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Abstract

In this paper, we consider a new risk model of claim amount affected by a threshold value. The
comparision between the claim interval and the threshold will affect the distribution of claims.
The hypothesis of the model is presented and then we derive the roots of the Lundberg equation,
and the expected discounted penalty function and its Laplace Transform. Besides, the Gerber-
Shiu penalty function and some other functions are given when the initial surplus is zero and
when they satifie some defective renewal equations. Some explicit expressions about the ruin
probability are obtained too.

Keywords: Threshold value; Gerber-Shiu penalty function; Lundberg equation; ruin probability.

1 Introduction

In this area, the classial risk model and the renewal risk model have been extensively studied. And
they both assumed that the interarrival times and the claim amounts are independent. However,
this assumptions is inappropriate in the real world. To solve this problem, some papers started to
study the dependent risk models. For example, [1], [2], [3]. M. Boudreault et al. [4] studied the
dependence structure among the interclaim time and the claim size. Several renewal risk models
with different interclaim times have been studied by many authors, see Cheng D, Yu C. [5] and
Li J.[6] H.Cossette et al.[7] and Stathis et al. [8] considered an extension to the renewal process
with dependence structure through a copula function. Zhang and Liu [9] considered a discrete-time
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dependent risk model with impulsive dividend payments. And some other distributions are also
applied to the risk model, see Guan and Hu [10] and Xu and Wang [11].

Here, we talk about other case in which the distribution of every claim size is controlled by a
threshold value.

The paper is organsized as follows. We introduce the new risk model and give some basic assumptions
in section 2. And in section 3, we analyse the generalised Lundberg equation and the number of
roots . The Laplace Transform (LT) of the Gerber-Shiu expected discount penalty function is given
in section 4. And then we analyse the Gerber-Shiu penalty function when u=0 in Section 5. In
section 6, the defective renewal functions are given to sovle the expressions for the Gerber-Shiu
penalty function. In the last section 7, explicit expressions and numerical examples are given.

2 The New Model

In this section, the new surplus process {U(t), t ≥ 0} defined as follows:

U(t) = u+ qt−
N(t)∑
i=1

Xi,

where u = U(0) ≥ 0 is the initial surplus and q(q > 0) is the premium rate. The claim number
process {N(t), t ≥ 0} is a homogeneous Possion process. {Wi}∞i=1 is a sequence of independent
and identically distributed(i.i.d.) interclaim times and the claim arrival times is Tj , j ∈ N+ which
Tj = W1 + . . . +Wj , and the random variable (r.v.) Wi has an exponentially distribution with
expectation 1/k, k > 0. The p.d.f. gives:

KW (t) = ke−kt.t ≥ 0

The random variable(r.v.) Xi represents the size of the ith claim. We assume thatMi, i = 1, 2, . . . a
sequence of i.i.d. non-negative random variables distributed as M with Erlang(2) distribution with
expectation 2/l, l > 0 with p.d.f. given by:

x(t) = l2te−lt, t ≥ 0.

Then the claim sizes are determined as follows: If Ti is smaller than Mi, then the claim size Xi has
density function f1(x), otherwise its density function is f2(x). HereMi, i = 1, 2, . . . are independent
of Ti and Xi. From above notations, we get that:

P (M ≤ T ) = 1− e−lt − 1

l
x(t)

P (M > T ) = e−lt +
1

l
x(t)

We ask ρ = inft≥0{t, Ut < 0} to be the ruin time which ρ = ∞ if Xt ≥ 0. The deficit at ruin
is denoted by |Uρ| and Uρ− is the surplus just prior to ruin. The Gerber-Shiu discounted penalty
function mθ(u) is defined as

mθ(u) = E[e−θρw(Uρ−, |Uρ|)1ρ<∞|U0 = u],

where θ > 0, w : R+ × R+ → R+ is the penalty function. And also mθ(u) a defective renewal
equation in section 6. Especially, the infinite-time ruin probability is ψ(u) = Pr(ρ <∞). To ensure
the ruin does not occur, the premium rate c needs to satisfy

E[qWj −Xj ] > 0, j = 1, 2, . . . (1)

which providing a positive safety loading.
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3 The Lundberg Equation

We will derive a Lundberg’s generalised equation in this section. We consider the discrete-time
process embedded in the continuous-time surplus process {U(t); t ≥ 0}. Firstly, we define the
discrete-time process by

Uk = u+

k∑
i=1

(qWi −Xi), k = 1, 2, . . .

to be the surplus immediately after the kth claim, where U0 = u. In this new risk model, the

process {e−θ
∑k

i=1 Wi+sUk , k = 0, 1, 2, . . . } for s > 0 is a martingale if and only if

E[e−θW es(qW−X)] = E[e(qs−θ)W e−sX ] = 1, (2)

which is called the generalised Lundberg equation. From the definition in scetion 2, the left side of
Equation (2) is

E[e−θW es(qW−X)] =

∫ ∞

0

∫ ∞

0

e−(θ−qs)tK(t)P (M > T )f1(x)e
−sxdxdt

+

∫ ∞

0

∫ ∞

0

e−(θ−qs)tK(t)P (M ≤ T )f2(x)e
−sxdxdt

=

∫ ∞

0

∫ ∞

0

e−(θ−qs)tke−kt

[
e−lt +

1

l
l2te−lt

]
f1(x)e

−sxdxdt

+

∫ ∞

0

∫ ∞

0

e−(θ−qs)tke−kt

[
1− e−lt − 1

l
l2te−lt

]
f2(x)e

−sxdxdt

=
k

q

[
(k + l + θ − qs+ l)f̂1(s)

q( k+l+θ
q

− s)2
+

l2f̂2(s)

q2( k+l+θ
q

− s)2( k+θ
q

− s)

]
. (3)

Then, from (2) we have

k

q

(
k+θ
q

− s
) [

1
l
(k + l + θ − qs) + 1

]
f̂1(s) +

l
q
f̂2(s)

q
l

(
k+θ
q

− s
)(

k+l+θ
q

− s
)2 = 1. (4)

We will use Rouche’s theorem in the following proposition.

PROPOSITION 1. For θ > 0, the equation (4) has exactly 3 roots, say β1(θ), β2(θ), β3(θ), with
Re(βi(θ)) > 0, i = 1, 2, 3.

Proof. Rewrite the equation (4) as

k(k + θ − qs)(k + 2l + θ − qs)f̂1(s) + kl2f̂2(s)

= (k + θ − qs)(k + l + θ − qs)2, (5)

it can be seen from the right side of above equation, it has exactly 3 roots with positive real parts.
We denote Dr = {s ∈ D : |s| = r,Re(s) ≥ 0, r > 0} is the contour, which containing the imaginary
axis running from -ir to ir and a semicircle with radius r running clockwise from -ir to ir.
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(1) For Re(s) > 0, since |k + l − qs| → ∞, |θ + k + l − qs| → ∞ as r → ∞, then∣∣∣∣ [ k

(k + l + θ − qs)
+

kl

(k + l + θ − qs)2

]
f̂1(s)

+

[
k

(k + θ − qs)
− k

(k + l + θ − qs)
− kl

(k + l + θ − qs)2

]
f̂2(s)

∣∣∣∣
≤
∣∣∣∣ k

(k + l + θ − qs)
+

kl

(k + l + θ − qs)2

∣∣∣∣ |f̂1(s)|
+

∣∣∣∣ k

(k + θ − qs)
− k

(k + l + θ − qs)
− kl

(k + l + θ − qs)2

∣∣∣∣ |f̂2(s)| → 0

on C. For r → ∞, we have∣∣∣∣ [ k

(k + l + θ − qs)
+

kl

(k + l + θ − qs)2

]
f̂1(s)

+

[
k

(k + θ − qs)
− k

(k + l + θ − qs)
− kl

(k + l + θ − qs)2

]
f̂2(s)

∣∣∣∣ < 1. (6)

on C.

(2) For Re(s) = 0, we give the similar discussion to Cossette et al. [12], let

d̂θ(s) =
k

k + θ − qs
− k

k + l + θ − qs
− kl

(k + l + θ − qs)2

then we have

|d̂θ(s)| =
∣∣∣∣ k

k + θ − qs
− k

k + l + θ − qs
− kl

(k + l + θ − qs)2

∣∣∣∣
= k

∣∣∣∣ l2

(k + θ − qs)(k + l + θ − qs)2

∣∣∣∣
≤ k

∣∣∣∣ l2

(k + θ)(k + l + θ)

∣∣∣∣ = |d̂θ(0)|

and ∣∣∣∣ [ k

(k + l + θ − qs)
+

kl

(k + l + θ − qs)2

]
f̂1(s)

+

[
k

(k + θ − qs)
− k

(k + l + θ − qs)
− kl

(k + l + θ − qs)2

]
f̂2(s)

∣∣∣∣
=

∣∣∣∣( k

k + l + θ − qs
+

kl

(k + l + θ − qs)2

)
f̂1(s) + f̂2(s)d̂θ(s)

∣∣∣∣
≤
∣∣∣∣ k

k + l + θ − qs

∣∣∣∣+ ∣∣∣∣ kl

(k + l + θ − qs)2

∣∣∣∣+ |d̂θ(s)|

≤
∣∣∣∣ k

k + l + θ

∣∣∣∣+ ∣∣∣∣ kl

(k + l + θ)2

∣∣∣∣+ |d̂θ(0)|. (7)

For θ > 0, it has d̂θ(0) > 0. Indeed,

d̂θ(0) =
k

k + θ
− k

k + l + θ
− kl

(k + l + θ)2
=

kl2

(k + l + θ)2(k + l)
> 0.
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Therefore, for s on the imaginary axis and for θ > 0, Equation (7) becomes∣∣∣∣ [ k

(k + l + θ − qs)
+

kl

(k + l + θ − qs)2

]
f̂1(s)

+

[
k

(k + θ − qs)
− k

(k + l + θ − qs)
− kl

(k + l + θ − qs)2

]
f̂2(s)

∣∣∣∣
≤
∣∣∣∣ k

k + l + θ

∣∣∣∣+ ∣∣∣∣ kl

(k + l + θ)2

∣∣∣∣+ |d̂θ(0)|

≤ (k + l + θ)2 − θ2 − 2lθ − kθ

(k + l + θ)2
< 1.

Above all, we proved

|k(k + θ − qs)(k + 2l + θ − qs)f̂1(s) + kl2f̂2(s)|

< |(k + θ − qs)(k + l + θ − qs)2|

in two case. Then by Rouche’s theorem, it derives that Equation(5) and the equation (k + θ −
qs)(k + l + θ − qs)2 inside Cr have the same number of roots. That is, Equation (4) has exactly 3
roots.

For simiplicity, we rewrite βj as βj(θ), j = 1, 2, 3. in following part.

REMARK. Since

∣∣∣∣ [ k

(k + l + θ − qs)
+

kl

(k + l + θ − qs)2

]
f̂1(s)

+

[
k

(k + θ − qs)
− k

(k + l + θ − qs)
− kl

(k + l + θ − qs)2

]
f̂2(s)

∣∣∣∣
=

∣∣∣∣ k

k + l
+

kl

(k + l)2
+

[
1− k

k + l
− kl

k + l

]∣∣∣∣ = 1

for s = 0 and θ = 0, the conditions to Rouche’s theorem are no longer true. But the case is
important to evaluate ruin probablity. So we apply the Klimenok [13] to derive the number of roots
to the generalized Lundberg’s equation with θ = 0.

PROPOSITION 2. For θ = 0, Lundberg’s generalised Equation(4) has exaclty 2 roots, say β1(0),
β2(0), with Re(βi) > 0 and one root equals zero.

Proof. Define Dk = s : |w| = 1 and let w = 1 − s
r
. In terms of s, the contour Dk is a circle with

origin at r and radius r. Using the same arguments as Proposition 1, Equation(7) also holds on D
(excluding s=0 or equivalently w=1) for θ = 0. Besides, the functions k(k + θ − qs)(k + 2l + θ −
qs)f̂1(s) + kl2f̂2(s) and (k + θ − qs)(k + l + θ − qs)2 are continuous on D. We need prove that

d

dw

{
1−

[
k

(k + l + θ − qr(1− w))
+

kl

(k + l + θ − qr(1− w))2

]
f̂1(r − rw)

−
[

k

(k + θ − qr(1− w))
− k

(k + l + θ − qr(1− w))

− kl

(k + l + θ − qr(1− w))2

]
f̂2(r − rw)

}∣∣∣∣
w=1

> 0.
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The left side of this relation equals

d

dw

{
1− E

[
e(r−rw)(qW−X)

]} ∣∣∣∣
w=1

= rE [qW −X]

where E [qW −X] > 0 given the solvability condition in equation (1).

Based on theorem 1 of Klimenok (2001), we conclude the number of roots of Equation (5) is equal
to 2 inside D. Moreover, a trival root to equation (4) equals zero.

4 The Laplace Transform of mθ(u)

Here we want to derive the Laplace Transform of mθ(u). For u ≥ 0 and setting y = u+ qt, we have

mθ(u) = E[e−θρw(Uρ−, |Uρ|)1ρ<∞|U0 = u]

=
k

q

∫ ∞

u

e
−(θ+k+l)( y−u

q
)
(ζ1(y)− ζ2(y))dy

+
k

q

1

l

∫ ∞

u

e
−(θ+k)( y−u

q
)
f

(
y − u

q

)
(ζ1(y)− ζ2(y))dy

+
k

q

∫ ∞

u

e
−(θ+k)( y−u

q
)
ζ2(y)dy,

where

ζ1,θ(u) =

∫ u

0

mθ(u− x)f1(x)dx+ σ1(u), σ1(u) =

∫ ∞

u

f1(x)dx,

ζ2,θ(u) =

∫ u

0

mθ(u− x)f2(x)dx+ σ2(u), σ2(u) =

∫ ∞

u

f2(x)dx.

Then we obtain

q

k
m̂θ(s) =

∫ ∞

0

e−su q

k
mθ(u)du

=

∫ ∞

0

e
− k+l+θ

q
y
(ζ1(y)− ζ2(y))

∫ y

0

e
−
(
s− k+l+θ

q
u
)
dudy

+
l

q

∫ ∞

0

e
− k+l+θ

q
y
(ζ1(y)− ζ2(y))

∫ y

0

e
−
(
s− k+l+θ

q
u
)
(y − u)dudy

+

∫ ∞

0

e
− k+θ

q
y
ζ2(y)

∫ y

0

e
−
(
s− k+θ

q
u
)
dudy. (8)

It can be easily proved that for a > 0∫ y

0

e−audu = −e
−ay

a∫ y

0

(y − u)e−audu =
y

a
− 1

a2
+
e−ay

a2
(9)

Therefore, using Equation (9), Equation (8) can be written as

q

k
m̂θ(s) =

1

( k+l+θ
q

− s)

(
ζ̂1(s)− ζ̂2(s)

)
+

1(
k+θ
q

− s
) ζ̂2(s)

+
l

q

1(
s− k+l+θ

q

)2 (ζ̂1(s)− ζ̂2(s)
)
+ Êθ(s). (10)

6
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where

ζ̂i,θ(s) =

∫ ∞

0

e−suζi,θ(u)du i = 1, 2.

and

Êθ(s) =

∫ ∞

0

ye
−(θ+k+l) y

q (ζ1(y)− ζ2(y))
1(

s− k+θ+l
q

)dy
−
∫ ∞

0

e
−(θ+k+l) y

q (ζ1(y)− ζ2(y))
1

(s− θ+k+l
q

)2
dy.

Let σ̂i(s) =
∫∞
0
e−suσi(u)du, i = 1, 2, Equation (10) becomes

m̂θ(s)

 q
k
− f̂1(s)− f̂2(s)(

k+l+θ
q

− s
) − f̂2(s)(

k+θ
q

− s
) − f̂1(s)− f̂2(s)

q
l

(
k+l+θ

q
− s
)2


=
σ̂1(s)− σ̂2(s)(

k+l+θ
q

− s
) +

σ̂2(s)(
k+θ
q

− s
) +

σ̂1(s)− σ̂2(s)

q
l

(
k+l+θ

qc
− s
)2 + Êθ(s). (11)

Now using Equation (11), we have the following theorem about m̂θ(s).

THEOREM 1. In this new risk process, the expression for m̂θ(s) is

m̂θ(s) =
l̂1,θ(s) + l̂2,θ(s)

p̂1,θ(s)− p̂2,θ(s)
, (12)

where

p̂1,θ(s) =
q

k

q

l

(
θ + k + l

q
− s

)2 (
θ + k

q
− s

)
, (13)

p̂2,θ(s) =

(
θ + k

q
− s

)[
q

l

(
θ + k + l

q
− s

)
+ 1

]
f̂1(s) +

l

q
f̂2(s), (14)

l̂1,θ(s) =

(
θ + k

q
− s

)[
q

l

(
θ + k + l

q
− s

)
+ 1

]
σ̂1(s) +

l

q
σ̂2(s), (15)

l̂2,θ(s) = −
3∑

j=1

l̂1,θ(βj)
3∏

k=1,k ̸=j

s− βk
βj − βk

.

Proof. Multiplying Equation (11) by q
l

(
θ+k+l

q
− s
)2 (

θ+k
q

− s
)
and solving the resulting equation,

then we get the equation (12), with

l̂2,θ(s) =

(
k + θ

q
− s

)(
s− k + θ + l

q

)2

Êθ(s)

=

(
k + θ

q
− s

)(
s− k + θ + l

q

)2 [ ∫ ∞

0

ye
−(θ+k+l) y

q (ζ1(y)− ζ2(y))
1(

s− k+θ+l
q

)dy
−
∫ ∞

0

e
−(θ+k+l) y

q (ζ1(y)− ζ2(y))
1

(s− θ+k+l
q

)2
dy

]
=

(
k + θ

q
− s

)(
k + θ + l

q
− s

)
µ̂1

(
k + l + θ

q

)
+

(
k + θ

q
− s

)
µ̂0

(
k + l + θ

q

)
,

7



Li and Bao; AJPAS, 19(2): 1-17, 2022; Article no.AJPAS.90108

where

µ̂j

(
θ + k + l

q

)
=

∫ ∞

0

e−(θ+k+l)y/q(ζ1(y)− ζ2(y))y
jdy (j = 0, 1).

The equation (4) can be written as p̂1,θ(s) − p̂2,θ(s) = 0, meaning that β′
is, i = 1, . . . , 3 are the

roots of the fraction’s denominator in Equation (12). In the previous discussion, we let m̂θ(s) be
analyzed at Re(s) ≥ 0. That is, β′

is, i = 1, . . . , 3 are also roots of the Equation (12), and then
l̂2,θ(βi) = −l̂1,θ(βi), i = 1, . . . , 3.

By using Lagrange interpolation formula at 3 roots β1, β2, β3, we have

l̂2,θ(s) =

3∑
j=1

l̂2,θ(βj)

3∏
k=1,k ̸=j

s− βk
βj − βk

= −
3∑

j=1

l̂1,θ(βj)

3∏
k=1,k ̸=j

s− βk
βj − βk

,

and then the proof is end.

5 Analysis of the Function when u=0

In this part, we look at the mθ(0), mρ(0) and ψ(0) when u=0.

THEOREM 2. When u=0, the expression for mθ(0) is

mθ(0) =

3∑
j=1

l̂1,θ(βj)∏3
k=1,k ̸=j(βk − βj)

.

Proof. We assume that the roots of Lundberg’s equation β1, β2, β3 are all distinct. According to
the initial value theorem, we easily get

mθ(0) = lim
s→∞

sm̂(s) = lim
s→∞

s
l̂1,θ(s) + l̂2,θ(s)

ĥ1,θ(s)− ĥ2,θ(s)

= lim
s→∞

s
l̂1,θ(s)−

∑3
j=1 l̂1,θ(βj)

∏3
k=1,k ̸=j

s−βk
βj−βk

ĥ1,θ(s)− ĥ2,θ(s)

= lim
s→∞

l̂1(s)

s3
− 1

s3

∑3
j=1 l̂1,θ(βj)

∏3
k=1,k ̸=j

s−βk
βj−βk

ĥ1(s)

s4
− ĥ2(s)

s4

= lim
s→∞

− 1
s2

∑3
j=1 l̂1,θ(βj)

∏3
k=1,k ̸=j

s−βk
βj−βk

(−1)3

=
3∑

j=1

l̂1,θ(βj)∏3
k=1,k ̸=j(βk − βj)

. (16)

THEOREM 3. When u=0, the expression of the Laplace Transform of the time ruin mρ(0) is:

mρ(0) = 1− (θ + k + l)2θ

qkl
∏3

i=1 βi
.

Proof. Let

d1,θ(s) =

(
k + θ

q
− s

)[
q

l

(
k + l + θ

q
− s

)
+ 1

]
, (17)

d2,θ(s) =
l

q
. (18)

8
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And from Equation (15) we obtain

l̂1,θ(s) = d1,θ(s)σ̂1(s) + d2,θ(s)σ̂2(s). (19)

then mθ(0) becomes

mθ(0) =

3∑
j=1

d1,θ(βj)σ̂1(βj) + d2,θ(βj)σ̂2(βj)∏3
k=1,k ̸=j (βk − βj)

=

2∑
i=1

3∑
j=1

di,j σ̂i(βj), (20)

which

di,j =
di,θ(βj)∏3

k=1,k ̸=j (βk − βj)
. i = 1, 2 j = 1, 2, 3 (21)

Since

σ̂i(s) =

∫ ∞

0

e−sxσi(x)dx =

∫ ∞

0

∫ ∞

0

e−sxw(x, y)fi(x+ y)dydx,

then we get that

mθ(0) =

∫ ∞

0

∫ ∞

0

w(x, y)

[
f1(x+ y)

3∑
j=1

d1,je
−βjx + f2(x+ y)

3∑
j=1

d2,je
−βjx

]
dydx. (22)

Define h(x, y, t|0) be the joint defective density of the time of ruin (t), the surplus prior to ruin (x),
and the deficit at ruin (y) where U(0)=0, and hθ(x, y|0) be the discounted (nondiscounted if θ → 0)
p.f.d. of the surplus just before ruin and ruin deficit. The relationship between the two is

hθ(x, y|0) =
∫ ∞

0

e−θth(x, y, t|0)dt.

For u=0, and according to Willmot et al. [14], it obtains

mθ(0) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

w(x, y)e−θth(x, y, t|0)dtdydx =

∫ ∞

0

∫ ∞

0

w(x, y)hθ(x, y|0)dydx,

which combined with Equation (22) yields

hθ(x, y|0) = f1(x+ y)
3∑

j=1

d1,je
−βjx + f2(x+ y)

3∑
j=1

d2,je
−βjx. (23)

We also let h1,θ(x|0) =
∫∞
0
fθ(x, y|0)dy as well as h2,θ(y|0) =

∫∞
0
fθ(x, y|0)dx. Since∫ ∞

0

fi(x+ y)dy = F̄i(x), i = 1, 2

Then from Equation (23) we obtain

h1,θ(x|0) =
∫ ∞

0

hθ(x, y|0)dy = F̄1(x)

3∑
j=1

d1,je
−βjx + F̄2(x)

3∑
j=1

d2,je
−βjx,

and according to Li and Garrido [15], we have

h2,θ(y|0) =
∫ ∞

0

hθ(x, y|0)dx

=

∫ ∞

0

(
f1(x+ y)

3∑
j=1

d1,je
−βjx + f2(x+ y)

3∑
j=1

d2,je
−βjx

)
dx

=

3∑
j=1

d1,jTβjf1(y) +

3∑
j=1

d2,jTβjf2(y). (24)

9
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The Laplace transform of h2,θ(y|0) is that

ĥ2,θ(s) =

∫ ∞

0

e−syh2,θ(y|0)dy = Tsh2,θ(0|0)

=
3∑

j=1

d1,jTsTβjf1(0) +
3∑

j=1

d2,jTsTβjf2(0)

=

3∑
j=1

d1,θ f̂1(βj) + d2,j f̂2(βj)

s− βj
− f̂1(s)

3∑
j=1

d1,j
s− βj

− f̂2(s)

3∑
j=1

d2,j
s− βj

. (25)

Using Equation (22), (17) and (18), it gets that ô2,θ(s) = d1,θ(s)f̂1(s) + d2,θ(s)f̂2(s), then for
j = 1, . . . , 3, we have

d1,j f̂1(βj) + d2,j f̂2(βj) =
d1,θ(βj)f̂1(βj) + d2,θ(βj)f̂2(βj)∏3

k=1,k ̸=j(βk − βj)
=

p̂2,θ(βj)∏3
k=1,k ̸=j(βk − βj)

=
p̂1,θ(βj)∏3

k=1,k ̸=j(βk − βj)
.

Then using Equation (22) and (25), we have

ĥ2,θ(s) =
3∑

j=1

(θ + k + l − qβj)
2(θ + k − qβj)

qkl(s− βj)
∏3

k=1,k ̸=j(βk − βj)
− f̂1(s)

3∑
j=1

d1,j
s− βj

− f̂2(s)

3∑
j=1

d2,j
s− βj

. (26)

According to Li and Garrido [16] of the Equation(17)and (18), Equation (26) rewrites as

f̂2,θ(s) = 1− (θ + k + l − qs)2(θ + k − qs)

qkl
∏3

i=1(βi − s)

+ f̂1(s)
(k + θ − qs)(k + θ + l − qs+ l)

ql
∏3

i=1(βi − s)
+ f̂2(s)

l

q
∏3

i=1(βi − s)

= 1− 1∏3
i=1(βi − s)

{
q2

kl

(
θ + k

q
− s

)(
k + l + θ

q
− s

)2

−
(
k + θ

q
− s

)[(
k + l + θ

q
− s

)
q

l
+ 1

]
f̂1(s)−

l

q
f̂2(s)

}
= 1− p̂1,θ(s)− p̂2,θ(s)∏3

i=1(βi − s)
.

Let w(x, y) = 1, when U(0) = 0, since f̂1(0) = 1, f̂2(0) = 1, then we have

mρ(0) = E
[
I(ρ <∞)e−θρ|U(0) = 0

]
=

∫ ∞

0

∫ ∞

0

hθ(u, y|0)dydu

=

∫ ∞

0

h2,θ(y|0)dy = lim
s→0

ĥ2,θ(s) = 1− p̂1,θ(0)− p̂2,θ(0)

β1β2β3

= 1− (θ + k + l)2θ

qkl
∏3

i=1 βi
. (27)

Due to θ > 0, we can derive that mρ(0) < 1.

10
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THEOREM 4. When U(0)=0, the ruin probability ψ(0) is

ψ(0) = 1− (k + l)2

qklβ
′
1(0)β

∗(0)
.

Proof. We get that

ψ(0) = lim
θ→0+

E
[
I(ρ <∞)e−θρ|U(0) = u

]
= 1− lim

θ→0+

(θ + k + l)2θ

qkl
∏3

i=1 βi

= 1− (k + l)2

qklβ
′
1(0)β

∗(0)
, (28)

where β∗(0) =
∏3

i=2 βi(0) and β
′
1(0) =

d
dθ
β1(θ)|θ → 0+ and when U(0)=0. Using the fact that β1(θ)

is a root of Lundberg equation, we have p̂1(β1(θ)) = p̂2(β1(θ)). By differentiating with respect to θ
and then letting θ → 0+, we obtain

(k + l)2(1− cβ
′
1(0)) = −k2(k + 2l)µ1β

′
1(0)− kl2µ2β

′
1(0) (29)

where f̂
′
1(0) = −µ1, f̂

′
2(0) = −µ2. From Equation (29) and the Equation (1), we know that

β
′
1(0) =

(k + l)2

q(k + l)2 − k2(k + 2l)µ1 − kl2µ2
=

E(W )

qE(W )− E(X)
(30)

which is always positive. Thus, using Equation (28) and (30), we have that

ψ(0) = 1− (k + l)2

qklβ
′
1(0)β

∗(0)
= 1− [qE(W )− E(X)]

cklβ∗(0)
< 1. (31)

6 Expressions for the Gerber-Shiu Penalty Function

THEOREM 5. An another expression to Gerber-Shiu penalty function is,

mθ(u) =

∫ u

0

mθ(u− y)ζθ(y)dy +Bθ(u), u ≥ 0. (32)

where

ζθ(y) = H2,θ(y|0) = Tβ1Tβ2Tβ3p2,θ(u),

Bθ(u) = Tβ1Tβ2Tβ3 l1,θ(u). (33)

Proof. Since
∫∞
0
h2,θ(y|0)dy = mρ(0) < 1, Equation (32) is a defective renewal equation. Using

Lagrange interpolating formula, we derive that

p̂1,θ(s) = p̂1,θ(0)

3∏
k=1

s− βk
(−βk)

+ s

3∑
j=1

p̂1,θ(βj)

βj

3∏
k=1,k ̸=j

s− βk
βj − βk

.

Following a similar discussion as in the references, the relation mentioned before implies

p̂1,θ(s)− p̂2,θ(s) = π3(s)

[
p̂1,θ(0)

π3(0)
−

3∑
j=1

p̂2,θ(βj)

(−βj)π′
3(βj)

+

3∑
j=1

p̂2,θ(βj)

(s− βj)π
′
3(βj)

− p̂2,θ(s)

π3(s)

]
, (34)

11
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where π3(s) =
∏3

i=1(s− βj). Since p̂2,θ(βj) = p̂1,θ(βj), j = 1, 2, 3, for s=0, we obtain

p̂1,θ(0)

π(0)
+

3∑
j=1

p̂2,θ(βj)

βjπ
′(βj)

=

q2

kl

(
θ+k+l

q

)2 (
θ+k
q

)
∏3

i=1(−βi)
+

3∑
j=1

q2

kl

(
θ+k
q

− βj
)(

k+θ+l
q

− βj
)2

βj
∏3

k=1,k ̸=j (βj − βk)

=
(θ + k + l)2(θ + k)

qkl
∏3

i=1(−βj)
+ (−1)3

[
1− (θ + k + l)2(θ + k)

qkl
∏3

i=1(βj)

]
= −1.

Then Equation (34) becomes

p̂1,θ(s)− p̂2,θ(s) = (−1)3π3(s) [1− TsTβ1Tβ2Tβ3h2,θ(0)] . (35)

Furthermore, from (35) we get that

ĥ2,θ(s) = 1− p̂1,θ(s)− p̂2,θ(s)∏3
i=1(βi − s)

= 1− (−1)3π3(s) [1− TsTβ1Tβ2Tβ3p2,θ(0)]

(−1)3π3(s)

= TsTβ1Tβ2Tβ3p2,θ(0). (36)

Since ĥ2,θ(s) =
∫∞
0
e−suh2,θ(y|0)du, then

h2,θ(y|0) = Tβ1Tβ2Tβ3p2,θ(u).

Using the Dickson-Hipp operator, we have

Bθ(u) =

∫ ∞

0

∫ ∞

u

w(s, t)

[
f1(s+ t)

3∑
j=1

d1,je
−βj(s−u) + f2(s+ t)

3∑
j=1

d2,je
−βj(s−u)

]
dsdt

=

3∑
j=1

d1,j

∫ ∞

u

e−βj(s−u)σ1(s)ds+

3∑
j=1

d2,j

∫ ∞

u

e−βj(s−u)σ2(s)ds

=

2∑
i=1

3∑
j=1

dijTβjσi(u). (37)

From Equation (37), we obtain that the LT of the Bθ(u),

B̂θ(s) =

∫ ∞

0

e−suBθ(u)du = TsBθ(0) =

2∑
i=1

3∑
j=1

dijTsTβjσi(0)

=
3∑

j=1

d1,θσ̂1(βj) + d2,θσ̂2(βj)

(s− βj)
− σ̂1(s)

3∑
j=1

d1,j
s− βj

− σ̂2(s)
3∑

j=1

d2,j
s− βj

= (−1)3
[
l̂1,θ(s)

π(s)
−

3∑
j=1

l̂1,θ(βj)

(s− βj)π
′(βj)

]
= TsTβ1Tβ2Tβ3 l1,θ(0),

Thus, by inverting Equation (37), we can get another expression for Gθ(u),

Gθ(u) = Tβ1Tβ2Tβ3 l1,θ(u).

THEOREM 6. The defective renewal equation of mρ(u) is:

mρ(u) =

∫ u

0

mρ(u− y)ζθ(y)dy +

∫ ∞

u

ζθ(y)dy, u ≥ 0. (38)

12
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7 Numerical Illustration

In this section, we give some examples. If Ti is smaller than Mi, then the following claim size Xi

has density function f1(x), otherwise its density function is f2(x). They are both exponential
distribution with parameter k1, k2, that is, f1(x) = k1e

−k1x, f2(x) = k2e
−k1x, and f̂1(s) =

k1
k1+s

, f̂2(s) =
k2

k2+s
. We get an explicit expression for taking Laplace Transform of the first equation

in Theorem 6,

m̂ρ(s) =
mρ(0)− ζ̂2,θ(s)

s
[
1− ζ̂2,θ(s)

] =
1− ζ̂2,θ(s)− [1−mρ(0)]

s
[
1− ζ̂2,θ(s)

] . (39)

From Equation (35) and (36) we have

p̂1,θ(s)− p̂2,θ(s) =
[
1− ζ̂2,θ(s)

] 3∏
i=1

(βi − s),

and thus Equation (39) becomes

m̂ρ(s) =
p̂1,θ(s)− p̂2,θ(s)− [1−mρ(0)]

∏3
i=1 (βi − s)

s [p̂1,θ(s)− p̂2,θ(s)]
. (40)

From Equation (21),(22) we easily have

p̂1,θ(s)− p̂2,θ(s) =
Q3,θ(s)

qkl(k1 + s)(k2 + s)
, (41)

where

Q3,θ(s) = (k1 + s)(k2 + s)(k + θ − qs)(θ + k + l − qs)2 − kl2k2(k1 + s)

− k1(k2 + s)(k + θ − qs) [k(k + θ + l − qs) + kl] .

Since Q3,θ(s) is a polynomial of degree 3 and then we have that Q3,θ(s) = 0 has 3 roots in the
complex plane. Since p̂1,θ(s) − p̂2,θ(s) = 0 is the Lundberg equation, that is equation Q3,θ(s) = 0
has 3 roots β1, β2, β3 and two roots say −Mi = −Mi(θ), with Re(Mi) > 0, i = 1, 2. Thus, we
rewrite Q3,θ(s) as

Q3,θ(s) = qkl(s+M1)(s+M2)
3∏

i=1

(βi − s). (42)

So, from Equation (42)and (41), Equation (39) yields

m̂ρ(s) =

∏2
j=1 (s+Mj)− [1−mρ(0)] (k1 + s)(k2 + s)

s
∏2

j=1 (s+Mj)
. (43)

Since m̂ρ(s) <∞ for s ≥ 0, that is

1−mρ(0) =
M1M2

k1k2

and then Equation (43) becomes

m̂ρ(s) =

(
1− M1M2

k1k2

)
s+M1 +M2 − M1M2(k1+k2)

k1k2

(s+M1)(s+M2)
.

We assume R1, R2 are different and use partial fractions,

m̂ρ(s) =

2∑
j=1

ξi,θ
s+Mj

,

13
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where

ξ1,θ =
M2

M2 −M1

(
1− M1(k1 + k2)

k1k2
+

M2
1

k1k2

)

ξ2,θ =
M1

M2 −M1

(
1− M2(k1 + k2)

k1k2
+

M2
2

k1k2

)
Inverting m̂ρ(s) gives that

mρ(u) = ξ1,θe
−M1u + ξ2,θe

−M2u, u ≥ 0 (44)

We also can get ruin probability ψ(u) by letting θ → 0.

7.1 When θ = 0

Let k1 = 2, k2 = 4, c = 1.5, k = 2,
with l = 1,

ψ(u) = −0.00054031652280488e−3.9900610193824644u + 0.6425490681568e−0.7155993125651344u,

with l = 3,

ψ(u) = −0.0041727320835225e−3.938341980843664u + 0.57252489270819e−0.8598590518898737u,

with l = 5,

ψ(u) = −0.00997224149241e−3.8733037753948447u + 0.5182533288617954e−0.9744124540765244u,

with l = 10,

ψ(u) = −0.027705461665553e−3.7169851159041327u + 0.43132361981897e−1.1643219472701969u.

0 2 4 6 8 10 12 14 16 18 20

Initial Surplus

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ui

n 
P

ro
ba

bi
lit

ie
s

Fig. 1. Ruin probabilities when θ = 0

From Fig. 1 we can see that the parameter l has an important impact on ruin probabilities ψ(u).
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7.2 When θ = 1

Furthermore, we can analyze the expressions for the mθ(u) by using θ = 1. Let k1 = 2, k2 = 4,
c = 1.5, k = 2,
with l = 1,

mρ(u) = −0.000753258169851e−3.992695543278276u + 0.4158061959884069e−1.16901584810085u,

with l = 3,

mρ(u) = −0.005125813528442236e−3.9533678066596094u + 0.3884081526472388e−1.2272392825230218u,

with l = 5,

mρ(u) = −0.011401900767716385e−3.902448624640329u + 0.3612870826739349e−1.2859844203405293u,

with l = 10,

mρ(u) = −0.02929701439042134e−3.7763937788329516u + 0.30918222107489424e−1.401380900990933u.
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Fig. 2. Ruin probabilities when θ = 1

From Fig. 2 we can see that the parameter l has an important impact on the values of the mρ(u).

8 Conclusion

In this paper, we have considered a new risk model of claim amount affected by a threshold value.
We derived that the generalised Lundberg equation has three roots and the Laplace Transform
of the expected discounted penalty function. Besides, we analyzed the function when the initial
surplus is zero. And also, we gave the expressions for the penalty function and some defective
renewal equations. Some explicit expressions about the ruin probability are given to show that as
the dependence parameter l is higher, the ruin probability and the value of the LT of time to ruin
are both lower.
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