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Textile industry being one of the most flourishing industries keeps growing and developing every year, and the consequences are
not very pleasant. Even though its contribution towards economy of a country is indisputable, there are many pros and cons
associated with it that should not be brushed aside, one of them being textile dye waste which is also growing at alarming rate.
Many techniques have been designed to deal with this environmental crisis including adsorption and photodegradation of dye
waste by various substances, both natural and synthetic. TiO2 and clay both have gained immense popularity in this area. Over
the last decade, many successful attempts have been made to design TiO2-clay-based composites to combine and make the
most of their individual capabilities to degrade textile dye waste. While clay is an effective adsorbent, inexpensive, innocuous,
and a great ion exchanger, TiO2 provides supplementary active sites and free radicals and speeds up the degradation rate of
dyes. This review summarizes various features of TiO2-clay-based composites including their surface characteristics, their role
as dye adsorbents and photocatalysts, challenges in their implementation, and modifications to overcome these challenges
made over the last decade.

1. Introduction

Color is defined as optical interpretation originating from
the brain when visible light stimulates the human eye [1].
The discovery of earliest dye (aniline purple) dates back to
the 1860s by W.H. Perkin who laid the foundation for
worldwide production of dyes for commercial purposes
[2]. Initially, the world relied on Europe for manufacture
and supply of dyes, but currently, South Asia has overtaken
it [3]. Gross production of dyes is expected to be 1,000,000
tons per year [4]. These dyes are used in the fabrics, process-
ing of leather, publication, lithography, medicinal, and
beauty sectors. Some of them are also used as coloring agents
for food items [5]. This universal reliance of industrial sec-
tors on dyes means that a bulk amount of dye effluents are
being produced and dumped over by every industry all over
the world and most of it is discarded into water bodies. It has
been reported that 200 BL dye effluents are being discharged

in water per year [6, 7]. Some examples of commonly used
dyes have been listed in Table 1. Most of them are used
extensively in textile and chemical industries, like brilliant
green, Congo red, methylene blue, and indigo carmine.
Many dyes are stable towards degradation and it is hard to
decompose them, resulting effluents using ordinary methods
of wastewater treatment [8]. These dye effluents have been
reported to cause cancer, allergies, and skin diseases; there-
fore, their proper treatment is inevitable [9]. Figure 1 gives
a brief description of procedures involved in textile waste
water treatment.

It involves various physical and chemical treatment
methodologies, like coagulation, ozonation, bioremediation,
filtration, photochemical degradation, and electrolysis, either
individually or in combination to produce clean water. That
water in turn is used for secondary purposes, like watering
plants, washing, steam generators, and leaching. Some types
of water treatments even produce pure water that can be
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used for drinking, like in Sri Lanka and Malaysia, and desa-
lination and ion exchange processes are used to convert sew-
age and sea water into drinkable one.

1.1. Toxicological Profile of Dyes. Dye effluents mainly pol-
lute environment in the form of water pollutants which are
released into water system without treatment. It causes a sig-
nificant drop in oxygen concentration of water as sulfur

hydrides screen the light from entering the aqueous streams
which leads to a deleterious effects on aquatic environment.
Half of these dye effluents may have chlorine in their com-
position which is a mutagen and cancerous in nature. Some
dyes may also consist of metal ions, like Hg, Cd, As, Cr, and
Pb which cannot be decomposed biologically, so they have
the tendency to accumulate in our immune system, causing
deterioration and inducing different maladies. Unprocessed
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Figure 1: Schematic representation of textile waste water treatment plants.

Table 1: List of some commonly used dyes and their abbreviations.

AAT o-Aminoazotoluene CR Congo red PPD Paraphenylene diamine

AB Azure B CV Crystal violet PR Procion red

AC1 Alizarin complex one DB 291 Disperse blue 291 RB 19 Reactive blue 19

AOP Advance oxidation process DR 1 Dispersive red 1 RBR Reactive brilliant red

AO7 Acid orange 7 Es Eosin RhB Rhodamine B

AR 3R Acid red 3R GV Gentian violet Rh 6G Rhodamine 6G

ARB Acid red B MB Methyl blue S I Sudan I

ARG Acid red G MO Methyl orange SBE Sumifix blue Exf

AV 90 Acid violet 90 MV Methyl violet SRhB Sulforhodamine B

BB 41 Basic blue-41 MY Methyl yellow SY Sunset yellow

Bzd Benzidine NBB Naphthol blue black Ttz Tartrazine

CB Conduction band NR Neutral red TY Titan yellow

Ch Chrysoidine OG Orange G TyB Trypan blue

CN Cyanide OII Orange II VB Valence band
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or partly decomposed dye pollutants are destructive for both
aquatic and human life [10]. Table 2 enlists chief human
maladies caused by dye pollutants.

1.2. Degradation Methods of Dye Effluents. Since the time,
the pathological effects of dye effluents have been analyzed,
and researchers have been working on various effective tech-
niques for their decomposition and removal from wastewa-
ter. Some of these techniques have been showcased in
Figure 2. They are widely explored all over the world by dif-
ferent researchers. Most of them were employed on indus-
trial level for wastewater treatment or for converting sea
water into pure water.

1.2.1. Adsorption. Amongst all these methods, adsorption
has emerged as an exceptionally effective and facile method
for the removal of dye effluents (Table 3) [29]. Adsorption
is a physical phenomenon of separation of any element
between two surfaces, e.g., liquid/solid. It can be carried
out by physical or chemical means. One of its main features
is regeneration of adsorbent. The adsorption potential of a
substance depends on its surface area, resistance to abrasion,
pore diameter and structure, etc. [30]. It is quite simplistic
and economically favorable and involves swift recollection
and reusability of adsorbent without needing to deal with
sludge or unsafe side products. However, the success of
adsorption procedure depends on performance of adsor-
bents which should be comprehensive in its actions. Some-
times an adsorbent may observe a very high adsorption
potential but lack other important features. For instance,
activated carbon is a commonly used adsorbent having a
high SSA (specific surface area), void fraction, and adsorp-
tion efficiency, but its heavy price and complexed isolation

post sorption has limited its usage. Therefore, scientists have
been engrossed in designing such adsorbents which are not
only effective in action but also strong, durable, renewable,
cost-efficient, and eco-friendly [31].

1.2.2. Adsorption Kinetics. The adsorption potential of an
adsorbent is represented graphically using different models
such as Freundlich and Langmuir [32]. These graphs are
based on concentration of adsorbate adsorbed by adsorbent
at constant parameters (temperature and pressure) [33].

The Langmuir model (Equation (1)) perfectly represents
a single-layer adsorption unit. It is based on the assumption
that dye particles when adsorbed on adsorbent arrange
themselves in a single layer, all the adsorbed particles having
equal amount of Ea [34]. It also suggests that single-dye par-
ticle binds per active site. Moreover, this theory overlooks
the interactivity between individual dye particles [35].

Qe =
KLQmCe

1 + KLCe
, ð1Þ

where Qe: Adsorption potential at equilibrium (mgg-1), Qm:
Max adsorption potential (mgg-1), Ce: Conc. of adsorbed
dyes at equilibrium (mgL-1), KL: Equilibrium constant of
adsorption (Lmg-1).

Contrary to the Langmuir model, the Freundlich model
(Equation (2)) represents an adsorption theory where dye
particles are adsorbed and arrange in more than one layer
and this arrangement is nonlinear [36]. Mostly, the Freun-
dlich model is used where more refined adsorbents with
enlarged surfaces and better pore morphology are being
studied for adsorption or to describe the adsorption of
extremely reactive organic dyes [37]. Although these equa-
tions are perfectly applicable at low pressure, the values
become more uncertain at high pressure [38].

Qe = KF Ceð Þ1n, ð2Þ

where Qe: Adsorption potential at equilibrium (mgg-1), KF :
Adsorption potential (mmolg-1), Ce: Conc. of adsorbed dyes
at equilibrium (mgL-1), n: Constant of adsorption strength.

Both these models have been used to study kinetics of
adsorption for various adsorbents [39–41]. Some other
models that have also been proved quite successful are Tem-
kin [42] and Henry’s [43]. Koyuncu and Okur used all these
four models to study adsorption potential of C2M1 for AV
90 dye where the Freundlich model proved to be superior
than others having highest correlation factor (R2 > 0:94)
[44], while Kulasooriya et al. investigated adsorption poten-
tial of brick clays for SBE dye where the Langmuir model
showed better results, max adsorption potential being
1667mgkg-1 [45].

1.2.3. Parameters for Effective Adsorption of Dyes. The pro-
cess of adsorption is dependent on parameters like pH, heat,
and quantity of adsorbent. Different parameters have differ-
ent impact on different adsorbents. Some conditions could
be more ideal for one adsorbent but not for others.

Table 2: Toxic effects of some synthetic colorants on human
health.

Dyes Toxicity Source

DR 1 Chromosomal mutation [11]

CV Chronic kidney disease [12]

DB 291 Necroptosis [13]

AC 1 Disturbance in blood plasma proteins [14]

CR Skin irritant [15]

PPD Loss of vision [16]

PPD Coryza [17]

RhB Skin cancer [18]

MY Neural degeneration [19]

S I Imbalanced digestive system [20]

Bzd Urothelial carcinoma [21]

SY White blood cell damage [22]

Ttz Anxiety [23]

AAT Atopic dermatitis [24]

MY Hepatocellular carcinoma [25]

TyB Abnormal development [26]

Ch Toxicity in blood plasma [27]

TY Skin irritant [28]

3Adsorption Science & Technology



Therefore, optimum parameters are decided for every adsor-
bent on hit and trial basis.

(1) Temperature. Adsorption is either exothermic or endo-
thermic so temperature is a major parameter here. In an endo-
thermic procedure, the value of Qmax rises at higher
temperature due to enhanced motion of the dye particles
and increased active sites of adsorbents [46]. However in some
cases, value of Qmax falls at higher temperature as motion of
dye particles slows down and adsorption is exothermic [47].

(2) Quantity of Adsorbent. Usually, the greater the quantity
of adsorbents, the greater the number of active sites available
and hence the higher is adsorption potential [48]. However,
financially feasible adsorbents are those that show higher
potential with minimum quantity [49].

(3) pH. pH is another major parameter that impacts adsorp-
tion procedure determined by pzc (point of zero charge). pH
can control rate of ionization of the adsorbents. Cationic
dyes show lower adsorptions at lower pH and higher adsorp-

tion at higher pH, while it is opposite for anionic dyes [50].
Cationic dyes show greater adsorptions if pH of solution is
higher than pHpzc, while it is opposite for anionic dyes [51].

1.2.4. Photocatalysis. Unlike adsorption, photocatalysis is an
advanced technique which has been proved as an effective
remediation for waste water treatment. This procedure does
not require the usage of any strong chemical specie, so the
chances of production of hazardous side products are very
little. Photocatalysis is powerful enough to decompose oth-
erwise highly stable dyes into harmless products [52]. The
fundamental principle of photocatalysis involves the contact
between dye pollutants and their loading onto the photoca-
talyst. The dye pollutants get adsorbed on its exterior where
redox reactions transpire as a result of generation of elec-
trons from conduction band (CB) and holes from valence
band (VB). The resultant products finally detach from the
photocatalyst and are discarded into the aqueous media
[53]. The reaction mechanism can be simplified as follows:

Photocatalyst + UV
Vis ⟶Holes VBð Þ + e CBð Þ

Holes VBð Þ + e CBð Þ ⟶ E Δhð Þ

Holes VBð Þ +H2O⟶ ∙
 OH +H+

e CBð Þ + O2 ⟶
∙
 O2

∙
 OH +Dye⟶H2O + CO2
∙
 O2 + Dye⟶H2O + CO2

ð3Þ

Various studies have proved that photocatalysis is a
highly efficient and result-oriented technique for degrada-
tion of dyes.

Photocatalysis can be carried out via batch as well as
continuous process as shown in Figure 3.

This review mainly focuses on progress made on clay-
based TiO2 composites over the period of past decade. It
summarizes the data on the synthesis and implementation
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Figure 2: Degradation methods of dye effluents.

Table 3: Shortcomings of dye removal techniques.

Sr.
no.

Method Shortcomings

1 Flocculation Sludge formation

2
Electrolytic
precipitation

Time consuming

3
Electrochemical

oxidation
Expensive due to electricity usage

4 Ion exchange Only effective for selective dyes

5 Fenton process Excessive formation of anions

6 Membrane filtration Unstable and expensive

7 Phytoremediation Not permanent treatment

8 Bioremediation Impedes microbial development

9
Photocatalytic
degradation

Source of light required which is
expensive
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of clay-TiO2 composites for treatment of industrial waste
water, both as adsorbent or as a photocatalyst. A literature
review based on selective experimental approaches was
made which highlights the advantage of degradation of dyes
by clay-based TiO2 composites.

2. TiO2 as Adsorbent and Photocatalyst and
Its Limitations

TiO2 is an excellent adsorbent based on its abundance, ease
of excitability, modifiable physical properties, and a very fit-
ting PCZ of 6–6.8, which enables it to adsorb dye particles
[54]. TiO2 is also a widely used photocatalyst owing to its
degradation potential [55]. Photocatalysis obviously cannot
be carried out without adsorption of dyes onto TiO2. This
adsorption brings out the interaction between the dye parti-
cles and photogenerated species, which kick starts photoca-
talysis [56]. Thus, the photocatalytic activity of TiO2 is also
determined by its adsorption potential. Adsorption is a sur-
face phenomenon which is dependent on form, area, and
structural regularity of TiO2 crystals [57].

TiO2 is highly stable both chemically and physically and
mild and inexpensive which make it a perfect photocatalyst
[58]. TiO2 exhibits polymorphism and its 3 mineral forms
are anatase, brookite, and rutile [59, 60]. Anatase and rutile
are reported to have greater photocatalytic activity. Anatase
is a better photocatalyst owing to its indirect band gap that
gives a greater life span to electron-hole pair, while rutile
produces electron-hole pair of a shorter life span based on
its direct band gap [61]. CB and VB of TiO2 have a gap of
3.2 eV (anatase) and 3.0 eV (rutile) [62]. Thus, anatase has
a λmax of 387.5 and rutile has 400nm in UV region [63].
TiO2 on photoexcitation produces a number of electrons
and holes in CB and VB simultaneously. These charged spe-
cies further create bunch of free radicals which forms the

core of photodegradation mechanism [64]. The mechanism
is briefly explained through Figure 4 graphically.

2.1. Drawbacks and Challenges. However, TiO2 has few
drawbacks [65] that can make it less effective and various
methods have been adopted to overcome them.

(1) A very large band gap of anatase limits its ability to
adsorb light in UV region only, so it cannot make
proper use of spectrum. To overcome this problem,
TiO2 has been modified by induction of metallic
[66, 67] and certain nonmetallic [68, 69] compounds
which shrink the band gap as shown in Figure 5

(2) Lesser attraction for organic dyes and lesser volume
of pores per surface area reduce its adsorption
potential. So adsorption capacity of organic dyes is
improved by layering its surface with carbon-based
organic compounds [70, 71]

(3) Irregular distribution of TiO2 particles and agglom-
eration of its NPs can block the active sites and hin-
der the interaction with incoming light. To avoid

UV light

Water
outlet

TiO2
coating

Ceramic
substrate

Water
inlet

23ºC

(a)

Spectrometer

Peristaltic pump

UV lamp

Dye solution

(b)

Figure 3: (a) Batch process setup vs. (b) continuous process setup for photocatalytic degradation of dye.
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Figure 4: Mechanism of Photocatalytic degradation by TiO2.
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this, TiO2 is immobilized with different supports
which break off clustering of its particles and block-
age of light [72, 73]

(4) It often ends up making a slurry in liquid media and
its regeneration gets difficult which makes its use less
cost-effective. Functionalization by magnetization of
TiO2 can make its recovery easier [74, 75]

2.1.1. Clay as an Adsorbent and an Effective Support for
Titania. Clay is a mineral naturally found on earth crust.
Its chief composition is finely grounded substances (mostly
sheet silicates) that impart a unique plasticity in aqueous
media, while it hardens up in dry conditions [76]. Clay com-
position involves uniformly grounded hydrated alumino-
silicates. The structure of these alumino-silicates contains
tetrahedral sheets of Si-O and octahedral sheets of Al. Clay
has the potential to clean wastewater system up to 70% by
adsorbing impurities [77]. The extent to which these impu-
rities are adsorbed onto clay depends on how strongly they
interact with natural clay and mineral oxides on its surface
[78–82]. The adsorption procedure is regulated by a few fac-
tors such as nature of ions (cationic or anionic), number of
ions, pH, temperature, and nature of dye being treated [83,
84].

Clays have emerged as popular supports for TiO2 for dye
degradation.

(1) Pure TiO2 has lower photocatalytic potential than
clay-based TiO2 composite. Clay imparts TiO2 a larger
surface area, increases the number of active sites, and
hence improves its adsorption potential [85]

(2) Cations are present in between the layers of clay
structure which captures the electrons. Thus, the
holes in VB of TiO2 are free and available for oxidi-
zation. This reduces the overall rate of charge recom-
bination in TiO2-clay composites and increases its
photocatalytic potential [86]

(3) Regeneration and recovery of TiO2-clay composites
are easier due to the presence of charged species on
clay which make the composite separable from aque-
ous media and the reaction becomes more feasible
economically

2.2. Preparation of TiO2-Clay Composites. TiO2-clay-based
composites can be synthesized using various techniques as
shown in Figure 6. They are reported by various researchers
from all over the world with good yields and various
applications.

2.2.1. Adsorption of Dyes via TiO2-Clay Composites. TiO2/
stishovite clay composite was simply prepared by mixing
stishovite and TiO2 and stirring with alcohol for 5-6 hours,
precipitating overnight, and vacuum drying. The resultant
composite was used for adsorption of MV dye. 88% of dye
was adsorbed. The adsorption data shows that adsorbent’s
surface was covered by a single layer. Adsorption process
was endothermic and it observed pseudo 2nd order. How-
ever, the recovery rate of adsorbent was not up to the
mark [92].

Likewise, a TiO2-bentonite composite was prepared by
mixing TiO2 with clay and double distilled H2O followed
by stirring and drying, and the resulting composite was used
for degradation of RhB via batch process and results were
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Figure 5: Photocatalytic activity of TiO2 vs. modified TiO2.
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studied using the Langmuir isotherm. TiO2-bentonite adsor-
bent removed up to 98.9% RhB which was higher than nat-
ural clay adsorbent [93].

TiO2 has the ability to make composites with a variety of
clays. TiO2-rectorite composite was synthesized by mixing
titanium butoxide/HCl suspension with rectorite/dd H2O
suspension followed by stirring, drying, centrifugation,
washing, and finally drying. Then, it was magnetized with
iron oxide and used for adsorption of MB dye showing
max adsorption potential of 169.20 mgg-1. Iron oxide was
reported to increase the number of active sites by rupturing
the sheets of TiO2-rectorite composite and created large cav-
ities which adsorbed greater number of MB molecules. Mag-
netization also made desorption easier [94].

The degradation potential of TiO2-clay composites can
be enhanced by incorporation of metal oxides. TiO2-WO3-
bentonite composites were synthesized through hydrother-
mal method by adding a mixture of Na+-bentonite and
sodium tungstate dihydrate mixture to titanium tetrachlo-
ride with constant mixing in a cold bath followed by treat-
ment with ultrasound radiations for ½ hr. This mixture
was heated in an autoclave with H2O at 443.15K for 10h.
The resultant composite was separated through filtration
and washed and dried at 25°C. This composite was used
for adsorption studies of MB dye. WO3 has been reported
to escalate TiO2’s sensitivity for gaseous species as well as
improves its acidic strength and increases its affinity for
dye contaminants. The unique pretreatment of bentonite
with ultrasound radiations allowed a thorough disruptor of
Na+-bentonite matrix and uniform insertion and intercala-
tion of TiO2-WO3 particles in between its layers. The adsor-
bent exhibited excellent adsorbent potential, a smooth
desorption, and an easy recovery. Moreover, the adsorption
potential of pretreated adsorbent increased by 50% possibly
due to increase in number of active sites by ultrasound irra-
diation [95].

Mixing of TiO2 with clay and organic material like gra-
phene imparts its tremendous adsorption properties. TiO2-
palygorskite-graphene composite was prepared via hydro-

thermal method, while CTAB was used as a surface active
agent and adsorption of MB was studied. The studies suggest
that graphene having layers of sp2 hybridized C is bestowed
with a huge surface area, greater affinity for H2O, and uni-
form distribution which makes it an ideal support. Likewise,
palygorskite has exceptional adsorption potential owing to
its enormous surface area and heat resistance. C=O groups
on the surface of adsorbent provided the active sites where
MB molecules were seem to be bound by H-bonds (on OH
groups). The adsorbent showed commendable adsorption
even after 5 recovery cycles. The max adsorption potential
was 134.59 mgg-1 [96].

Clay composites of TiO2 can be further improved by
microwave treatment. TiO2-bentonite composite was syn-
thesized via impregnation where bentonite was added to a
water suspension of TiO2 followed by heating and stirring.
The thoroughly mixed solution was subjected to microwave
irradiation; the product was removed and desiccated. It was
further used to study adsorption behavior using RhB and
MB dyes using the Langmuir equation. Structural analysis
shows that the integration of TiO2 particles onto bentonite
via impregnation enhanced its adsorption potential, and
OH● on TiO2 act as potential active sites and amplify the
adsorption process [97].

A TiO2-Rouge clay composite was synthesized via
hydrothermal synthesis. Carefully refined and pretreated
clay (with NaOH) was purified and desiccated and stored
for 12 hours. Equal weight of functionalized clay and TiO2
were mixed in the presence of NaOH at 373.15K and
5 atm. The adsorbent was used for adsorption of MB dye;
it was reported to remove 91.19% dye. Morphological analy-
sis indicates that the clay undergoes structural rearrange-
ment post combination with TiO2 and adsorbent shows a
comparatively uneven and granulated surface with multiple
active sites which escalates adsorption rate [98].

Lately, halloysite nanotubes (financially feasible clays)
have enticed deep interest owing to their hollow tube-like
structure, enlarged surface area, and distinctive surface fea-
tures. A TiO2-halloysite composite was doped with Fe using
hydrothermal procedure and used for adsorption of RhB
and MB dyes. The multilayer tubes have anionic Si–OH on
the exterior side and cationic Al–OH on the interior side
which attract impurities of different nature via electrostatic
interactions. Moreover, they are harmless, inexpensive, eas-
ily accessible, and nonhazardous. TiO2-Fe composites were
seen to stick to the exterior of the tubes which increased

Methods of
preparing
TiO2-clay

composites

Sol-gel

Solvothermal

Hydrothermal Immobilization

Pillaring

Figure 6: Methods of preparation of TiO2-clay composites
[87–91].

Table 4: Summary of TiO2-clay composite preparation
methodologies and their consumption for adsorption of dyes in
the last decade.

Adsorbent Preparation Adsorption Reference

TiO2-Mnt-PAN Spin coating MB [100]

TiO2-Ht Sol-gel MB [101]

TiO2-Mnt-PVA Immobilization MB [102]

TiO2-Knt Sol-gel OII [103]

TiO2-Bnt Sol-gel NBB [104]

TiO2-Knt Impregnation PR [105]
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their dispersion in aqueous phase, and the greater the dis-
persion, greater the contact with dye contaminants present
in water and hence the higher the adsorption [99].

Table 4 gives a brief summary of synthesis methodolo-
gies and application of some of TiO2-clay-based composites
in degradation of dyes via adsorption.

2.2.2. Photocatalysis of Dyes via TiO2-Clay Composites. Mix-
ing different phases of TiO2 with clay gives amazing results
in photocatalysis. A novel TiO2-kaolinite photocatalyst was
prepared using various phases of TiO2 which was used for
photocatalytic degradation of ARG dye. According to XRD
data, the photocatalyst seemed to be composed of mixtures
of 3 different phases of TiO2, i.e., anatase, rutile, and brook-
ite, in different combinations. The anatase/brookite combi-
nation was reported to have highest photoactivity. Both of
them were stimulated by UV light which leads to photoge-
neration of free electrons in anatase. Anatase has a highly

negative CB so these electrons diffuse to brookite. These
electrons undergo a series of reactions and produce •OH
which oxidizes dye particles. Likewise, photoactivated holes
in brookite diffuse to anatase due to its high VB potential
and interact with dye particles. Thus, the mixing of different
phases and resulting heterojunction between them can
improve TiO2’s photocatalysis [106].

The amount of clay used in the composite plays an
important role in its potential to remove impurities. A
TiO2/clinoptilolite photocatalyst was prepared via sol-gel
method in different ratios and used for degradation of CN
and MV-2B dye. The charge on the surface was dependent
on clay’s ratio which is an important factor in determining
the affinity of charged dye particles towards the photocata-
lyst. 90/10 turned out to be the best ratio; the lower the clay
ratio, the higher was the surface area and photocatalysis. The
lower ratio of clay also prevented accumulation of TiO2 in
aqueous phase and improved its recovery [107].

Table 5: Summary of preparation and photocatalytic degradation of TiO2-clay composites over the last decade.

Photocatalyst Preparation Photocatalysis Source Removal efficiency (%) Reference

TiO2-Spt Sol-gel ARG UV 99.2 [114]

TiO2-Knt Hydrolysis AO7 UV-Vis 60 [115]

TiO2-Rtr Sol-gel ARG UV 98 [116]

TiO2-Atp-AgBr Impregnation MB Solar 98.8 [117]

TiO2-Rtr Intercalation ARG UV 18 [118]

TiO2-Mnt-PMMA Emulsion polymerization/sputtering MB UV 29.3 [119]

TiO2-Mnt-V Sol-gel SRhB Vis 67.1 [120]

TiO2-Lpt Intercalation ARB UV 98.3 [121]

TiO2-Bnt-Ce Sol-gel NR Solar 99 [122]

TiO2-Bnt Pillarization MO UV 98.8 [123]

TiO2-Mnt Pillarization MB UV-Vis 98 [124]

TiO2-Mnt Pillarization MO UV 98.08 [125]

TiO2-Portuguese clay Immobilization MB UV 96.5 [126]

TiO2-Mnt-Pan Sono-chemical AB Vis light 59 [127]

TiO2-Ht Low temperature GV Vis light 60 [128]

TiO2-Bnt Sol-gel AR 3R UV 96.7 [129]

TiO2-Mnt-Ptp Intercalation/polymerization Rh 6G Solar/ultrasound/UV 96 [130]

TiO2-Plg Sol-gel OG UV 96 [131]

TiO2-Tunisian clay Impregnation RB 19 UV 99 [132]

TiO2-Mnt Impregnation CV UV A 97.1 [133]

TiO2-Atp-BiOBr In situ deposition MO Vis light 96.8 [134]

TiO2-Svs Solvothermal OG UV 80 [135]

TiO2-Sep-Au Sol-gel MO UV 90 [136]

TiO2-Plg-CdS Hydrolysis MB Vis 37 [137]

TiO2-Spt-Ag2O Sol-gel+impregnation ARG Vis 98 [138]

TiO2-Bnt-Fe3O4 Co-precipitation/sol-gel MB UV 90 [139]

TiO2-C-N-Ht Precipitation/recrystallization MB Solar 95 [140]

TiO2-Y
3+-Mnt Acid-sol MO UV/Vis 65 [141]

TiO2-AM-Ht Biosynthesis MB UV 90 [142]

TiO2-Spt Hydrothermal OG UV 98.8 [143]

TiO2-Ivorian clay Hydrothermal sol-gel MO UV 60 [144]

TiO2-Spt Sol-gel Es UV 72 [145]
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Rapsomanikis et al. prepared TiO2-halloysite clay com-
posites using sol-gel method for photocatalysis of BB41.
The unique feature of this photocatalyst was that its surface
was modified with Ag particles by treating composite’s films
with 1.0 mM AgNO3 sol for 10-20 minutes followed by rins-
ing with double distilled H2O and drying by N2 gas. Later,
the Ag ions were reduced to Ag0 by UV irradiation of films.
These Ag particles were reported to improve TiO2’s effi-
ciency to separate charge carrying species which led to an
enhanced photocatalytic activity [108].

Even though TiO2-clay photocatalyst show a remarkable
potential to degrade dyes and are economically feasible,
some of them (e.g., TiO2-palygorskite) have limited applica-
tions as they can only be stimulated by ultraviolet light
owing to their large EG. Various experiments have been car-
ried out to make them responsive to visible light, some of
which include hybridization and doping with other metals
especially transition metals. The plasmonic effects of Ag
nanoparticles enable it to improve the visible light sensitivity
of TiO2-clay photocatalysts and expand their area of usage.
A TiO2-Palgorskite composite was doped with Ag-AgCl par-
ticles through deposition-photoreduction method and used
for photocatalytic degradation of RhB. Due to the surface
plasmonic effect, Ag nanoparticles improved the photoactiv-
ity of the catalyst under visible light [109].

The sensitivity of TiO2 towards light spectrum can also
be broadened by merging it with other metal oxides like
Fe2O3 which are highly photoactive under visible light due
to Fenton mechanism. Therefore, its fusion with TiO2
imparts an exceptional photoactivity under natural day light,
which is a mixture of ultraviolet (5%) and visible (40%) and
IR light (55%). One such photocatalyst was prepared
through sol-gel procedure where bentonite-supported TiO2
was doped with Fe2O3 and used for photocatalysis of MB.
The dye was completely degraded in 2 hours. Fe2O3 not only
improved the photoactivity by absorption of light in visible
region, but its magnetic nature also helped to retrieve and
reuse the photocatalyst making it economically favor-
able [110].

Another such attempt to exploit visible light for photo-
degradation by TiO2-clay composites was made by deposit-
ing g-C3N4 onto TiO2-bentonite via wet impregnation. For
this purpose, TiO2-bentonite composite was mixed with
highly concentrated slurry of g-C3N4, sonicated for 120
minutes, stirred overnight, and dried at 333.15K. Samples
of such composites with varying weight of g-C3N4 were pre-
pared. These composites were applied for photodegradation
of RBR dye. 90% of the dye was degraded within 1.6 hour
under visible light. This brilliant outcome was ascribed to
strong interaction between clay and g-C3N4 leading to
enhanced dispersity, increased number of active sites, and
their uniform distribution and better optical activity.
Another reason was rate of charge recombination declined
due to electron transfer from g-C3N4 to TiO2 and photoin-
duction under visible light. The photocatalyst was reusable
for 5 successive cycles [111].

Incorporation of nonmetallic additives like urea into
TiO2-clay composites can be quite favorable. Urea is
reported to promote formation of anatase phase and con-

tributes to porosity of the TiO2-clay composite that adds to
photocatalytic potential. Urea addition can also lead to
shrinkage of the band gap of the TiO2-clay composite from
3.35 to 2.92 eV and makes it visible light activated. It is
reported to enhance the degradation rate of dyes by 2.3
times under visible lights. Moreover, it is inexpensive and
easily available which makes it even a better additive [112].

Photocatalytic degradation coupled with ultrasound
treatment has been proved a very effective technique to
enhance photoactivity of TiO2-clay composites. During
photocatalysis, the efficiency of photocatalyst is reduced
over the time due to blockage of active sites and hindrance
of UV light. Ultrasonic treatment solves this problem by
acting as an irradiation sources and activates TiO2 to carry
out sono-catalysis in the absence of UV light. Ultrasound
waves also induce turbulence in the liquid phase which
results in particle sizing and deagglomeration and hence
increase number of active sites available. Moreover, treat-
ment of these titania-clay composites with ultrasound
waves leads to formation of supplementary OH• radicals.
All these factors are reported to escalate photoactivity of
titania-clay composites and speed up the removal rate of
dye [113].

Table 5 gives a brief summary of synthesis methodolo-
gies and application of some of titania-clay-based compos-
ites in degradation of dyes via photocatalytic degradation.

It is evident from Tables 4 and 5 comparisons that sol-
gel and coprecipitation methods are more used for synthe-
sizing titania-clay composites as compared to other
methodologies.

3. Conclusion

(i) TiO2 as both photocatalyst and adsorbent is exten-
sively and effectively used for treatment of textile
waste water

(ii) The factors that limit TiO2’s efficacy of dye degra-
dation can be overcome by using different supports
like clays, silica, etc.

(iii) Clays like rectorite, bentonite, montmorillonite,
attapulgite, kaolinite, and halloysite are most com-
monly used as supports for TiO2 using various
techniques

(iv) Clay as a support provides TiO2 with a high sur-
faces area, porosity, improved morphology, more
active sites, and better adsorption of dyes

(v) Loading of TiO2 on clays helps preventing the
aggregation of TiO2 and its loss to environment

(vi) The efficacy of these TiO2-clay composites can be
enhanced by further addition of various metallic
and nonmetallic substances, ultrasonic irradiation,
and experimenting with different phases and parti-
cle size of TiO2

(vii) These TiO2-clay composites are energy-efficient,
nonhazardous, and economically feasible
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(viii) The study on TiO2-clay-based composites and
their modifications for treatment of textile waste
water is a rapidly growing field of science
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