme for example 2, which is compute at 1 ≤ i ≤ 7, and
0 ≤ j ≤ 6.

Table 3. Table of results at k = 0.125, r = 0.5 and h = 1

t x j f1, j f2, j f3, j f4, j f5, j f6, j f7, j
0.125 1 0 3.1340 5.5361 7.0103 7.5052 7.0103 5.5361 3.1340

0.25 2 1 2.8456 5.1143 6.5393 7.0222 6.5393 5.1143 2.8456

0.375 3 2 2.6057 4.7315 6.0918 6.5570 6.0918 4.7315 2.6057

0.5 4 3 2.3986 4.3829 5.6700 6.1135 5.6700 4.3829 2.3986

0.625 5 4 2.2153 4.0639 5.2745 5.6940 5.2745 4.0639 2.2153

0.75 6 5 2.0503 3.7707 4.9048 5.2994 4.9048 3.7707 2.0503

0.875 7 6 1.9002 3.5004 4.5599 4.9297 4.5599 3.5004 1.9002

Table 4 present the result of the modified Implicit scheme for example 2, with computation at
1 ≤ i ≤ 7, and 1 ≤ j ≤ 7

Table 4. Table of results at k = 0.125, r = 0.5 and h = 1

t x j f1, j f2, j f3, j f4, j f5, j f6, j f7, j
0.125 1 1 3.1340 5.5361 7.0103 7.5052 7.0103 5.5361 3.1340

0.25 2 2 2.8456 5.1143 6.5393 7.0222 6.5393 5.1143 2.8456

0.375 3 3 2.6057 4.7315 6.0918 6.5570 6.0918 4.7315 2.6057

0.5 4 4 2.3986 4.3829 5.6700 6.1135 5.6700 4.3829 2.3986

0.625 5 5 2.2153 4.0639 5.2745 5.6940 5.2745 4.0639 2.2153

0.75 6 6 2.0503 3.7707 4.9048 5.2994 4.9048 3.7707 2.0503

0.875 7 7 1.9002 3.5004 4.5599 4.9297 4.5599 3.5004 1.9002
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4 Discussion

From the comparison above, it can be deduced that the modified Implicit scheme is good and
efficient for solving parabolic partial differential equations. The results of the local truncation error
shows that the modified implicit scheme has the same order 0(k + h2) as the implicit scheme, and
the stability proofs confirm that the amplification factor |ξ| ≤ 1 for all values of r, which shows that
the modified implicit scheme is unconditionally stable. Also, from the numerical computations, it
is observed that the computation for the next step for the implicit scheme starts from j = 0 while
that of the modified Implicit scheme starts from j = 1 but produces the same results at the different
stages, also, the step j = 1 for the implicit scheme produces same results for the step j = 2 for the
modified implicit scheme and same as other steps, see Tables 1 - 4.

5 Conclusion

From the above results, it is clear that the modified implicit scheme is fast and effective for solving
parabolic equations (heat equations) since, it also require solving a tri-diagonal matrix at every
level. We therefore conclude that the modified implicit scheme can be use as alternative scheme to
the implicit scheme for solving the heat equations.
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